
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.1

Chapter 3 - Processes

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Homework 1 – 2/19

 Homework 2 Posted

 Midterm – Postponed until 2/20

 Feedback 2/11

 Practice midterm

 Chapter 3 Processes
 3.4 Servers

 3.5 Code Migration

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

OBJECTIVES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.2

 How DNS System is related to WAN?
 DNS is an example of WAN request dispatching
 DNS servers operate collaboratively as a “WAN” over the

internet
 Continue to forward queries closer to a host’s domain server to

resolve the IP if not cached at a closer server

 Iterative vs concurrent servers: iterative server directly
handles request, concurrent server passes off request to
separate thread/process and continues to listen for requests

 LAN request dispatching methods:
When would you use each dispatching method (round-robin,
transport-level, content-aware request distr ibution)?
 Round-robin – requests have equal work/resource requirements
 Transports-level – route based on port / protocol
 Content-aware – incorporate application knowledge into routing

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.3

FEEDBACK – 2/11

 When does the local DNS server cache update?
 Presumably when new hosts are resolved – difficult to know details on

cache management here

 What should we do if DNS server doesn't respond?
 Clients usually specify at least 2 as a backup

 When we create a thread pool and add threads into it , should we
allocate memories to the threads in advance?

 If we do so, how much memory should be allocated in advance?
And if we don't allocate in advance, I think the memory usage
would not be much greater than that of creating threads on
demand.
 What is included in the “context” of each thread?
 For example, does it initialize and sustain a dedicated RDBMS

connection? (requires memory)
 800 empty threads still consumes memory

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.4

FEEDBACK - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.3

 When install ing a VNC server, why we should use port 5901?
 VNC by default uses TCP port 5900+N, where N is the display number

(usually :0 for a physical display).

 DNS Linux commands and DNS lookup
 Identify devices: Ifconfig / nmcli dev
 Show details: nmcli device show wlp4s0
 Resolve IP addr: nslookup www.google.com

 How does out-of-band data support interrupt?
 An out of band data mechanism provides a conceptually separate

channel for data exchange separate from the in-band (primary)
channel

 I was not clear about the hooks , so is there a specific hook
for a function or any hook can take any function ?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.5

FEEDBACK - 3

 Hook: placeholder for a specific group of functions
 Apache provides standard hooks:

 Hook to translate URL to local file name
 Hook to write information to log
 Hook for checking access rights

 Apache server core assumes client requests are processed in
phases, where each phase consists of a few hooks

 Hooks represent actions that must execute to process a request
 Functions associated with hooks are provided by separate modules
 Developers may write custom modules containing functions to be

called to process the standard hooks provided unmodified by
apache

 Modules are mutually independent – functions in the same hook
can be executed in arbitrary order

 Apache allows developer to specify an ordering
 Take home: Apache is an extremely versati le web server

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.6

APACHE WEBSERVER HOOKS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.4

CH. 3.4: SERVERS

L10.7

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.8

WAN REQUEST DISPATCHING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.5

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 74.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 EC2 instance (VA), ping WA www.google server (74.125.28.147):

 Ping 62.349 ms: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 Local wireless network, ping us-east-1 google (172.217.9.196):

 Ping 74.125.28.147: Average RTT=81.637ms (11 attempts, 15 hops)

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.9

DNS EXAMPLE

Latency to ping VA server in WA: ~64x
Massive slowdown because WA is a wireless network

Latency to ping WA server in VA: ~2.8x
Less of a slowdown because VA is a cloud VM

 Unstructured heterogeneous cluster of servers

 Similar to grid but organized as cluster (no grid middleware)

 Testbed established in 2002 for computer networking and
distributed systems research

 Organizations share
nodes in the cluster

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.10

EXAMPLE: PLANETLAB

Leverages Linux Vservers
Early “containers”
similar to Docker

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.6

 Slices: set of Vservers running across
PlanetLab

 Acts as a vir tual server cluster
(similar to Amazon VPC)

 Node manager: manages Vservers running on a host

 Slice creation service (SCS): To create vir tual server clusters

 Clients must be sl ice authorities to create cluster

 Rspec: resource specification
 Specifies resource requirements for a slice

 Rcap: resource capability
 Specifies resource capabilities of nodes

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

PLANETLAB - 2

 Early container based approach

 Vservers share a single operating system kernel

 Primary task is to support a group of processes

 Provides separation of name spaces

 Linux kernel maps process IDs: host OS  Vservers

 Each Vserver has its own set of libraries and file system

 Similar name separation as the “chroot” command

 Additional isolation provided to prevent unauthorized
access among Vservers directory trees

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.12

VSERVERS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.7

 Advantages of Vservers (containers) vs. VMs:

 Simpler resource allocation

 Possible to overbook resources by leveraging dynamic
resource allocation - Example: CPU or RAM (assignment 0, config 1)

 VMs reserve a block of memory

 Containers can oversubscribe memory
 Memory not formally reserved

 Linux kernel shares memory among processes

 Swap filesystem can use disk as extended RAM

 Memory sharing important for PlanetLab
 Early nodes had limited memory (e.g. 4 GB)

 Vserver hogging most memory reset when out of swap space

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

VSERVERS - 2

CH. 3.5: CODE
MIGRATION

L10.14

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.8

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it is executing

 Portability – transferring code (running or not) across
heterogeneous systems:

Mac OS X  Windows 10  Linux

 Code migration enables f lexibil ity of distributed systems
 Topologies can be dynamically reconfigured on-the-fly

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.15

CODE MIGRATION

Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration?
an application specific approach?

What are advantages and disadvantages of each?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.16

PROCESS MIGRATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.9

 Move processes:
from heavily loaded  lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.17

PROCESS MIGRATION - 2

 Can migrate processes or entire vir tual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.18

MOTIVATIONS FOR MIGRATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.10

 Make decisions concerning allocation and
redistribution of tasks across machines

 Provide resource management for compute intensive
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU
capacity

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.19

LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition

and state of systems and networks

 Is it better to migrate code or data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing

 Are there security
requirements for the data?

WHEN TO MIGRATE?

February 13, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.20

 Size of code
 Size of data
 Available network transfer

speed

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.11

 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.21

APPROACHES TO CODE MIGRATION

 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires
network bandwidth & time

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.22

DYNAMIC WEB CLIENTS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.12

 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web broswer

 Remote cloning

 Produce a copy of the process on another machine
while parent runs

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.23

CODE MIGRATION

 What is migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, statem stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts

 Strong mobility

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.24

CODE MIGRATION - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.13

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec

* shows what is modified

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.25

CODE MOBILITY TYPES

 Assumption: code will always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

 VM Migration

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.26

MIGRATION OF
HETEROGENEOUS SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.14

 Four approaches:

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.27

VIRTUAL MACHINE MIGRATION

L10.28

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory pages as
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 1/3: no loss of service
 4: fast transfer, minimal loss of service
 2: fastest data transfer
 3: new VM immediately available

 1: must track modified pages during full page copy
 2: longest downtime - unacceptable for live services
 3: prolonged, slow, migration
 3: original VM must stay online for quite a while
 1/3: network load while original VM still in service

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.15

QUESTIONS

February 13, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.29

EXTRA SLIDES

30

