
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.1

Chapter 3 - Processes

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Homework 1 – 2/19

 Homework 2 Posted

 Midterm – Postponed until 2/20

 Feedback 2/11

 Practice midterm

 Chapter 3 Processes
 3.4 Servers

 3.5 Code Migration

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

OBJECTIVES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.2

 How DNS System is related to WAN?
 DNS is an example of WAN request dispatching
 DNS servers operate collaboratively as a “WAN” over the

internet
 Continue to forward queries closer to a host’s domain server to

resolve the IP if not cached at a closer server

 Iterative vs concurrent servers: iterative server directly
handles request, concurrent server passes off request to
separate thread/process and continues to listen for requests

 LAN request dispatching methods:
When would you use each dispatching method (round-robin,
transport-level, content-aware request distr ibution)?
 Round-robin – requests have equal work/resource requirements
 Transports-level – route based on port / protocol
 Content-aware – incorporate application knowledge into routing

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.3

FEEDBACK – 2/11

 When does the local DNS server cache update?
 Presumably when new hosts are resolved – difficult to know details on

cache management here

 What should we do if DNS server doesn't respond?
 Clients usually specify at least 2 as a backup

 When we create a thread pool and add threads into it , should we
allocate memories to the threads in advance?

 If we do so, how much memory should be allocated in advance?
And if we don't allocate in advance, I think the memory usage
would not be much greater than that of creating threads on
demand.
 What is included in the “context” of each thread?
 For example, does it initialize and sustain a dedicated RDBMS

connection? (requires memory)
 800 empty threads still consumes memory

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.4

FEEDBACK - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.3

 When install ing a VNC server, why we should use port 5901?
 VNC by default uses TCP port 5900+N, where N is the display number

(usually :0 for a physical display).

 DNS Linux commands and DNS lookup
 Identify devices: Ifconfig / nmcli dev
 Show details: nmcli device show wlp4s0
 Resolve IP addr: nslookup www.google.com

 How does out-of-band data support interrupt?
 An out of band data mechanism provides a conceptually separate

channel for data exchange separate from the in-band (primary)
channel

 I was not clear about the hooks , so is there a specific hook
for a function or any hook can take any function ?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.5

FEEDBACK - 3

 Hook: placeholder for a specific group of functions
 Apache provides standard hooks:

 Hook to translate URL to local file name
 Hook to write information to log
 Hook for checking access rights

 Apache server core assumes client requests are processed in
phases, where each phase consists of a few hooks

 Hooks represent actions that must execute to process a request
 Functions associated with hooks are provided by separate modules
 Developers may write custom modules containing functions to be

called to process the standard hooks provided unmodified by
apache

 Modules are mutually independent – functions in the same hook
can be executed in arbitrary order

 Apache allows developer to specify an ordering
 Take home: Apache is an extremely versati le web server

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.6

APACHE WEBSERVER HOOKS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.4

CH. 3.4: SERVERS

L10.7

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.8

WAN REQUEST DISPATCHING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.5

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 74.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 EC2 instance (VA), ping WA www.google server (74.125.28.147):

 Ping 62.349 ms: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 Local wireless network, ping us-east-1 google (172.217.9.196):

 Ping 74.125.28.147: Average RTT=81.637ms (11 attempts, 15 hops)

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.9

DNS EXAMPLE

Latency to ping VA server in WA: ~64x
Massive slowdown because WA is a wireless network

Latency to ping WA server in VA: ~2.8x
Less of a slowdown because VA is a cloud VM

 Unstructured heterogeneous cluster of servers

 Similar to grid but organized as cluster (no grid middleware)

 Testbed established in 2002 for computer networking and
distributed systems research

 Organizations share
nodes in the cluster

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.10

EXAMPLE: PLANETLAB

Leverages Linux Vservers
Early “containers”
similar to Docker

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.6

 Slices: set of Vservers running across
PlanetLab

 Acts as a vir tual server cluster
(similar to Amazon VPC)

 Node manager: manages Vservers running on a host

 Slice creation service (SCS): To create vir tual server clusters

 Clients must be sl ice authorities to create cluster

 Rspec: resource specification
 Specifies resource requirements for a slice

 Rcap: resource capability
 Specifies resource capabilities of nodes

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

PLANETLAB - 2

 Early container based approach

 Vservers share a single operating system kernel

 Primary task is to support a group of processes

 Provides separation of name spaces

 Linux kernel maps process IDs: host OS Vservers

 Each Vserver has its own set of libraries and file system

 Similar name separation as the “chroot” command

 Additional isolation provided to prevent unauthorized
access among Vservers directory trees

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.12

VSERVERS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.7

 Advantages of Vservers (containers) vs. VMs:

 Simpler resource allocation

 Possible to overbook resources by leveraging dynamic
resource allocation - Example: CPU or RAM (assignment 0, config 1)

 VMs reserve a block of memory

 Containers can oversubscribe memory
 Memory not formally reserved

 Linux kernel shares memory among processes

 Swap filesystem can use disk as extended RAM

 Memory sharing important for PlanetLab
 Early nodes had limited memory (e.g. 4 GB)

 Vserver hogging most memory reset when out of swap space

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

VSERVERS - 2

CH. 3.5: CODE
MIGRATION

L10.14

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.8

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it is executing

 Portability – transferring code (running or not) across
heterogeneous systems:

Mac OS X Windows 10 Linux

 Code migration enables f lexibil ity of distributed systems
 Topologies can be dynamically reconfigured on-the-fly

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.15

CODE MIGRATION

Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration?
an application specific approach?

What are advantages and disadvantages of each?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.16

PROCESS MIGRATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.9

 Move processes:
from heavily loaded lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.17

PROCESS MIGRATION - 2

 Can migrate processes or entire vir tual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.18

MOTIVATIONS FOR MIGRATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.10

 Make decisions concerning allocation and
redistribution of tasks across machines

 Provide resource management for compute intensive
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU
capacity

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.19

LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition

and state of systems and networks

 Is it better to migrate code or data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing

 Are there security
requirements for the data?

WHEN TO MIGRATE?

February 13, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.20

 Size of code
 Size of data
 Available network transfer

speed

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.11

 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.21

APPROACHES TO CODE MIGRATION

 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires
network bandwidth & time

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.22

DYNAMIC WEB CLIENTS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.12

 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web broswer

 Remote cloning

 Produce a copy of the process on another machine
while parent runs

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.23

CODE MIGRATION

 What is migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, statem stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts

 Strong mobility

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.24

CODE MIGRATION - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.13

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec

* shows what is modified

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.25

CODE MOBILITY TYPES

 Assumption: code will always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

 VM Migration

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.26

MIGRATION OF
HETEROGENEOUS SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.14

 Four approaches:

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?

February 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.27

VIRTUAL MACHINE MIGRATION

L10.28

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory pages as
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 1/3: no loss of service
 4: fast transfer, minimal loss of service
 2: fastest data transfer
 3: new VM immediately available

 1: must track modified pages during full page copy
 2: longest downtime - unacceptable for live services
 3: prolonged, slow, migration
 3: original VM must stay online for quite a while
 1/3: network load while original VM still in service

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 13, 2019

Slides by Wes J. Lloyd L10.15

QUESTIONS

February 13, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.29

EXTRA SLIDES

30

