TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
|

Processes:
Virtualization,
Clients & Servers

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

February 1, 2024

OBJECTIVES - 2/1

| = Questlons from 2/1]
= Assignment 2: Key/Value Store
= Coming Soon
= Midterm Thursday February 8
= 2nd hour - Tuesday February 6 - practice midterm class activity

= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2024]

Eebany 02 School of Engineering and Technology, University of Washington - Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

== TCSS558A » Assignments

Home

* Upcoming Assignments

o TCSS 558 - Online Daily Feedback Survey - 1/5

ot avalsbie undil Jan 5 ot 1:30pm | Bue Jan 6 at 10pm

TCSS558: Applied Distributed Computing [Winter 2024]

‘ February1, 2024 School of Engineering and Technology, University of Washington - Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan &6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59m 1dsy Time Limit None
Question 1 0.5 pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 a 4 s 3 7 8 s 10

Equa1 ety

Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past

TCSS558: Applied Distributed Computing [Winter 2024]

24
February1, 2024 School of Engineering and Technology, University of Washington - Tacoma Lo4

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (25 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.6 (- previous 6.77)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.8 (T - previous 5.73)

TCs5558: Applied Distributed Computing [Winter 2024]

‘ R School of Engineering and Technology, University of Washington -Tacoma

Slides by Wes J. Lloyd

FEEDBACK FROM 1/30

= | ask t the 'one-to-one' m I In class:
= R rding the one-to-one thr Ing m I, what Is the ratlo of r

hr n h thr has | wn kernel thr b ‘one-to-
one'refers to 'one- -thread-to-one-kernel-thread’

= The "kworker" is a placeholder process for kernel worker threads
under which the timer, interrupt processing, and other internal
kernel (system) calls run.

Looking more closely at kworker processes, it appears that
kworkers are created for each physical CPU core

= And there are different types of kworkers: events, kdmflush,
mm_percpu_wq, dio/dm-0

I counted about 47 distinct kworker processes

kworker processes appear to be shared. They are on stand-by to run
system calls. If there is no system call, they remain idle.

ps ax | grep kworker

TCsS558: Applied Distributed Computing [Winter 2024]

‘ LR School of Engineering and Technology, University of Washington - Tacoma

L9.1

TCSS 558:

Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

FEEDBACK - 2

= Helpful links on Linux processes and threads:
" https://www.baeldung.com/linux/process-vs-thread

= https://www.baeldung.com/linux/monitor-process-thread-
count

= kworkers in Linux:

= https://medium.com/@boutnaru/the-linux-process-journey-
kworker-f947634da73

= https://askubuntu.com/questions/33640/kworker-what-is-it-
and-why-is-it-hogging-so-much-cpu

TCSS558: Applied Distributed Computing [Winter 2024]

L School of Engineering and Technology, University of Washington - Tacoma

AWS CLOUD CREDITS UPDATE

= We have been approved to receive AWS CLOUD CREDITS
for TCSS 558 - Winter 2024
= Credits will be provided by email request
= Please include: 12-digit AWS account ID, and AWS account email
= Credits will first be provided for students not in F'23 TCSS562
= Request codes by sending an email with the subject:
“AWS CREDIT REQUEST” to wlloyd@uw.edu
= Codes can also be obtained in person (or zoom), in the class,
during the breaks, after class, during office hours, by appt
= Credit codes are carefully exchanged, and not shared by IM
= For students unable to create a standard AWS account:
Please contact instructor by email -
Instructor will work to create hosted IAM user account

TCSS558: Applied Distributed Computing [Winter 2024]

Eebany 02 School of Engineering and Technology, University of Washington - Tacoma

ASSIGNMENT 1

= Preparing for Assignment 1:
Intro to Cloud Computing Infrastructure and Load Balancing
= Establish AWS Account - Standard account

= Now posted:
= Task O - Establish local Linux/Ubuntu environment
= Task 1 -AWS account setup, obtain user credentials

=Task 2 - Intro to: Amazon EC2 & Docker: create Dockerfile
for Apache Tomcat

=Task 3 - Create Dockerfile for haproxy (software load balancer)
=Task 4 - Working with Docker-Machine
=Task 5 - Submit Results of testing alternate server configs

TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma 109

February 1, 2024

TESTING CONNECTIVITY TO SERVER (PG 16-18)

= testFibPar.sh script is a parallel test script

= Orchestrates multiple threads on client to invoke server
multiple times in parallel

= To simplify coordination of parallel service calls in BASH,
testFibPar.sh script ignores errors !!!

= To help test client-to-server connectivity, there is also a
testFlbService.sh script that supports 3 tests

;
= TEST 1: Network layer test ;-
= Ping (ICMP) <
= TEST 2: Transport layer test 5 [EIEnsEo |
= TCP: telnet (TCP Port 8080) - security group (fw) test % m':k
= TEST 3: Application layer test E
= HTTP REST - web service test e G Ml Liyais

TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma 1810

‘ February 1, 2024

10

OBJECTIVES - 2/1

= Questions from 2/1

= Assignment 2: Key/Value Store
= Coming Soon

= Midterm Thursday February 8
= 2nd hour - Tuesday February 6 - practice midterm class activity

= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2024]
R School of Engineering and Technology, University of Washington - Tacoma Lo

OBJECTIVES - 2/1

= Questions from 2/1

= Assignment 2: Key/Value Store
= Coming Soon
= Midterm Thursday February 8
= 2" hour - Tuesday February 6 - practice mldterm class activit

= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2024] o2
School of Engineering and Technology, University of Washington - Tacoma

‘ February 1, 2024

11

Slides by Wes J. Lloyd

12

L9.2

https://www.baeldung.com/linux/process-vs-thread
https://www.baeldung.com/linux/monitor-process-thread-count
https://www.baeldung.com/linux/monitor-process-thread-count
https://medium.com/@boutnaru/the-linux-process-journey-kworker-f947634da73
https://medium.com/@boutnaru/the-linux-process-journey-kworker-f947634da73
https://askubuntu.com/questions/33640/kworker-what-is-it-and-why-is-it-hogging-so-much-cpu
https://askubuntu.com/questions/33640/kworker-what-is-it-and-why-is-it-hogging-so-much-cpu
mailto:wlloyd@uw.edu

TCSS 558:

Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

OBJECTIVES - 2/1

® Questions from 2/1

= Assignment 2: Key/Value Store
= Coming Soon
= Midterm Thursday February 8
= 2nd hour - Tuesday February 6 - practice midterm class activity
= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers

= Chapter 3.2: Virtuallzation |

= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2024]

SELET L 2 School of Engineering and Technology, University of Washington - Tacoma

w13

CH. 3.2:

VIRTUALIZATION

13

14

VIRTUALIZATION

= |nitially introduced in the 1970s
on IBM mainframe computers

= Legacy operating systems run in mainframe-based VMs
= Legacy software could be sustained by virtualizing legacy OSes

= 1970s virtualization went away as desktop/rack-based
hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

= Cloud computing: Amazon offers VMs as-a-service (laaS)

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryd, 2024 School of Engineering and Technology, University of Washington - Tacoma

15

TYPES OF VIRTUALIZATION

= Levels of InStructions: iy uncions | APPeaton

= Hardware: CPU System calls ___ | Library

Privileged Operating system ‘
Hardware

= Privileged instructions
KERNEL MODE

= General instructions
USER MODE

= Operating system: system calls
= Library: programming APIs: e.g. C/C++,C#, Java libraries

General

= Application:
= Goal of virtuallzation:
mimic these interface to provide a virtual computer

TCSS558: Applied Distributed Computing [Winter 2024]

Febniaryd, 2024 School of Engineering and Technology, University of Washington - Tacoma

1916

15

16

TYPES OF VIRTUALIZATION - 2

e

= Process virtual machine T

= Interpret instructions: (interpreters) Runtime system
Operating systom
T

(JavaVM) byte code > HW instructions
Hardware

= Emulate instructions: (emulators)
(Wine) windows code -> Linux code

= Native virtual machine monitor (VMM)

= Hypervisor (XEN): small OS with its own kernel

Apgicationibraries
"

= Provides an interface for multiple guest OSes Opsraiing system
T s T
= Facilitates sharing/scheduling of Virtual machina monior
CPU, device I/0 among many guests T T T
[—

= Guest OSes require special kernel to interface w/ VMM

= Supports Paravirtuallzation for performance boost to run code
directly on the CPU
= Type 1 hypervisor

TCSs558: Applied Distributed Computing [Winter 2024]

R School of Engineering and Technology, University of Washington - Tacoma

w17

TYPES OF VIRTUALIZATION - 3

= Hosted virtual machine monitor (VMM)
= Runs atop of hosted operating system
= Uses host OS facilities for CPU scheduling, 1/0
= Full virtualization
= Type 2 hypervisor
Virtualbox

‘ JRS—— ‘

—
o
e

e

[rmieer \

= Textbook: note 3.5-good explanation of full vs. paravirtualization
= GOAL: run all user mode instructions directly on the CPU
= x86 instruction set has ~17 privileged user mode instructions

= Full virtualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

= Paravlirtuallzatlon: special OS kernel eliminates side effects of

TCSS558: Applied Distributed Computing [Winter 2024]

LR School of Engineering and Technology, University of Washington - Tacoma

privileged instructions
1918

17 18

Slides by Wes J. Lloyd L9.3

TCSS 558: Applied Distributed Computing February 1, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

EVOLUTION OF AWS VIRTUALIZATION

AWS VIRTUALIZATION - 2

From htto: o8 P = Full Virtuallzatlon - Fully Emulated
ve: AWS EG2 Virty = Never used on EC2, before CPU extensions for virtualization
— = Can boot any unmodified 0S
Virtualization P — > Lot q q
= Support via slow emulation, performance 2x-10x slower
In software Hearmatal pertarmance ﬁh‘\;
Optimized pedormance % ’\; N = Paravirtuallzation: Xen PV 3.0

P: Poar pertormance '\3 O “:\'%L, N = Software: Interrupts, timers
Paravirtual e T o = Paravirtual: CPU, Network 1/0, Local+Network Storage

KT Fully Emuiaied = Requires special OS kernels, interfaces with hypervisor for I/0

: od [z] wm Xen PY 30 = Performance 1.1x - 1.5x slower than “bare metal”

Virtuallzation % :: % = Instance store instances: 15T & 2"¢ generation- m1.large, m2.xlarge
IolHerowers [5 [| wenaws as = Xen HVM 3.0

S| vu NenAWE 2017 | FVHVM + SR-IOVinet. sor) = Hardware virtualization: CPU, memory (CPU VT-x required)
H: L R Ol = Paravirtual: network, storage

Mew |8 | HW_| AWS Bars Motal 2017 H|H|H|H[H|H . >
‘Bare Mool ICEEACECEE KD = Software: interrupts, timers

prv— P = EBS backed instances

VS VYR 1 S0Mwre VH: Vet 1 T, P Pt Nt o8 combn i

e * m1, c1 instances

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]

‘ SELET L 2 School of Engineering and Technology, University of Washington - Tacoma 1 ‘ e School of Engineering and Technology, University of Washington - Tacoma 1920

19 20

AWS VIRTUALIZATION - 3

AWS VIRTUALIZATION - 4

= XEN HVM 4.0.1

= AWS Nltro 2017
= Hardware virtualization: CPU, memory (CPU VT-x required)

= Paravirtual: network, storage, Interrupts, timers " P_rovides hardV\.lare virtualizatio.n for CPU, memory, network, local
= XEN AWS 2013 (diverges from opensource XEN) disk, remote disk, interrupts, timers

= Provides hardware virtualization for CPU, memory, network = All aspects of virtualization enhanced with HW-level support

= Paravirtual: storage, interrupts, timers = November 2017

= Called Single root 1/0 Virtualization (SR-IOV) . i ; o N R
= Allows sharing single physical PCI Express device (i.e. network adapter) (Ealk [Eraniie pereimErse [milEineiEim D fem e meiE)
with multiple VMs = 5t generation instances - ¢5 instances (also c¢5d, c5n)
= Improves VM network performance = Based on KVM hypervisor
= 314 & 4th generation instances (c3 family)
= Network speeds up to 10 Gbps and 25 Gbps
= XEN AWS 2017
= Provides hardware virtualization for CPU, memory, network, local disk
= Paravirtual: remote storage, Interrupts, timers
= Introduces hardware virtualization for EBS volumes (c4 instances)
= Instance storage hardware virtualization (x1.32xlarge, i3 family)

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ February 1, 2024 School of Engineering and Technology, University of Washington - Tacoma w2 Febniaryd, 2024 School of Engineering and Technology, University of Washington - Tacoma 1922

= Overhead around ~1%

21 22

OBJECTIVES - 2/1

= Questions from 2/1
= Assignment 2: Key/Value Store
= Coming Soon
= Midterm Thursday February 8
= 2nd hour - Tuesday February 6 - practice midterm class activity
= Chapter 3: Processes CH- 3.3: CLIENT
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

| = Chapter 3.3: Cllents |
= Chapter 3.4: Servers
TCSS558: Applied Distributed Computing [Winter 2024]
‘ FEERERLET) School of Engineering and Technology, University of Washington - Tacoma Lo

23 24

Slides by Wes J. Lloyd L9.4

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

TCSS 558: Applied Distributed Computing February 1, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

TYPES OF CLIENTS CLIENTS

= Thick clients = Application specific protocol |] ‘
. . Appication Apgication
=Web browsers Thick clients :] A?&ﬁ:w 1 :
= Clients maintain local data Wotlewars | protoodd | Middiewars
Client-side scripting « Middleware (APIs) Locsl 08 Lol 05
= Mobile apps = Clients synchronize data with remote nodes J—--------------,—_-
= Multi-tier MVC apps - Berinles St el LEatch
= Application independent AT
o . = Thin clients opication
=Thin clients : ' [r=ssn]
= Client acts as a remote terminal A | ndependent
" Remote desktops/GUIs (very thin) = Provides interface to user (GUI / Ul) MLTIEE: ol

= Server houses entire application stack

‘ February1, 2024

TCs5558: Applied Distributed Computing [Winter 2024] 1925 Februaryd) 2024 TCS5558: Applied Distributed Computing [Winter 2024] 1026
School of Engineering and Technology, University of Washington - Tacoma L7 School of Engineering and Technology, University of Washington - Tacoma

25 26

X WINDOWS

= Layered architecture to transport Ul over network = Window manager:

= Application running
atop of X-windows

= X kernel acts as a server which provides flair

= Remote desktop functionality for Linux/Unix systems

= Many variants

= Without X windows is
= Xlib instances (client applications) exchange data and quite bland

events with X kernels (servers)

= Provides the X protocol: application level protocol

= Clients and servers on single machine - Linux GUI

= Client and server communication transported over the
network > remote Linux GUI

School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ February1, 2024 School of Engineering and Technology, University of Washington - Tacoma w27 Febniaryd, 2024 028

27 28

= Layered architecture

EXAMPLE: VNC SERVER

= X-kernel: low level Deskiap Environment - Appl
i File Manageme
interface/APlIs for Grome/KDF panels deskaop ksn managers
controlling screen,

i ‘Window and Composit . = How to Install VNC server on Ubuntu EC2 Instance VM:
capturing keyboard bty i s Toalkits 1 D CREEOE TEERED
and mouse events Compiz Metacity b I Mok X

(X window Server

Sessian Manager = # ubuntu 16.04
Provided on Linux ®" sudo apt-get install ubuntu-desktop

»
as Xlib " sudo apt-get install gnome-panel gnome-settings-
Display Manager - Local K Server Startup daemon metacity nautilus gnome-terminal
. and User Authentication
= Provides network ‘gam, hdm, xdm = # on ubuntu 18.04
enabled GUI " sudo apt install xfce4 xfced-goodies
X Window Server - Display Hardware Management
Jarg =" sudo apt-get install tightvncserver # both
= Layering allows for

use for custom Network Transports - Olient -Server Connections = Start VNC server to create initial config file
window managers TCR/IR Unix domain sockers O SREEEETEE 85l
TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
G bR School of Engineering and Technology, University of Washington - Tacoma 929 ‘ (R L/ School of Engineering and Technology, University of Washington - Tacoma 1030

29 30

Slides by Wes J. Lloyd L9.5

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

EXAMPLE: VNC SERVER - UBUNTU 16.04

= On the VM: edit config file: nano ~/.vnc/xstartup

= Replace contents as below (Ubuntu 16.04):
#!/bin/sh

export XKL XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2024]
‘ L School of Engineering and Technology, University of Washington - Tacoma 3

EXAMPLE: VNC SERVER - UBUNTU 18.04

= On the VM:
= Edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 18.04):

#!/bin/bash
xrdb $HOME/.Xresources
startxfced &

TCsS558: Applied Distributed Computing [Winter 2024]
e School of Engineering and Technology, University of Washington - Tacoma 1932

31

32

VNC SERVER - UBUNTU 20.04 - GNOME

install vnc server
sudo apt install tigervnc-standalone-server
sudo apt install ubuntu-gnome-desktop

vncserver :1 # creates a config file
vncserver -kill :1 # stop server

vi ~/.vnc/xstartup # edit config file
#!/bin/sh

Start Gnome 3 Desktop

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
vncconfig -iconic &

dbus-launch --exit-with-session gnome-session &
sudo systemctl start gdm # start gnome desktop
sudo systemctl enable gdm
vncserver :1 # restart vnc server
TCs5558: Applied Distributed Computing [Winter 2024]
February1, 2024 School of Engineering and Technology, University of Washington - Tacoma 1033

EXAMPLE: VNC SERVER - 3

= On the VM: reload config by restarting server
® vncserver -kill :1

" vncserver :1

= Open port 22 & 5901 in EC2 security group:

Edit inbound rules x
ype (0 — Pon Rangs i souree (3
T o
B = o
TCSS558: Applied Distributed Computing [Winter 2024]
Febniaryd, 2024 School of Engineering and Technology, University of Washington - Tacoma o34

33

34

EXAMPLE: VNC CLIENT

= On the client (e.g. laptop):

= Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

= This way your VNC client doesn’t need an SSH key

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
1 ubuntu 52.111.202.44

TCSS558: Applied Distributed Computing [Winter 2024]
‘ R School of Engineering and Technology, University of Washington - Tacoma 13

EXAMPLE: VNC CLIENT - 2

= On the client (e.g. laptop):
= Use a VNC Client to connect

= Remmina is provided by default on Ubuntu 16.04
= Can “google” for many others
= Remmina login:

= Chose “VNC” protocol

= Log into “localhost:5901”

§ e - Connect !

§ Hame « cr

TCSS558: Applied Distributed Computing [Winter 2024]
LR School of Engineering and Technology, University of Washington - Tacoma 1030

35

Slides by Wes J. Lloyd

36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

REMOTE COMPUTER IN THE CLOUD

THIN CLIENTS

= EC2 instance = .

= Thin clients
with a GUI. . .!!!

= Besides VNC, there are a variety of other remote desktop protocols:

Remate deskiop pratocols inchude he falowing

ines.
) remole printing, remate USB. accelerated video

+ Remole Deskio Proloo
» REmole B

Bufter Prots e lewel cross-plaifor pr
Protocol for indeperxlent Compusing Emwiron

igh performance remote deskiop protocol developed
‘Splesiiog can deliver high frame retes with low ltency, and also low power consumpiion
m (X11) - a well-establishe

s-platform protocol mainy used for displaying local appiicaions: X11 is network

TCs5558: Applied Distributed Computing [Winter 2024] TCs5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma 1037 February1, 2024 1938

‘ February1, 2024

School of Engineering and Technology, University of Washington - Tacoma

37 38

THIN CLIENTS - 2 THIN CLIENTS - 3

= Applications should separate application logic from Ul

= When application logic and Ul interaction are tightly coupled
many requests get sent to X kernel

= Client must wait for response

= Synchronous behavior and app-to-Ul coupling adversely affects
performance of WAN / Internet

= Virtual network computing (VNC)

= Send display over the network at the pixel level
(instead of X lib events)

= Reduce pixel encodings to save bandwidth - fewer colors
= Pixel-based approaches loose application semantics
= Can transport any GUI this way

= Protocol optimlzatlons: reduce bandwidth by shrinking size of

= THINC- hybrid approach
X protocol messages

= Send video device driver commands over network
= More powerful than pixel based operations
= Less powerful compared to protocols such as X

= Send only differences between messages with same identifier
= Optimizations enable connections with 9600 kbps

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ February1, 2024 School of Engineering and Technology, University of Washington - Tacoma 39 Febniaryd, 2024 School of Engineering and Technology, University of Washington - Tacoma L0

39 40

TRADEOFFS: ABSTRACTION OF REMOTE

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols = Tradeoff space: abstraction level of remote display protocols

41

Slides by Wes J. Lloyd

Pixel-level Graphics llb Plxel-level Graphlcs Ilb
VNC |-| x11 VNC P |'| Xil.:l.
< d > N U L

e Generic - no app context e Application context
e Graphics data is available
o Higher network bandwidth e Ul data/operations
e Fewer colors e Lower network bandwidth
e Utilize graphics compression e More colors
e More network traffic

[reomamnamn [T doted s omoutis e 200 [reonanizom

TCSS558: Applied Distributed Computing [Winter 2024] o2
School of Engineering and Technology, University of Washington - Tacoma

42

L9.7

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

WE WILL RETURN AT
5:05PM

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY - 2

= Location/relocation/migration transparency
= Harness convenient naming system to allow client to infer new
locations
= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

= Replication transparency

= Client aggregates responses from multiple servers
= Failure transparency

= Client retries, or maps to another server, or uses cached data
= Concurrency transparency

= Transaction servers abstract coordination of multithreading

TCSS558: Applied Distributed Computing [Winter 2024]
l Februaryd, 2024 School of Engineering and Technology, University of Washington - Tacoma 1045

45

47

Slides by Wes J. Lloyd

February 1, 2024

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

= Clients help enable distribution transparency of servers

= Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Thent maching Server T erZ Server J
Cient Server Server Server
appl appl appl appl
L
v
AN d A A
,/ 3 = /
ient side handles - A
A

request replication

Repicated request_—~

TCSS558: Applied Distributed Computing [Winter 2024]

l e School of Engineering and Technology, University of Washington - Tacoma

44

OBJECTIVES - 2/1

= Questions from 2/1

= Assignment 2: Key/Value Store
= Coming Soon
= Midterm Thursday February 8
= 2nd hour - Tuesday February 6 - practice midterm class activity

= Chapter 3: Processes
= Chapter 3.1: Threads
= Threading Models
= Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
| = Chapter 3.4: Servers |

TCSS558: Applied Distributed Computing [Winter 2024]
l Febniaryd, 2024 ‘ School of Engineering and Technology, University of Washington - Tacoma

46

SERVERS

= Cloud & Distributed Systems - rely on Linux

= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= |T is moving to the cloud. And, what powers the cloud?

=Linux
= Uptime Institute survey - 1,000 IT executives (2016)

= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites

= 23% expect the shift in 2017, 70% by 2020...
= Docker on Windows / Mac 0S X

= Based on Linux

= Mac: Hyperkit Linux VM

= Windows: Hyper-V Linux VM

TCSS558: Applied Distributed Computing [Winter 2024]

l February1, 2024 School of Engineering and Technology, University of Washington - Tacoma

48

L9.8

http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/

TCSS 558: Applied Distributed Computing February 1, 2024

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

SERVERS - 2 END POINTS

= Clients connect to servers via:
IP Address and Port Number

= Servers implement a specific service for a collection of clients
= Servers wait for incoming requests, and respond accordingly

= How do ports get assigned?
= Servertypes

= |terative: immediately handle client requests
= Concurrent: Pass client request to separate thread = Client must find IP address(es) of servers

= Many protocols support “default” port numbers

= A single server often hosts multiple end points

= Multithreaded servers are concurrent servers
(servers/services)

= E.g. Apache Tomcat
= When designing new TCP client/servers must be careful

= Alternative: fork a new process for each incoming request not to repurpose ports already commonly used by others
= Hybrid: mix the use of multiple processes with thread pools
TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ (R £ School of Engineering and Technology, University of Washington - Tacoma e ‘ February1,2024 Schoolof Engineeing and Technology, Univerity of Washington - Tacoma .

49 50

CoMMoON PORTS packetiife.net
TCP/UDP Port Numbers TYPES OF SERVERS

7 Ecne 554 RTSP 2745 U cver-ovor
19 Chargen 548547 DHCPvE 2967 Symantoc Av 8970 Quicktime

w2 ere 550 rmonitor 2050 nterbase DB 7212 Shostsurt
= S so: NENNSSHNNN o7+ FECHUGNMNNN 7ess-vors EUSSHENNN
23 Toloet sz 5w 3120 HTTP Proxy 5000 Internet Rada =Daemon server
25 suTe 591 FileMaker 3127 8080 HITP Fraxy .
42 WS Repicaton 593 Microsoft DEOM 3128 HITP Prosy 8086-8087 Kaspershy AV " Example: NTP server
a3 wHois 831, Intermet Printing 3222 Guae 118 Prvory
49 TACACS 636 [BARGUEFSSEII] 3260 1SCS Target 8200 VWtware Server =Superserver
53 ons 839 HSoR (M) 3308 MysaL 8500 Adobe CodFusion

67.68 DHCP/BOOTP 646 LDP (MPLS) 3389 Terminal Server 8767 EETEEE
6 TETR 691 M5 Exchange 3689 Munes sses IS m Stateless server
70 Gapher 880 scs1 3690 Subversion 3100 P jeiDirect
79 Finger 873 rsync 3724 EOEINGEN 51019103 Bacule = Example: Apache server
Py 302 wmare Server 37843785 Vertrio s
88 Korberos s89-000 [EEUHSSN 4333 msaL 9800 WesDAY
102 45 Exchonae 00> RIS <<+ S o050 SRESE = Stateful server
110 PoP3 95 PO BUERSSLII 4664 Goagle Deskeop 9ns FHSHSHHBEET
113 dent 1028 Micresoht RPC preay e 9999 Urchin = Object servers
119 NNTP (Usenct) 1026-1028 Windows Messenger 4899 Rasrin 10000 ebemin
123 e 1080 50CKS Proxy 5000 Uenk 20000 aackupksec
135 Micrasoft APC 1080 001 Singbox 1011310138 necio =EJB servers

137130 notaics 1194 OpentvPH s001 pert 22372 Opentce
143 AR 1210 [SEIN 5004-5005 RTF 12035-12036 ERCIINEIN
161-162 SHMF 1241 Nessus 050 VafGaMEsssngen]| 12345 NS ‘ February1, 2024 ;cssssx: Applied Distributed Computing [Winter 2024] 1952

177 XDMCP 1311 Dell OpenManage 5060 SIP. 13720-13721 NetBackup chool of Engineering and Technology, University of Washington - Tacoma
10 ace 2337

51 52

NTP EXAMPLE SUPERSERVER

= Linux inetd / xinetd

. = Single superserver

punl cealivionibinix = Extended internet service daemon

= Not installed by default on Ubuntu

= Intended for use on server machines

= Daemon servers

= Track current server end points (outside servers)

= Example: network time pr: I (n mon
ample: network time protocol (ntp) daemo = Used to configure box as a server for multiple internet services
Listen locally on specific port (ntp is 123) E.g. ftp, pop, telnet
Daemons routes local client traffic to the configured = inetd daemon responds to multiple endpoints for multiple

services

endpoint servers
= Requests fork a process to run required executable program

University of Washington: time.u.washington.edu
el SiEpE =D = Check what ports you’re listening on:
* Queries local ntp daemon, routes traffic to configured server(s) "sudo netstat -tap | grep LISTEN

TCSS558: Applied Distributed Computing [Winter 2024] TCs5558: Applied Distributed Computing [Winter 2024]
R School of Engineering and Technology, University of Washington - Tacoma s LR School of Engineering and Technology, University of Washington - Tacoma Los

53 54

Slides by Wes J. Lloyd L9.9

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

February 1, 2024

INTERRUPTING A SERVER

= Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)
2. Use a separate connection (different port) for admin control info

Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCsS558: Applied Distributed Computing [Winter 2024] 1955
School of Engineering and Technology, University of Washington - Tacoma

‘ February1, 2024

STATELESS SERVERS

= Data about state of clients is not stored
= Example: web application servers are typically stateless
= Also function-as-a-service (FaaS) platforms

= Many servers maintain information on clients (e.g. log files)

= Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

= Soft state: server maintains state on the client for a limited
time (to support sessions)
= Soft state information expires and is deleted

‘ February1, 2024

TCS5558: Applied Distributed Computing [Winter 2024] 1956
School of Engineering and Technology, University of Washington - Tacoma

55

56

STATEFUL SERVERS

= Maintain persistent information about clients
= Information must be explicitly deleted by the server

= Example:
File server - allows clients to keep local file copies for RW

Server tracks client file permissions and most recent versions
= Table of (client, file) entries

If server crashes data must be recovered
= Entire state before a crash must be restored

Fault tolerance - Ch. 8

TCSS558: Applied Distributed Computing [Winter 2024]
‘ February1, 2024 School of Engineering and Technology, University of Washington - Tacoma s7

STATEFUL SERVERS - 2

= Session state
= Tracks series of operations by a single user
= Maintained temporarily, not indefinitely
= Often retained for multi-tier client server applications
= Minimal consequence if session state is lost
= Clients must start over, reinitialize sessions

= Permanent state
= Customer information, software keys

= Client-side cookies
= When servers don’t maintain client state, clients can store state
locally in “cookies”
= Cookies are not executable, simply client-side data

‘ February 1, 2024

TCs5558: Applied Distributed Computing [Winter 2024] 1958
School of Engineering and Technology, University of Washington - Tacoma

57

58

OBJECT SERVERS

= OBJECTIVE: Host objects and enable remote client access
= Do not provide a specific service
= Do nothing if there are no objects to host
= Support adding/removing hosted objects
= Provide a home where objects live
= Objects, themselves, provide “services”

= Object parts
= State data
= Code (methods, etc.)

= Translent object(s)
= Objects with limited lifetime (< server)
= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).
= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCS5558: Applied Distributed Computing [Winter 2024] 1059
School of Engineering and Technology, University of Washington - Tacoma

‘ February 1, 2024

OBJECT SERVERS - 2

= Should object servers isolate memory for object instances?
= Share neither code nor data
= May be necessary if objects couple data and implementation

= Object server threading designs:
= Single thread of control for object server
= One thread for each object

= Servers use separate thread for client requests

= Threads created on demand vs.

using a thread pool?

Server maintains pool of threads

= Wh re the tr ffs for creatin rver thr n demand vs.

TCSS558: Applied Distributed Computing [Winter 2024]

‘ LR School of Engineering and Technology, University of Washington - Tacoma

59

Slides by Wes J. Lloyd

60

L9.10

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

EJB - ENTERPRISE JAVA BEANS

EJB- specialized Java object hosted by a EJB web container

4 types: stateless, stateful, entity, and message-driven beans
Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications

EJB web application containers integrate support for:

= Transaction processing

= Persistence

= Concurrency

= Event-driven programming

= Asynchronous method invocation

= Job scheduling

= Naming and discovery services (JNDI)

= Interprocess communication

= Security
= Software component deployment to an application server
TCSS558: Applied Distributed Computing [Winter 2024]
‘ (LT 2 School of Engineering and Technology, University of Washington - Tacoma et

61

SERVER CLUSTERS

= Hosted across an LAN or WAN
= Collection of interconnected machines
= Can be organized in tiers:

= Web server > app server > DB server

= App and DB server sometimes integrated

Logical switch Appiicaionicompute servers Distributed
(possibly muliple) Nleidatabase
system

A
«

(1L
ﬂ|.

Festtor Second sor Third tier
TCSS558: Applied Distributed Computing [Winter 2024]
‘ February 12020 School of Engineering and Technology, University of Washington - Tacoma 1083

APACHE WEB SERVER

= Highly configurable, extensible, platform independent

= Supports TCP HTTP protocol communication

= Uses hooks - placeholders for group of functions

= Requests processed in phases by hooks

= Many hooks: e i i

= Translate a URL |TI I [Dl I‘ ‘QDI H‘

= Write info to log
= Check client ID
= Check access rights

Unk batwgsry

action and b

. |
(oo on. mm "

== "Hooks point to functions in modules

= Hooks processed in order

enforcing flow-of-control
g \
= Functions in replaceable Funosions caled per hook lj—

modules Request * Responsa

TCsS558: Applied Distributed Computing [Winter 2024]
e School of Engineering and Technology, University of Washington - Tacoma 1062

62

LAN REQUEST DISPATCHING

= Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)
= HW Load balancer - OSI layers 4-7

= Network-address-translation (NAT) approach:
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
= Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

63

TCSS558: Applied Distributed Computing [Winter 2024]

February1, 2024 School of Engineering and Technology, University of Washington - Tacoma

LAN REQUEST DISPATCHING - 2

= Who is the best server to handle the request?

= Switch plays important role in
distributing requests

= [mplements load balancing

= Round-roblin - routes client
requests to servers in a looping
fashion

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TCS5558: Applied Distributed Computing [Winter 2024] w06
School of Engineering and Technology, University of Washington - Tacoma

Togialy 3
single TGP

‘ February 1, 2024

64

WIDE AREA CLUSTERS

= Deployed across the internet

= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

= Cloud computing simplifies building WAN clusters

= Resource from a single cloud provider can be combined to
form a cluster

= For deploying a cloud-based cluster (WAN), what are the
Implications of deploying nodes to:

= (1) a single availability zone (e.g. us-east-1e)?
= (2) across multiple availability zones?

TCSS558: Applied Distributed Computing [Winter 2024]

LR School of Engineering and Technology, University of Washington - Tacoma

65

Slides by Wes J. Lloyd

66

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 1, 2024

WAN REQUEST DISPATCHING

= Goal: minimize network latency using WANs (e.g. Internet)
= Send requests to nearby servers

= Request dispatcher: routes requests to nearby server
= Example: Domain Name System
= Hierarchical decentralized naming system

= Linux: find your DNS servers:

Find you device name of interest
nmcli dev

Show device configuration

nmcli device show <device name>

TCSS558: Applied Distributed Computing [Winter 2024]
‘ L School of Engineering and Technology, University of Washington - Tacoma e

Local Name Server
5. Iterative Query to root
4.Check (root)
Cache
o 13. Update, ‘— Root Name Server
Cache
Cache
Server 7. Herative
3. Recursive Loueysmed _ edu
CE | ([Restod & Name Server for
‘ googlepler.edy
2. Check v .edu Name Server
Cache
F iy 9. erative Query .
§ to googleplex.edu
it =
e Sptt 10. Name Server for googleplex
Cache Resolver compsci.googleples.edu
§ I googleplex.edu
1. Resolution | Name Server
Request & P yia
P Addraas compsci.goagiepiex.edu .j
—— compsci
& ==
Lk edu ody
Name Server E:'Zl
T ATHTTP Request . et
User & Browser to Resolved Address s
Client

69

DNS EXAMPLE - WAN DISPATCHING

Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

From VA EC2 instance, ping WA www.google server
Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
Pinging the WA-local server is ~60x slower from VA

From local wireless network, ping VA us-east-1 google :
Ping 172.217.9.196: Average RTT=81.637ms (11 attempts,15 hops)

TCSS558: Applied Distributed Computing [Winter 2024]
‘ R School of Engineering and Technology, University of Washington - Tacoma L7

DNS LOOKUP

= First query local server(s) for address

= Typically there are (2) local DNS servers
= One is backup

= Hostname may be cached at local DNS server

= E.g. www.google.com
= |f not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCSS558: Applied Distributed Computing [Winter 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

68

DNS: LINUX COMMANDS

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

= traceroute <ip addr / hostname>
= Traces network path to destination
= By default, output is limited to 30 hops, can be increased

TCSS558: Applied Distributed Computing [Winter 2024]
‘ Febniaryd, 2024 School of Engineering and Technology, University of Washington - Tacoma w70

70

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2024]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L7

71

Slides by Wes J. Lloyd

72

L9.12

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

TCSS 558: Applied Distributed Computing February 1, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

QUESTIONS

February 1, 2024

73

Slides by Wes J. Lloyd L9.13

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/1
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/30
	Slide 7: Feedback - 2
	Slide 8: AWS Cloud Credits update
	Slide 9: Assignment 1
	Slide 10: Testing connectivity to server (pg 16-18)
	Slide 11: OBJECTIVES – 2/1
	Slide 12: OBJECTIVES – 2/1
	Slide 13: OBJECTIVES – 2/1
	Slide 14: Ch. 3.2: virtualization
	Slide 15: virtualization
	Slide 16: Types of virtualization
	Slide 17: Types of virtualization - 2
	Slide 18: Types of virtualization - 3
	Slide 19: Evolution of Aws virtualization
	Slide 20: Aws virtualization - 2
	Slide 21: Aws virtualization - 3
	Slide 22: Aws virtualization - 4
	Slide 23: OBJECTIVES – 2/1
	Slide 24: Ch. 3.3: clients
	Slide 25: Types of clients
	Slide 26: clients
	Slide 27: X windows
	Slide 28: X windows - 2
	Slide 29
	Slide 30: EXAMPLE: Vnc server
	Slide 31: Example: Vnc server – ubuntu 16.04
	Slide 32: Example: Vnc server – ubuntu 18.04
	Slide 33: Vnc server - ubuntu 20.04 - gnome
	Slide 34: Example: Vnc server - 3
	Slide 35: Example: Vnc client
	Slide 36: Example: Vnc client - 2
	Slide 37: Remote computer in the cloud
	Slide 38: Thin Clients
	Slide 39: Thin clients - 2
	Slide 40: Thin clients - 3
	Slide 41: Tradeoffs: abstraction of remote display protocols
	Slide 42: Tradeoffs: abstraction of remote display protocols
	Slide 43: We will return at 5:05pm
	Slide 44: Client roles in providing distribution transparency
	Slide 45: Client roles in providing distribution transparency - 2
	Slide 46: OBJECTIVES – 2/1
	Slide 47: Ch. 3.4: servers
	Slide 48: servers
	Slide 49: Servers - 2
	Slide 50: End points
	Slide 51
	Slide 52: Types of servers
	Slide 53: Ntp example
	Slide 54: Superserver
	Slide 55: Interrupting a server
	Slide 56: Stateless servers
	Slide 57: Stateful servers
	Slide 58: Stateful servers - 2
	Slide 59: Object servers
	Slide 60: Object servers - 2
	Slide 61: Ejb – enterprise java beans
	Slide 62: Apache web server
	Slide 63: Server clusters
	Slide 64: Lan Request dispatching
	Slide 65: Lan Request dispatching - 2
	Slide 66: Wide area clusters
	Slide 67: Wan request dispatching
	Slide 68: Dns lookup
	Slide 69
	Slide 70: Dns: Linux commands
	Slide 71: Dns example – wan dispatching
	Slide 72: Dns example – wan dispatching
	Slide 73: Questions

