
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.1

Chapter 3 – Processes
Chapter 4 - Communication

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Homework 0 – revisisted

 Homework 2

 Midterm Review

 Chapter 3 Processes
 3.5 Code Migration

 Chapter 4 Communication
 4.1

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.2

OBJECTIVES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.2

CH. 3.5: RESOURCE
(CODE) MIGRATION

L11.5

Goal: support on-the-fly reorganization of
distributed systems

At times there is interest in resource migration

Can consider various types of resource migration

Code migration: source code, libraries

Process migration: a running job/task

VM migration: an entire virtual server!

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.6

RESOURCE MIGRATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.3

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it is executing

 Portability – transferring code (running or not) across
heterogeneous systems:

Mac OS X  Windows 10  Linux

 Code migration enables f lexibility of distributed systems

 Topologies can be dynamically reconfigured on-the-fly

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.7

CODE MIGRATION

Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration?
an application specific approach?

What are advantages and disadvantages of each?

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.8

PROCESS MIGRATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.4

 Move processes:
from heavily loaded  lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.9

PROCESS MIGRATION - 2

 In some cases may look to migrate entire Vir tual Machine

 Motivations:
o Off-loading machines: reduce load on oversubscribed servers
o Load machine: ensure machine has enough work to do
o Idle servers: minimize total # of servers to save energy/cost
o Maintenance: power down servers for HW repair/upgrade

 VM migration:
 Migrate complete VMs with apps to l ightly loaded hosts
 Generally, VM migration is easier than process migration

 Which is faster process or VM migration?
 Is VM migration application specific or agnostic?

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.10

VM MIGRATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.5

Run performance
benchmarks in
parallel

c4.large
CPU (y -cruncher)
Network (iPerf)

c3.large

Disk (pgbench)

1 to 16
co-resident VMs

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.11

REASONS TO MIGRATE: VM OVERPROVISIONING
RESOURCE CONTENTION FROM CO-LOCATED VMS

by UWT student Edward Han

 Linux (CRIU) Checkpoint restore in userspace

 Linux tool: https://www.criu.org/

 Supports freezing a running application (or part of it) to create
a checkpoint to persistent storage (e.g. disk) as a collection of
fi les.
 This means saving the state of RAM to disk

 Can use checkpoint fi les to restore and run the application
from the point it was frozen at.

 Distinctive feature of CRIU is that it can be run in the user
space (CPU user mode), rather than in kernel mode.

 CRIU can save a Docker container’s state for migration
elsewhere

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.12

LINUX CRIU TOOL

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.6

 Make decisions concerning allocation and
redistribution of tasks across machines

 Provide resource management for compute intensive
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU
capacity

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.13

LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition

and state of systems and networks

 Is it better to migrate code or data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing

 Are there security
requirements for the data?

WHEN TO MIGRATE?

February 25, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L11.14

 Size of code
 Size of data
 Available network transfer

speed

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.7

 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.15

APPROACHES TO CODE MIGRATION

 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires
network bandwidth & time

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.16

DYNAMIC WEB CLIENTS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.8

 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web broswer

 Remote cloning

 Produce a copy of the process on another machine
while parent runs

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.17

CODE MIGRATION

 What program segments are migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, state, stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts

 Strong mobility

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.18

CODE MIGRATION - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.9

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec

* shows what is modified

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.19

CODE MOBILITY TYPES

 Hopeful assumption: code will always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

VM Migration

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.20

MIGRATION OF
HETEROGENEOUS SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.10

 Four approaches to transfer:

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?

 See next slide

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.21

VIRTUAL MACHINE MIGRATION

L11.22

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory pages as
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 1/3: no loss of service
 4: fast transfer, minimal loss of service
 2: fastest data transfer
 3: new VM immediately available

 1: must track modified pages during full page copy
 2: longest downtime - unacceptable for live services
 3: prolonged, slow, migration
 3: original VM must stay online for quite a while
 1/3: network load while original VM still in service

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.11

CH. 4 COMMUNICATION

L11.23

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.24

CHAPTER 4

Content consists of review and
additional building on Ch 2/3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.12

CH. 4.1: FOUNDATIONS

L11.25

 Distributed systems lack shared memory

 All communication is based on sending and receiving low-
level messages

 P  Q

 Open Systems Interconnection Reference Model
(OSI Model)

 Open systems communicate with any other open system

 Standards govern format, contents, meaning of messages

 Formalization of rules forms a communication protocol

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.26

LAYERED PROTOCOLS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.13

 Protocols provide a communication service

 Connection-oriented: sender/receiver establish
connection, negotiate parameters of the protocol, close
connection when done

 Physical example: telephone

 Connectionless services: No setup. Sender sends.
Receiver receives.

 Physical example: Mailing a letter

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.27

LAYERED PROTOCOLS - 2

 Physical layer: just sends bits
 Data l ink layer: Groups bits into frames
 Provides error correction via checksum
 Special bit pattern at start/end of frame

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.28

OSI MODEL REVISITED

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.14

 Data l ink layer:
 Checksum: computed by adding all bytes in frame in particular way

 Added to message

 Receiver removes checksum, recomputes checksum, and compares

 If receiver and sender agree, frame is considered correct

 Receiver can request failed frames to be resent

 Frames assigned sequence numbers in the header

 Network layer:
 Sometimes referred to as the Internet layer

 On WANs sending msgs between client/server requires routing

 Provides addressing using IPV4 (32-bit), IPV6 (64-bit)

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.29

OSI MODEL - 2

 Network layer:
 Helps with routing network traffic

 Shortest route (# of hops) may not be the best route

 Minimizing delay (latency) is paramount

 Routing algorithms: use long-term average network conditions, or try
to adapt toe changing conditions

 ICMP Protocol: Internet Control Message Protocol

 Not typically for sending data, used for diagnostic/control purposes

 ICMP Examples: (ping, traceroute)

 Transport layer:
 Provides reliable connections

 Reorganizes packets arriving out of sequence

 Request delivery of missing packets

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.30

OSI MODEL - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.15

 Transport layer:
1. Breaks application layer protocol messages into pieces to transmit

2. Assigns messages sequence numbers

3. Sends all messages

 Transport layer provides an infallible “message pipe”
 Put messages in

 Always come out undamaged, in correct order

 Transport layer protocols:
 TCP: Transmission Control Protocol (connection-oriented)

 UDP: Universal Datagram Protocol (connectionless)

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.31

OSI MODEL - 4

 Other transport protocols
 Real-time transport protocol (RTP): real-time data, no data delivery

guarantee

 Streaming Control Transmission Protocol SCTP): alternative to TCP

 Higher-level protocols
 Session layer: rarely used

 Presentation layer: meaning of the bits;

 Application layer: protocols that don’t fit into other layers
 Many protocols: FTP, SFTP, HTTP, etc. etc.

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.32

OSI MODEL - 5

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.16

 OSI layers contribute overhead bits to the message

 Layers append data to front (and maybe end) of the message

 Receiving end strips off layers as the message goes up the
OSI model stack:

physical  data-link  network  transport  application

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.33

OSI MODEL - 2

 Collection of layers used for communication from OSI model

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.34

PROTOCOL STACK

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.17

 Communication frameworks/libraries

 Reused by multiple applications

 Provided needed functions apps build and depend on

 Example:

 Authentication protocols: supports granting users and
processes access to authorized resources

 General, application-independent in nature

 Doesn’t fit as an “application specific” protocol

 Considered as a “Middleware protocol”

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.35

MIDDLEWARE PROTOCOLS

 Distributed commit protocols

 Coordinate a group of processes (nodes)

 Facilitate all nodes carrying out a particular operation

 Or abort transaction

 Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

 Protect a resource from simultaneous access from
multiple nodes

 Remote procedure call

 One of the oldest middleware protocols

 Distributed objects
February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L11.36

MIDDLEWARE PROTOCOLS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.18

 Message queueing services

 Support synchronization of data
streams

 Transfer real-time data

 Distributed and scalable
implementation

 Multicast services

 Scale communication to thousands of
receivers spread across the Internet

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.37

MIDDLEWARE PROTOCOLS - 3

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.38

ADAPTED REFERENCE MODEL

Combines network
and transport

Physical and
Data link

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.19

 Persistent communication
 Message submitted for transmission is stored by communication

middleware as long as it takes to deliver it

 Example: email system (SMTP)

 Receiver can be offline when message sent

 Temporal decoupling (delayed message delivery)

 Transient communication
 Message stored by middleware only as long as sender/receiver

applications are running

 If recipient is not active, message is dropped

 Transport level protocols typically are transient (no msg storage)

 What protocol level is the SMTP Protocol?

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.39

TYPES OF COMMUNICATION

 Asynchronous communication
 Client does not block, continues doing other work

 Synchronous communication
 Client blocks and waits

 Three types of blocking
1. Until middleware notifies it will take over delivering request

2. Sender may synchronize until request has been delivered

3. Sender waits until request is processed and result is returned

 Persistence + synchronization
 Common scheme for message-queueing systems

 Consider each type of blocking (1 , 2, 3). Are these modes
connectionless (UDP)? connection-oriented (TCP)?

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.40

TYPES OF COMMUNICATION - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.20

CH. 4.2: RPC

L11.41

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call look
l ike a local one

 newlist = append(data, dbList)

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.42

RPC – REMOTE PROCEDURE CALL

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.21

 Transparency enabled with cl ient and server “stubs”

 Client has “stub” implementation of the server-side function

 Interface exactly same as server side

 But cl ient DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends to server.
Calls blocking receive routine and waits for reply

 Server stub: transforms incoming
request into local procedure call

 Server blocks waiting for msg

 Server stub unpacks msg, calls
server procedure

 I t ’s as i f the routine were called locally

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.43

RPC - 2

 Server packs procedure results and sends back to client.

 Clients “receive” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the
network

 Except for network latency, call abstraction allows clients
to invoke functions in alternate languages, on different
machines

 Differences are handled by the RPC “framework”

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.44

RPC - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.22

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server-side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.45

RPC STEPS

 Stubs: take parameters, pack into a message, send across
network

 Parameter marshaling:
 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly
interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must under stand how to unmarshal (unserialize) data

 Processor architecture vary with how bytes are numbered:
Intel (right lef t), older ARM (lef tright)

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.46

PARAMETER PASSING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.23

 Big-Endian: write bytes left to right (ARM)

 Litt le-endian: write bytes r ight to lef t (Intel)

 Networks: typically transfer data in Big-Endian form

 Solution: transform data to machine/network independent
format

 Marshaling/unmarshaling:
transform data to neutral
format

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.47

RPC: BYTE ORDERING

 Passing by value is straightforward
 Passing by reference is challenging
 Pointers only make sense on local machine owning the data
 Memory space of client and server are different

 Solutions to RPC pass-by-reference:
1. Forbid pointers altogether
2. Replace pass-by-reference with pass-by -value
 Requires transferring entire object/array data over network
 Read-only optimization: don’t return data if unchanged on server

3. Passing global references
 Example: file handle to file accessible by client and server

via shared file system

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.48

RPC: PASS-BY-REFERENCE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.24

 Let developer specify which routines will be called
remotely

 Automate client/server side stub generation for these
routines

 Embed remote procedure calling into the programming
language

 E.g. Java RMI

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.49

RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])
 Character transmits with 3-padded bytes
 Float as whole word (4-bytes)
 Array as group of words, proceed by word describing

length
 Client stub must package data in specific format
 Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple
data structures: int, char, floats w/ little endian

 RPC clients/servers: must agree on protocol
 TCP? UDP?

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.50

STUB GENERATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.25

 Interfaces often specified using an Interface Definition
Language (IDL)

 IDL inter face can be used to generate language specific
threads

 IDL is compiled into cl ient and server-side stubs

 Much of the plumbing for RPC involves maintaining
boilerplate-code

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.51

STUB GENERATION - 2

 Leads to simpler application development

 Helps with providing access transparency

 Differences in data representation, and how object is
accessed

 Inter-language parameter passing issues resolved:
 just 1 language

 Well known example: Java Remote Method Invocation
RPC equivalent embedded in Java

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.52

LANGUAGE BASED SUPPORT

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.26

 RPC: typically client blocks unti l reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs
 When no result, server can immediately send reply

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.53

RPC VARIATIONS

Client/server synchronous RPC Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous
procedure calls?

 For a local program

 For a distributed program (system)

 Use cases for asynchronous procedure calls

 Long running jobs allow client to perform alternate work

 Client may need to make multiple service calls to multiple
server backends at the same time…

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.54

RPC VARIATIONS – 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.27

 Deferred synchronous RPC
 Server performs CALLBACK to client

 Client, upon making call, spawns separate thread which blocks and
waits for call

 One-way RPCs
 Client does not wait for any server acknowledgement – it just goes…

 Client polling
 Client (using separate thread) continually polls server for result

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.55

TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration:
Does the client need all results or just one?

 Use cases:

 Fault tolerance – wait for just one

 Replicate execution – verify
results, use first result

 Divide and conquer - multiple
RPC calls work in parallel on
different parts of dataset,
client aggregates results

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.56

MULTICAST RPC

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.28

 DCE: basis for Microsoft’s distributed computing object model
(DCOM)

 Used in Samba – share windows filesystem via RPC

 Midleware system – provides layer of abstraction between OS
and distr ibuted applications

 Design for Unix, por ted to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then run and leverage resources

 Uses client/server model

 All communication via RPC

 DCE provides a daemon to track participating machines, por ts

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.57

RPC EXAMPLE: DISTRIBUTED
COMPUTING ENVIRONMENT (DCE)

1. Create Interface definition language (IDL) files
 IDL files contain Globally unique identifier (GUID)
 GUIDs must match: client and server compare GUIDs to

verify proper versions of the distributed object
 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:
 Header file (interface.h in C)
 Client stub
 Server stub

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.58

DCE – CLIENT/SERVER DEVELOPMENT

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.29

 For a cl ient to call a server, server must be registered
 Java: uses RMI registry

 Client process to search for RMI server:
1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot:

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server
that tracks DCE servers

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.59

DCE – BINDING CLIENT TO SERVER

 Server name comes from directory server

 Server port comes from DCE daemon
 DCE daemon has a well known port # client already knows

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.60

DCE CLIENT-TO-SERVER BINDING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.30

Apache Act iveMQ

CH. 4.3: MESSAGE-
ORIENTED

COMMUNICATION

L11.61

 RPC assumes that the client and server are running
at the same time… (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

 Synchronous vs. asynchronous

Messaging systems

Message-queueing systems

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.62

MESSAGE ORIENTED COMMUNICATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.31

 Communication end point

 Applications can read / write data to

 Analogous to fi le streams for I/O, but network streams

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.63

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Servers execute 1st - 4 operations (socket, bind, l isten, accept)

 Methods refer to C API functions

 Mappings across dif ferent l ibraries wil l vary (e.g. Java)

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.64

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.32

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking
call reserves buffers for specified number of pending
connection requests server is wil ling to accept

 Accept: blocks unti l connection request arrives
 Upon arrival, new socket is created matching original

 Server spawns thread, or forks process to service incoming request

 Server continues to wait for new connections on original socket

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.65

SERVER SOCKET OPERATIONS

 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, cl ient blocks
unti l connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel
 Analogous to closing a file stream

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.66

CLIENT SOCKET OPERATIONS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.33

 Sockets provide primitives for implementing your own
TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted)
messaging is very basic, can be brittle

 Easy to make mistakes…

 Any extra communication facilities must be implemented
by the application developer

 More advanced approaches are desirable

 E.g. frameworks with support common desirable
functionality

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.67

SOCKET COMMUNICATION

 (0MQ) High per formance intelligent socket library
 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++
 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker-less topologies

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.68

ZEROMQ – SOCKET LIBRARY

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.34

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

 Basic socket operations abstracted away

 Supports many-to-one, one-to-one, and one-to-many
connections

Multicast connections (one-to-many – single server socket
simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication
patterns

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.69

ZEROMQ – 2

 Request-reply pattern
 Traditional client-server communication (e.g. RPC)

 Client: request socket (REQ)

 Server: reply socket (REP)

 Publish-subscribe pattern
 Clients subscribe to messages published by servers

 As in event-based coordination (Ch. 1)

 Supports multicasting messages from
server to multiple

 Client: subscribe socket (SUB)

 Server: publish socket (PUB)

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.70

ZEROMQ - PATTERNS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.35

 Pipeline pattern (FIFO-queue)

 Analogous to a producer/consumer bounded buffer

 Producing processes generate results, push to pipe

 Consuming processes consume results,
pull from pipe

 Producers: push socket (PUSH socket)

 Consumers: pull socket (PULL socket)

 Push- distributes messages to all pull
clients evenly

 Consumers pull results from pipe and
push results downstream

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.71

ZEROMQ – PATTERNS - 2

Cloud services

Amazon Simple Queueing Service (SQS)

Azure service bus

Open source frameworks

Nanomsg

ZeroMQ

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.72

QUEUEING ALTERNATIVES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.36

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations
in C, C++, Fortran

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.73

MESSAGE PASSING INTERFACE (MPI)

 Motivation: sockets insufficient for interprocess
communication on large scale HPC compute clusters and
super computers

 Sockets at the wrong level of abstraction

 Sockets designed to communicate over the network using
general purpose TCP/IP stacks

 Not designed for proprietary protocols

 Not designed for high-speed interconnection
networks used by supercomputers,
HPC-clusters, etc.

 Better buffering and synchronization needed

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.74

MOTIVATIONS FOR MPI

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.37

 Supercomputers had proprietary communication libraries

 Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel
code that could migrate across supercomputers

 Led to development of MPI
 To support transient (non-persistent) communication for

parallel programming

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.75

MOTIVATIONS FOR MPI - 2

 Very large l ibrary, v1.0 (1994) 128 functions

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.76

MPI FUNCTIONS / DATATYPES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.38

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.77

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

 Message-queueing systems

 Provide extensive support for persistent asynchronous
communication

 In contrast to transient systems

 Temporally decoupled: messages are eventually delivered
to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other
applications can send messages

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.78

MESSAGE-ORIENTED-MIDDLEWARE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.39

 Enables communication between applications, or sets of
processes

 User applications

 App-to-database

 To support distributed real-time computations

 Use cases

 Batch processing, Email, workflow, groupware, routing
subqueries

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.79

MESSAGE QUEUEING SYSTEMS:
USE CASES

 Scenarios:
(a) Sender/receiver

both running

(b) Sender running,
receiver offl ine

(c) Sender offl ine,
receiver running

(d) Sender/receiver
both offline

 Queue persists msgs,
and attempts to send
them but no one may be available to receive them…

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.80

MESSAGE QUEUEING SYSTEMS

SENDS

READS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.40

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile
and senders and receivers can be offl ine

 Messages

 Contain any data, may have size l imit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue
 Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.81

MESSAGE QUEUEING SYSTEMS - 2

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed
into a queue. Notifies receivers

 Queue managers: manage individual message queues as a
separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked-up)?
 Contact address (host, port) pairs

 Local look-up tables can be stored at each queue manager

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.82

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.41

 ISSUES:

 How do we route traffic between queue managers?

 How are name-to-address mappings efficiently kept?

 Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the
same protocol (language)

 Need arises for message protocol converters
 “Reformatter” of messages

 Act as application-level gateway

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.83

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE - 2

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.84

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.42

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter-application communication to “open”
messaging-middleware

 Many are proprietary solutions, so not very open
 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP), 2006
 Address openness/interoperability of proprietary solutions
 Open wire protocol for messaging with powerful routing

capabilities
 Help abstract messaging and application interoperabil ity by

means of a generic open protocol
 Suffer from incompatibility among protocol versions
 pre-1.0, 1.0+

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.85

AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with
potentially many channels, stable, reused by many
channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two
channels

 Link: provide fine-grained flow-control of message
transfer/status between applications and queue manager

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.86

AMQP - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.43

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to
recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.87

AMQP MESSAGING

 Some examples:
 RabbitMQ, Apache QPid
 Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka
 Dumb broker (message store), similar to a distributed log file
 Smart consumers – intelligence pushed off to the clients
 Stores stream of records in categories called topics
 Supports voluminous data, many consumers, with minimal O/H
 Kafka does not track which messages were read by each consumer
 Messages are removed after timeout
 Clients must track their own consumption (Kafka doesn’t help)
 Messages have key, value, timestamp
 Supports high volume pub/sub messaging and streams

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.88

MESSAGE-ORIENTED-MIDDLEWARE
EXAMPLES:

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.44

Apache Act iveMQ

CH. 4.4: MULTICAST
COMMUNICATION

L11.89

 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level

protocols to support multicast communication
 Problem: How to set up communication paths for

information dissemination?
 Solutions: require huge management effort, human

invention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and

provide efficient communication paths
 Application-level multicasting techniques more successful
 Gossip-based dissemination: unstructured p2p networks

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.90

MULTICAST COMMUNICATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.45

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.91

NETWORK STRUCTURE

 Application level multi -casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.92

APPLICATION LEVEL
TREE-BASED MULTICASTING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.46

 Measure quality of application-level multicast tree

 Link stress: is defined per l ink, counts how often a packet
crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.
the underlying networks

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.93

MULTICAST TREE METRICS

 Stretch (Relative Delay Penalty RDP) for B to C routes:

 Overlay: BRbRaReEReRcRdDRdRc C
= 73

 Underlying: BRbRdRcC = 47

 73 / 47 = 1.55

 Tree cost: Overall cost of the overlay network

 Ideally would l ike to minimize network costs

 Find a minimal spanning tree which minimizes total time for
disseminating information

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.94

MULTICAST TREE METRICS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.47

 Broadcasting: every node in overlay receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 Tree: if only the leaf nodes are to receive the multicast
message, many intermediate nodes are involved

 Solution: construct an overlay network for each multicast
group

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.95

FLOOD-BASED MULTICASTING

 When no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Probability Pedge that two nodes are joined

 Overlay will have: ½ * Pedge * N * (N-1) edges

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.96

RANDOM GRAPHS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.48

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability of message spread (pflood)

 Throttles message flooding based on a probability

 Implementation needs to consider # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.97

PROBABILISTIC FLOODING

 For deterministic topologies (such as hypercube), design of
efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a
deterministic topology

 Hypercube: nodes forward only to higher dimension nodes

 N(1001) broadcast will only go to N(1011) and N(1000)

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions
of hypercube

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.98

MESSAGE FLOODING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.49

 When structured peer-to-peer topologies are not available
 Gossip based approaches support multicast communication

over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.99

GOSSIP BASED DATA DISSEMINATION

 Epidemic algorithms: algorithms for large-scale distributed
systems that spread information

 Goal: “infect” all nodes with new information as fast as
possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.100

INFORMATION DISSEMINATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.50

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges messages updates

 Akin to random walk

 PULL: P only pulls in new updates from Q
 PUSH: P only pushes its own updates to Q
 TWO-WAY: P and Q send updates to each other

(i .e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull : better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better stil l

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.101

ANTI ENTROPY DISSEMINATION MODEL

 Round: span of time during which every node takes initiative
to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all
nodes requires O(log(N)), where N=number of nodes

 Let pi denote probability that
node P has not received
msg m after the i th round.

 For pull, push, and push-pull
based approaches:

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.102

ANTI ENTROPY EFFECTIVENESS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.51

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another
node

 Node P may loose interest in spreading the rumor with
probability = pstop, let’s say 20% . . . (or 0.20)

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.103

RUMOR SPREADING

 Does not guarantee all nodes wil l be updated

 The fraction of nodes s, that remain susceptible is grows
relative to the probability that node P stops propagating when
finding a node already having the message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping 

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.104

RUMOR SPREADING - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.52

 Taking network topology into account can help

 When gossiping, nodes connected to only a few other
nodes are more likely to be contacted

 Epidemic protocols assume:

 For gossiping nodes are randomly selected

 One node, can randomly select any other node in the
network

 Complete set of nodes is known to each member

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.105

DIRECTIONAL GOSSIPING

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from
reinitializing from gossip from other nodes

 Death certificates time-out after expected time required
for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.106

REMOVING DATA

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 25, 2019

Slides by Wes J. Lloyd L11.53

 For example:

 Node P keeps death cer tificates forever

 I tem X is removed from the system

 Node P receives an update request for I tem X, but also holds
the death certificate for I tem X

 Node P will recirculate the death cer tificate across the
network for I tem X

February 25, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.107

DEATH CERTIFICATE EXAMPLE

QUESTIONS

February 25, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L11.10

8

