
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.1

 Processes:
 Virtualization,
 Clients & Servers

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)

 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/1

 Assignment 2: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 8

▪ 2nd hour - Tuesday February 6 – practice midterm class activity

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.2

OBJECTIVES – 2/1

1

2

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.3

ONLINE DAILY FEEDBACK SURVEY

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.3

 Please classify your perspective on material covered in today’s

class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.6 (- previous 6.77)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.8 (- previous 5.73)

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.5

MATERIAL / PACE

 I asked about the 'one -to-one' model in class:

 Regarding the one-to-one threading model, what is the ratio of user
threads to kernel threads ?

 Looking onl ine i t seems l ike an application can have multiple
threads, and each thread has i ts own kernel threads. So 'one -to-
one' refers to 'one-user-thread-to-one-kernel-thread’

 The "kworker" is a placeholder process for kernel worker threads
under which the timer, interrupt processing, and other internal
kernel (system) calls run.

 Looking more closely at kworker processes, it appears that
kworkers are created for each physical CPU core

 And there are dif ferent types of kworkers: events, kdmflush,
mm_percpu_wq, dio/dm-0

 I counted about 47 distinct kworker processes

 kworker processes appear to be shared. They are on stand -by to run
system calls. I f there is no system call, they remain idle.

ps ax | grep kworker

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.6

FEEDBACK FROM 1/30

5

6

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.4

 Helpful l inks on Linux processes and threads:

 https://www.baeldung.com/linux/process -vs-thread

 https://www.baeldung.com/linux/monitor -process-thread-

count

 kworkers in Linux:

 https://medium.com/@boutnaru/the-l inux-process-journey-

kworker-f947634da73

 https://askubuntu.com/questions/33640/kworker-what-is-it-

and-why-is-it-hogging-so-much-cpu

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.7

FEEDBACK - 2

 We have been approved to receive AWS CLOUD CREDITS

for TCSS 558 – Winter 2024

 Credits will be provided by email request

▪ Please include: 12-digit AWS account ID, and AWS account email

 Credits will first be provided for students not in F'23 TCSS562

 Request codes by sending an email with the subject:

“AWS CREDIT REQUEST” to wlloyd@uw.edu

 Codes can also be obtained in person (or zoom), in the class,

during the breaks, after class, during office hours, by appt

 Credit codes are carefully exchanged, and not shared by IM

 For students unable to create a standard AWS account:

Please contact instructor by email -

Instructor will work to create hosted IAM user account

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.8

AWS CLOUD CREDITS UPDATE

7

8

https://www.baeldung.com/linux/process-vs-thread
https://www.baeldung.com/linux/monitor-process-thread-count
https://www.baeldung.com/linux/monitor-process-thread-count
https://medium.com/@boutnaru/the-linux-process-journey-kworker-f947634da73
https://medium.com/@boutnaru/the-linux-process-journey-kworker-f947634da73
https://askubuntu.com/questions/33640/kworker-what-is-it-and-why-is-it-hogging-so-much-cpu
https://askubuntu.com/questions/33640/kworker-what-is-it-and-why-is-it-hogging-so-much-cpu
mailto:wlloyd@uw.edu

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.5

 Preparing for Assignment 1:

Intro to Cloud Computing Infrastructure and Load Balancing

▪ Establish AWS Account - Standard account

 Now posted:

▪ Task 0 - Establish local Linux/Ubuntu environment

▪ Task 1 –AWS account setup, obtain user credentials

▪ Task 2 – Intro to: Amazon EC2 & Docker: create Dockerfile

for Apache Tomcat

▪ Task 3 – Create Dockerfile for haproxy (software load balancer)

▪ Task 4 – Working with Docker-Machine

▪ Task 5 – Submit Results of testing alternate server configs

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.9

ASSIGNMENT 1

 testFibPar.sh script is a parallel test script

 Orchestrates multiple threads on client to invoke server
multiple times in parallel

 To simplify coordination of parallel service calls in BASH,
testFibPar.sh script ignores errors !!!

 To help test client-to-server connectivity, there is also a
testFibService.sh script that supports 3 tests

 TEST 1: Network layer test

▪ Ping (ICMP)

 TEST 2: Transport layer test

▪ TCP: telnet (TCP Port 8080) – security group (fw) test

 TEST 3: Application layer test

▪ HTTP REST – web service test

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.10

TESTING CONNECTIVITY TO SERVER (PG 16-18)

9

10

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.6

 Questions from 2/1

 Assignment 2: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 8

▪ 2nd hour - Tuesday February 6 – practice midterm class activity

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.11

OBJECTIVES – 2/1

 Questions from 2/1

 Assignment 2: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 8

▪ 2nd hour - Tuesday February 6 – practice midterm class activity

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.12

OBJECTIVES – 2/1

11

12

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.7

 Questions from 2/1

 Assignment 2: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 8

▪ 2nd hour - Tuesday February 6 – practice midterm class activity

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.13

OBJECTIVES – 2/1

CH. 3.2:

VIRTUALIZATION

L9.14

13

14

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.8

 Initially introduced in the 1970s

on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack -based

hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi -core,

multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many

vir tual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as -a-service (IaaS)

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.15

VIRTUALIZATION

 Levels of instructions:

 Hardware: CPU

▪ Privileged instructions

KERNEL MODE

▪ General instructions

USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application:

 Goal of vir tualization:

mimic these interface to provide a virtual computer

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.16

TYPES OF VIRTUALIZATION

15

16

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.9

 Process vir tual machine

▪ Interpret instructions: (interpreters)
(JavaVM) byte code → HW instructions

▪ Emulate instructions: (emulators)
(Wine) windows code → Linux code

 Native vir tual machine monitor (VMM)

▪ Hypervisor (XEN): small OS with its own kernel

▪ Provides an interface for multiple guest OSes

▪ Facilitates sharing/scheduling of
CPU, device I/O among many guests

▪ Guest OSes require special kernel to interface w/ VMM

▪ Supports Paravirtualization for performance boost to run code
directly on the CPU

▪ Type 1 hypervisor

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.17

TYPES OF VIRTUALIZATION - 2

 Hosted vir tual machine monitor (VMM)

▪ Runs atop of hosted operating system

▪ Uses host OS facilities for CPU scheduling, I/O

▪ Full virtualization

▪ Type 2 hypervisor

▪ Virtualbox

 Textbook: note 3.5–good explanation of full vs. paravir tualization

 GOAL: run all user mode instructions directly on the CPU

 x86 instruction set has ~17 privileged user mode instructions

 Full vir tualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

 Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.18

TYPES OF VIRTUALIZATION - 3

17

18

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.10

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.19

EVOLUTION OF AWS VIRTUALIZATION

From ht tp ://www.brenda ngr eg g .com/bl og / 2017 - 1 1- 29/a ws -e c 2- v i r tu a l i zat i on -2017. html

VS:

V i r tualization

In so f tware

P :

Parav ir tual

VH:

V i r tualization

In Hardware

H:

Hardware

 Full Vir tualization - Fully Emulated

▪ Never used on EC2, before CPU extensions for virtualization

▪ Can boot any unmodified OS

▪ Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0

▪ Software: Interrupts, timers

▪ Paravirtual: CPU, Network I/O, Local+Network Storage

▪ Requires special OS kernels, interfaces with hypervisor for I/O

▪ Performance 1.1x – 1.5x slower than “bare metal”

▪ Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage

▪ Software: interrupts, timers

▪ EBS backed instances

▪ m1, c1 instances

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.20

AWS VIRTUALIZATION - 2

19

20

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.11

 XEN HVM 4.0.1

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)

▪ Provides hardware virtualization for CPU, memory, network

▪ Paravirtual: storage, interrupts, timers

▪ Called Single root I/O Virtualization (SR-IOV)

▪ Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs

▪ Improves VM network performance

▪ 3rd & 4th generation instances (c3 family)

▪ Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017

▪ Provides hardware virtualization for CPU, memory, network, local disk

▪ Paravirtual: remote storage, interrupts, timers

▪ Introduces hardware virtualization for EBS volumes (c4 instances)

▪ Instance storage hardware virtualization (x1.32xlarge, i3 family)

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.21

AWS VIRTUALIZATION - 3

 AWS Nitro 2017

▪ Provides hardware virtualization for CPU, memory, network, local

disk, remote disk, interrupts, timers

▪ All aspects of virtualization enhanced with HW-level support

▪ November 2017

▪ Goal: provide performance indistinguishable from “bare metal”

▪ 5th generation instances – c5 instances (also c5d, c5n)

▪ Based on KVM hypervisor

▪ Overhead around ~1%

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.22

AWS VIRTUALIZATION - 4

21

22

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.12

 Questions from 2/1

 Assignment 2: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 8

▪ 2nd hour - Tuesday February 6 – practice midterm class activity

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.23

OBJECTIVES – 2/1

CH. 3.3: CLIENTS

L9.24

23

24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.13

 Thick clients

▪Web browsers

▪ Client-side scripting

▪Mobile apps

▪Multi-tier MVC apps

 Thin clients

▪Remote desktops/GUIs (very thin)

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.25

TYPES OF CLIENTS

 Application specific protocol

▪ Thick clients

▪ Clients maintain local data

▪ Middleware (APIs)

▪ Clients synchronize data with remote nodes

▪ Example: shared calendar application

 Application independent

▪ Thin clients

▪ Client acts as a remote terminal

▪ Provides interface to user (GUI / UI)

▪ Server houses entire application stack

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.26

CLIENTS

25

26

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.14

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

▪ Provides the X protocol: application level protocol

▪ Xlib instances (client applications) exchange data and

events with X kernels (servers)

▪ Clients and servers on single machine → Linux GUI

▪ Client and server communication transported over the

network → remote Linux GUI

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.27

X WINDOWS

 Window manager:

▪ Application running

atop of X-windows

which provides flair

▪ Many variants

▪ Without X windows is

quite bland

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.28

X WINDOWS - 2

27

28

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.15

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.29

 Layered architecture

 X-kernel: low level

interface/APIs for

controlling screen,

capturing keyboard

and mouse events

(X window Server)

 Provided on Linux

as Xlib

 Provides network

enabled GUI

 Layering allows for

use for custom

window managers

 How to Install VNC server on Ubuntu EC2 instance VM:

 sudo apt-get update

 # ubuntu 16.04

 sudo apt-get install ubuntu-desktop

 sudo apt-get install gnome-panel gnome-settings-

daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04

 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file

 vncserver :1

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.30

EXAMPLE: VNC SERVER

29

30

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.16

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.31

EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1

unset SESSION_MANAGER

unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup

[-r $HOME/.Xresources] && xrdb $HOME/.Xresources

xsetroot -solid grey

vncconfig -iconic &

gnome-panel &

gnome-settings-daemon &

metacity &

nautilus &

gnome-terminal &

 On the VM:

 Edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.32

EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash

xrdb $HOME/.Xresources

startxfce4 &

31

32

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.17

install vnc server

sudo apt install tigervnc-standalone-server

sudo apt install ubuntu-gnome-desktop

vncserver :1 # creates a config file

vncserver -kill :1 # stop server

vi ~/.vnc/xstartup # edit config file

#!/bin/sh

Start Gnome 3 Desktop

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup

[-r $HOME/.Xresources] && xrdb $HOME/.Xresources

vncconfig -iconic &

dbus-launch --exit-with-session gnome-session &

sudo systemctl start gdm # start gnome desktop

sudo systemctl enable gdm

vncserver :1 # restart vnc server

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.33

VNC SERVER - UBUNTU 20.04 - GNOME

 On the VM: reload config by restarting server

 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.34

EXAMPLE: VNC SERVER - 3

33

34

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.18

 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the

EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N

-f -l <username> <EC2-instance ip_address>

 For example:

ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -

l ubuntu 52.111.202.44

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.35

EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.36

EXAMPLE: VNC CLIENT - 2

35

36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.19

 EC2 instance

with a GUI. . .!!!

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.37

REMOTE COMPUTER IN THE CLOUD

 Thin clients

▪ Besides VNC, there are a variety of other remote desktop protocols:

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.38

THIN CLIENTS

37

38

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.20

 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled

many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adversely affects

performance of WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of

X protocol messages

 Send only dif ferences between messages with same identifier

 Optimizations enable connections with 9600 kbps

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.39

THIN CLIENTS - 2

 Virtual network computing (VNC)

 Send display over the network at the pixel level

(instead of X lib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.40

THIN CLIENTS - 3

39

40

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.21

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.41

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib

VNC X11

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.42

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context

● Graphics data is available

● Higher network bandwidth ● UI data/operations

● Fewer colors ● Lower network bandwidth

● Utilize graphics compression ● More colors

● More network traffic

41

42

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.22

WE WILL RETURN AT

5:05PM

 Clients help enable distribution transparency of servers

 Replication transparency

▪ Client aggregates responses from multiple servers

▪ Only the client knows of replicas

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.44

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

43

44

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.23

 Location/relocation/migration transparency

▪ Harness convenient naming system to allow client to infer new

locations

▪ Server inform client of moves / Client reconnects to new endpoint

▪ Client hides network address of server, and reconnects as needed

▪ May involve temporary loss in performance

 Replication transparency

▪ Client aggregates responses from multiple servers

 Failure transparency

▪ Client retries, or maps to another server, or uses cached data

 Concurrency transparency

▪ Transaction servers abstract coordination of multithreading

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.45

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY - 2

 Questions from 2/1

 Assignment 2: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 8

▪ 2nd hour - Tuesday February 6 – practice midterm class activity

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.46

OBJECTIVES – 2/1

45

46

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.24

CH. 3.4: SERVERS

L9.47

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it -runs-on-the-cloud-and-the-

cloud-runs-on-linux-any-questions/

 IT is moving to the cloud. And, what powers the cloud?

▪Linux

 Uptime Institute survey - 1,000 IT executives (2016)

▪ 50% of IT executives – plan to migrate majority of IT workloads to

off-premise to cloud or colocation sites

▪ 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

▪ Based on Linux

▪ Mac: Hyperkit Linux VM

▪ Windows: Hyper-V Linux VM

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.48

SERVERS

47

48

http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.25

 Servers implement a specific service for a collection of clients

 Servers wait for incoming requests, and respond accordingly

 Server types

 Iterative: immediately handle client requests

 Concurrent: Pass client request to separate thread

 Multithreaded servers are concurrent servers

▪ E.g. Apache Tomcat

 Alternative : fork a new process for each incoming request

 Hybrid : mix the use of multiple processes with thread pools

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.49

SERVERS - 2

 Clients connect to servers via:

IP Address and Port Number

 How do ports get assigned?

▪Many protocols support “default” port numbers

▪ Client must find IP address(es) of servers

▪ A single server often hosts multiple end points

(servers/services)

▪When designing new TCP client/servers must be careful

not to repurpose ports already commonly used by others

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.50

END POINTS

49

50

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.26

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.51

Daemon server

▪ Example: NTP server

Superserver

Stateless server

▪ Example: Apache server

Stateful server

Object servers

EJB servers

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.52

TYPES OF SERVERS

51

52

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.27

 Daemon servers

▪ Run locally on Linux

▪ Track current server end points (outside servers)

▪ Example: network time protocol (ntp) daemon

▪ Listen locally on specific port (ntp is 123)

▪ Daemons routes local client traffic to the configured

endpoint servers

▪ University of Washington: time.u.washington.edu

▪ Example “ntpq –p”

▪ Queries local ntp daemon, routes traffic to configured server(s)

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.53

NTP EXAMPLE

 Linux inetd / xinetd

▪ Single superserver

▪ Extended internet service daemon

▪ Not installed by default on Ubuntu

▪ Intended for use on server machines

▪ Used to configure box as a server for multiple internet services

▪ E.g. ftp, pop, telnet

▪ inetd daemon responds to multiple endpoints for multiple
services

▪ Requests fork a process to run required executable program

 Check what ports you’re listening on:

▪ sudo netstat -tap | grep LISTEN

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.54

SUPERSERVER

53

54

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.28

 Server design issue:

▪ Active client/server communication is taking place over a port

▪ How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a

unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support

interrupting the server (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol

▪ Once a file transfer is started, can’t be stopped easily

▪ Must kill the client and/or server

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.55

INTERRUPTING A SERVER

 Data about state of clients is not stored

 Example: web application servers are typically stateless

▪ Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability

▪ Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited

time (to support sessions)

 Soft state information expires and is deleted

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.56

STATELESS SERVERS

55

56

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.29

 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example:

File server - allows clients to keep local file copies for RW

 Server tracks client file permissions and most recent versions

▪ Table of (client, file) entries

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.57

STATEFUL SERVERS

 Session state

▪ Tracks series of operations by a single user

▪ Maintained temporarily, not indefinitely

▪ Often retained for multi-tier client server applications

▪ Minimal consequence if session state is lost

▪ Clients must start over, reinitialize sessions

 Permanent state

▪ Customer information, software keys

 Client-side cookies

▪ When servers don’t maintain client state, clients can store state

locally in “cookies”

▪ Cookies are not executable, simply client -side data

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.58

STATEFUL SERVERS - 2

57

58

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.30

 OBJECTIVE: Host objects and enable remote client access

 Do not provide a specific service

▪ Do nothing if there are no objects to host

 Support adding/removing hosted objects

 Provide a home where objects live

 Objects, themselves , provide “services”

 Object parts

▪ State data

▪ Code (methods, etc.)

 Transient object(s)

▪ Objects with limited lifetime (< server)

▪ Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

▪ Disadvantage: initialization may be expensive

▪ Alternative: preinitialize and retain objects on server start -up

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.59

OBJECT SERVERS

 Should object servers isolate memory for object instances?

▪ Share neither code nor data

▪ May be necessary if objects couple data and implementation

 Object server threading designs:

▪ Single thread of control for object server

▪ One thread for each object

▪ Servers use separate thread for client requests

 Threads created on demand vs.
Server maintains pool of threads

 What are the tradeof fs for creating server threads on demand vs.
using a thread pool?

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.60

OBJECT SERVERS - 2

59

60

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.31

 EJB- specialized Java object hosted by a EJB web container

 4 types: stateless, stateful, entity, and message-driven beans

 Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications

 EJB web application containers integrate support for:

▪ Transaction processing

▪ Persistence

▪ Concurrency

▪ Event-driven programming

▪ Asynchronous method invocation

▪ Job scheduling

▪ Naming and discovery services (JNDI)

▪ Interprocess communication

▪ Security

▪ Software component deployment to an application server

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.61

EJB – ENTERPRISE JAVA BEANS

 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:

▪ Translate a URL

▪ Write info to log

▪ Check client ID

▪ Check access rights

 Hooks processed in order

enforcing flow-of-control

 Functions in replaceable

modules

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.62

APACHE WEB SERVER

Hooks point to functions in modules

61

62

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.32

 Hosted across an LAN or WAN

 Collection of interconnected machines

 Can be organized in tiers:

▪ Web server → app server → DB server

▪ App and DB server sometimes integrated

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.63

SERVER CLUSTERS

 Front end of three tier architecture (logical switch) provides

distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection

requests, hands off to a server

▪ Example: hardware load balancer (F5 networks – Seattle)

▪ HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:

▪ All requests pass through switch

▪ Switch sits in the middle of the client/server TCP connection

▪ Maps (rewrites) source and destination addresses

 Connection hand-off approach:

▪ TCP Handoff: switch hands of connection to a selected server

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.64

LAN REQUEST DISPATCHING

63

64

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.33

 Who is the best server to handle the request?

 Switch plays important role in

distributing requests

 Implements load balancing

 Round-robin – routes client

requests to servers in a looping

fashion

 Transport-level – route client

requests based on TCP port number

 Content-aware request distribution – route requests based on

inspecting data payload and determining which server node

should process the request

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.65

LAN REQUEST DISPATCHING - 2

 Deployed across the internet

 Leverage resource/infrastructure from Internet Service

Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to

form a cluster

 For deploying a cloud-based cluster (WAN), what are the

implications of deploying nodes to:

 (1) a single availability zone (e.g. us -east-1e)?

 (2) across multiple availability zones?

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.66

WIDE AREA CLUSTERS

65

66

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.34

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System

▪ Hierarchical decentralized naming system

 Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.67

WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers

▪ One is backup

 Hostname may be cached at local DNS server
▪ E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.68

DNS LOOKUP

67

68

http://www.google.com/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.35

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.69

 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is limited to 30 hops, can be increased

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.70

DNS: LINUX COMMANDS

69

70

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.36

 Ping www.google.com in WA from wireless network:

▪ nslookup: 6 alternate addresses returned, choose (74.125.28.147)

▪ Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:

▪ nslookup: 1 address returned, choose 172.217.9.196

▪ Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us -east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.71

DNS EXAMPLE – WAN DISPATCHING

 Ping www.google.com in WA from wireless network:

▪ nslookup: 6 alternate addresses returned, choose (74.125.28.147)

▪ Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:

▪ nslookup: 1 address returned, choose 172.217.9.196

▪ Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us -east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.72

DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!

71

72

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

Slides by Wes J. Lloyd L9.37

QUESTIONS

February 1, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.73

73

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/1
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/30
	Slide 7: Feedback - 2
	Slide 8: AWS Cloud Credits update
	Slide 9: Assignment 1
	Slide 10: Testing connectivity to server (pg 16-18)
	Slide 11: OBJECTIVES – 2/1
	Slide 12: OBJECTIVES – 2/1
	Slide 13: OBJECTIVES – 2/1
	Slide 14: Ch. 3.2: virtualization
	Slide 15: virtualization
	Slide 16: Types of virtualization
	Slide 17: Types of virtualization - 2
	Slide 18: Types of virtualization - 3
	Slide 19: Evolution of Aws virtualization
	Slide 20: Aws virtualization - 2
	Slide 21: Aws virtualization - 3
	Slide 22: Aws virtualization - 4
	Slide 23: OBJECTIVES – 2/1
	Slide 24: Ch. 3.3: clients
	Slide 25: Types of clients
	Slide 26: clients
	Slide 27: X windows
	Slide 28: X windows - 2
	Slide 29
	Slide 30: EXAMPLE: Vnc server
	Slide 31: Example: Vnc server – ubuntu 16.04
	Slide 32: Example: Vnc server – ubuntu 18.04
	Slide 33: Vnc server - ubuntu 20.04 - gnome
	Slide 34: Example: Vnc server - 3
	Slide 35: Example: Vnc client
	Slide 36: Example: Vnc client - 2
	Slide 37: Remote computer in the cloud
	Slide 38: Thin Clients
	Slide 39: Thin clients - 2
	Slide 40: Thin clients - 3
	Slide 41: Tradeoffs: abstraction of remote display protocols
	Slide 42: Tradeoffs: abstraction of remote display protocols
	Slide 43: We will return at 5:05pm
	Slide 44: Client roles in providing distribution transparency
	Slide 45: Client roles in providing distribution transparency - 2
	Slide 46: OBJECTIVES – 2/1
	Slide 47: Ch. 3.4: servers
	Slide 48: servers
	Slide 49: Servers - 2
	Slide 50: End points
	Slide 51
	Slide 52: Types of servers
	Slide 53: Ntp example
	Slide 54: Superserver
	Slide 55: Interrupting a server
	Slide 56: Stateless servers
	Slide 57: Stateful servers
	Slide 58: Stateful servers - 2
	Slide 59: Object servers
	Slide 60: Object servers - 2
	Slide 61: Ejb – enterprise java beans
	Slide 62: Apache web server
	Slide 63: Server clusters
	Slide 64: Lan Request dispatching
	Slide 65: Lan Request dispatching - 2
	Slide 66: Wide area clusters
	Slide 67: Wan request dispatching
	Slide 68: Dns lookup
	Slide 69
	Slide 70: Dns: Linux commands
	Slide 71: Dns example – wan dispatching
	Slide 72: Dns example – wan dispatching
	Slide 73: Questions

