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TCSS 558: 

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.77 ( - previous 5.95)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.73 ( - previous 5.45)
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MATERIAL / PACE

 When conducting a random walk in an unstructured peer -to-

peer system, is any logic employed to ensure you do not run a 

cycle? 

▪ As with flooding, with random walk, if a node has previously received 

the data it is trying to propagate to a neighbor, from the neighbor, 

then it will not forward the data to the neighbor

▪ Nodes only send the data to neighbors that are assumed to not have 

the data

 Do we keep track of the neighbors we have asked, and always 

randomly select a new neighbor from a list of unasked 

neighbors if  the neighbor we ask cannot f ind the data?

▪ Yes, there would be no purpose to forward the data twice to the 

same node
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 In the chord system, when a node recieves a query for a key k 
which i t  doesn't store, then in the text book it 's mentioned that i t  
forwards the query to the smallest id greater than or equal to k 
which is nothing but the successor of  k .  ]

 But in the sl ides i ts mentioned, i t  wi l l  be forwarded to node with m -
bit  id closest to but not greater than k .  

▪ The finger table format from Chapter 5 has a slightly different format

▪ The id(s) on page 248 (3 rd edition), are just indexes (from 1 to 5), they 
do not correspond to node numbers in the chord.

▪ In the example for lecture 7, the finger table has node numbers paired 
with subsequent forwarding IDs, not just generic indexes 

▪ For the textbook, forward to node q, where q= FTp[j]  FTp[j+1]

▪ The book does not make the following clear: 

▪ when you run out of table entries, forward to last one

▪ when the first entry in the table is greater than k, forward it there

▪ The format used on the slides is preferred over the book in this case
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FEEDBACK - 2

 The concept of hop in structured systems seemed slightly 

confusing. Could you please reiterate it?

 We are referring to the number of links used to exchange data 

between two nodes
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FEEDBACK - 3

1-hop    2-hops      3-hops
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 I  stil l  don't understand what is m-bound and d-bound.

▪ The webservices application has two variants

▪ Variant #1: the resource-bound component is “M”- the application 
server

▪ The letter M stands for “Model”. The web service is a model that 
estimates soil erosion due to water run-off.  

▪ Variant #2: the resource-bound component is “D” – the relational 
database

▪ The application was modified to have a nested SQL query

▪ “select * from (select * from …);

▪ For sequential search of a single table, nesting forces n 2 evaluations as 
opposed to only n for the standard query. This makes the database more
resource constrained than the web application server and is a bad SQL 
bug !

 Can you provide ppt f i le? Because images are blocked in pdf f i les.

▪ Some slides have old animations. Ppt is available by email request
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FEEDBACK - 4

 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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 We have been approved to receive AWS CLOUD CREDITS 

for TCSS 558 – Winter 2024

 Credits will be provided by email request

▪ Please include: 12-digit AWS account ID, and AWS account email

 Credits will first be provided for students not in F'23 TCSS562

 Request codes by sending an email with the subject:

“AWS CREDIT REQUEST” to wlloyd@uw.edu

 Codes can also be obtained in person (or zoom), in the class, 

during the breaks, after class, during office hours, by appt

 Credit codes are carefully exchanged, and not shared by IM

 For students unable to create a standard AWS account: 

Please contact instructor by email -

Instructor will work to create hosted IAM user account
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AWS CLOUD CREDITS UPDATE

 Preparing for Assignment 1:

Intro to Cloud Computing Infrastructure and Load Balancing

▪ Establish AWS Account - Standard account

 Now posted:

▪ Task 0 - Establish local Linux/Ubuntu environment

▪ Task 1 –AWS account setup, obtain user credentials

▪ Task 2 – Intro to: Amazon EC2 & Docker: create Dockerfile

for Apache Tomcat

▪ Task 3 – Create Dockerfile for haproxy (software load balancer)

▪ Task 4 – Working with Docker-Machine

▪ Task 5 – Submit Results of testing alternate server configs
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ASSIGNMENT 1
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 testFibPar.sh script is a parallel test script

 Orchestrates multiple threads on client to invoke server 
multiple times in parallel

 To simplify coordination of parallel service calls in BASH, 
testFibPar.sh script ignores errors !!!  

 To help test client-to-server connectivity, there is also a 
testFibService.sh script that supports 3 tests

 TEST 1: Network layer test

▪ Ping (ICMP)

 TEST 2: Transport layer test

▪ TCP: telnet (TCP Port 8080) – security group (fw) test

 TEST 3: Application layer test

▪ HTTP REST – web service test
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TESTING CONNECTIVITY TO SERVER (PG 16-18)

 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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CH 2.3: SYSTEM 

ARCHITECTURES
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 What is dif ference in finding/disseminating data in 

unstructured vs. structured peer -to-peer networks?

▪ Structured: can grasp the number of messages required based on 

the organization and structure of the system 

▪ Fixed hypercube

▪ Chord system

▪ Unstructured: requires broadcast like message schemes that gossip 

to find/disseminate data: Flooding, Random walk

REVIEW QUESTIONS

January 24, 2023
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October 24, 2016
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 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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CH. 3: PROCESSES
CH. 3.1: THREADS

L8.25

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation 

details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration
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CHAPTER 3
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 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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OBJECTIVES – 1/30

 For implementing a server (or client) threads offer many 

advantages vs. heavy weight processes

 What is the dif ference between a process and a thread?

▪ (review?) from Operating Systems

 Key dif ference :  what do threads share amongst each other 

that processes do not…. ?

 What are the segments of a program stored in memory?

▪ Heap segment (dynamic shared memory)

▪ Code segment

▪ Stack segment

▪ Data segment (global variables)

January 30, 2024
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CH. 3.1 - THREADS
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 Do several processes on an operating system share…

▪ Heap segment?

▪ Stack segment?

▪ Code segment?

 Can we run multiple copies of the same code?

 These may be managed as shared pages (across processes) in 

memory

 Processes are isolated from each other by the OS

▪ Each has a separate heap, stack, code segment
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THREADS - 2

 Threads avoid the overhead of process creation

 No new data, heap, or code segments required

 What is a context switch? 

 Context switching among threads is considered to be more 

efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see :  http ://unikernel.org/projects/ )

 Single process operating system with many threads

 Developed for the cloud to run only one application at a time
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THREADS - 3
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OSV: ONE PROCESS, MANY THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when 

threads share memory

▪ Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared 

variables must be mutually exclusive

▪ No more than one thread can execute at any given time

▪ Critical sections must run atomically on the CPU
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THREADS - 4
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WE WILL RETURN AT 

2:40PM

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU

▪ Tasks appear as if they are performed simultaneously

 Multi core CPU

▪ Tasks execute simultaneously 

January 30, 2024
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BLOCKING THREADS
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 IPC – mechanism using pipes, message queues, and shared 

memory segments

 IPC mechanisms incur context switching

▪ Process I/O must execute in kernel mode

 How many context switches are required for process A to 

send a message to process B using IPC?

 #1 C/S:
Proc A→kernel thread



#2 C/S:

Kernel thread→Proc B
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INTERPROCESS COMMUNICATION

 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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OBJECTIVES – 1/30
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 Direct overhead

▪ Time spent not executing program code (user or kernel)

▪ Time spent executing interrupt routines to swap memory segments 

of different processes (or threads) in the CPU

▪ Stack, code, heap, registers, code pointers, stack pointers

▪ Memory page cache invalidation

 Indirect overhead

▪ Overhead not directly attributed to the physical actions of the 

context switch

▪ Captures performance degradation related to the side effects of 

context switching  (e.g. rewriting of memory caches, etc.)

▪ Primarily cache perturbation 

January 30, 2024
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CONTEXT SWITCHING

 Refers to cache reorganization that occurs as a result of a 

context switch

 Cache is not clear, but elements from cache are removed as a 

result of another program running in the CPU

 80% performance overhead from context switching results 

from this “cache perturbation”

January 30, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.38

CONTEXT SWITCH –

CACHE PERTURBATION
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 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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OBJECTIVES – 1/30

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode 

 Multithreaded process mapped to single schedulable entity

 Only one thread per process runs at any given time

 Key take-away: thread management handled by user processes

 This is what we experience with the Python virtual machine

▪ Python interpreter can execute only 1 thread at any given moment

▪ Limitation is enforced by the Python Global Interpreter Lock (GIL )

 What are some advantages of many -to-one threading?

 What are some disadvantages?

January 30, 2024
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THREADING MODELS
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 One-to-one threading: use of separate kernel threads for each 
user process - also called kernel-level threads

 The kernel API calls (e.g. I/O, locking) are farmed out to an 
existing kernel level thread  

 Thread operations (create, delete, locks) run in kernel mode

 Threads scheduled individually by the OS

 System calls required, context switches as expensive as 
process context switching

 Idea is to have preinitialized kernel threads for user processes

 Linux uses this model…

 What are some advantages of one -to-one threading?

 What are some disadvantages?

January 30, 2024
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THREADING MODELS - 2

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of 

concurrent access to shared data, by providing coordination 

and data sharing via interprocess communication (IPC) 

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to 

shared memory, what is the tradeoff(s) ??

▪ Replication instead of synchronization – must synchronize multiple 

copies of the data

 Do distributed objects share memory?

January 30, 2024
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APPLICATION EXAMPLES
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 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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 Web browser

 Uses threads to load and render portions of a web page to the 
user in parallel

 A client could have dozens of concurrent connections all 
loading in parallel

 testFibPar.sh

 Assignment 0 client script  (GNU parallel)

 Important benefits:

 Several connections can be opened simultaneously

 Client: dozens of concurrent connections to the webserver all 
loading data in parallel

January 30, 2024
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MULTITHREADED CLIENTS
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 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads

January 30, 2024
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MULTIPLE THREADS

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode 

- cpuIdle: CPU idle time 
- cpuIoWait: CPU time waiting for I/O

- cpuIntSrvc: CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts

- cpuNice: CPU time executing prioritized
   processes
- cpuSteal: CPU ticks lost to virtualized guests

- contextsw: # of context switches 
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads 

- dsreads: disk sector reads completed 

- drm: merged adjacent disk reads 

- readtime: time spent reading from 

disk 

- dsw: disk sector writes 

- dswrites: disk sector writes completed

- dwm: merged adjacent disk writes 

- writetime: time spent writing to disk 

Network
- nbs: network bytes sent 
- nbr: network bytes received 
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 Reported by: top,  htop ,  w,  uptime,  and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage

for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average

 Load average = 1 (avg last minute load) – 1/e (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .
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LOAD AVERAGE

 Metric – measures degree of parallelism realized by running 

system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision
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THREAD-LEVEL PARALLELISM
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 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:

▪ Generate new thread for every request

▪ Thread pool – pre-initialize set of threads to service requests

January 30, 2024
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MULTITHREADED SERVERS

 Single thread server

▪ A single thread handles all client requests

▪ BLOCKS for I/O

▪ All waiting requests are queued until thread is available

 Finite state machine

▪ Server has a single thread of execution

▪ I/O performing asynchronously (non-BLOCKing) 

▪ Server handles other requests while waiting for I/O

▪ Interrupt fired with I/O completes

▪ Single thread “jumps” back into context to finish request

January 30, 2024
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SINGLE THREAD & FSM SERVERS
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 A blocking system call implies that a thread servicing a 

request synchronously performs I/O 

 The thread BLOCKS to wait on disk/network I/O before 

proceeding with request processing

 Consider the implications of these designs for responsiveness, 

availability, scalability. . .

January 30, 2024
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SERVER DESIGN ALTERNATIVES

Model Characteristics

Multithreading Parallelism, blocking I/O 

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O

 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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OBJECTIVES – 1/30
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CH. 3.2: 

VIRTUALIZATION

L8.53

 Initially introduced in the 1970s

on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack -based 

hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi -core,

multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many 

vir tual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as -a-service (IaaS)
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VIRTUALIZATION
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 Levels of instructions:

 Hardware: CPU

▪ Privileged instructions

KERNEL MODE

▪ General instructions

USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application: 

 Goal of vir tualization:

mimic these interface to provide a virtual computer
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TYPES OF VIRTUALIZATION

 Process vir tual machine

▪ Interpret instructions: (interpreters)
(JavaVM)  byte code → HW instructions

▪ Emulate instructions: (emulators)
(Wine)  windows code → Linux code

 Native vir tual machine monitor (VMM)

▪ Hypervisor (XEN): small OS with its own kernel 

▪ Provides an interface for multiple guest OSes

▪ Facilitates sharing/scheduling of 
CPU, device I/O among many guests

▪ Guest OSes require special kernel to interface w/ VMM

▪ Supports Paravirtualization for performance boost to run code 
directly on the CPU 

▪ Type 1 hypervisor
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TYPES OF VIRTUALIZATION - 2
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 Hosted vir tual machine monitor (VMM)

▪ Runs atop of hosted operating system

▪ Uses host OS facilities for CPU scheduling, I/O

▪ Full virtualization

▪ Type 2 hypervisor

▪ Virtualbox

 Textbook: note 3.5–good explanation of full  vs. paravir tualization

 GOAL: run all user mode instructions directly on the CPU

 x86 instruction set has ~17 privileged user mode instructions

 Full vir tualization: scan the EXE, insert code around privileged 
instructions to divert control to the VMM

 Paravirtualization: special OS kernel eliminates side effects of 
privileged instructions
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TYPES OF VIRTUALIZATION - 3
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EVOLUTION OF AWS VIRTUALIZATION

From ht tp ://www.brenda ngr eg g .com/bl og / 2017 - 1 1- 29/a ws -e c 2- v i r tu a l i zat i on -2017. html

VS:

V i r tualization

In  so f tware

P :

Parav ir tual

VH:

V i r tualization

In  Hardware

H:

Hardware
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 Full  Vir tualization - Fully Emulated 

▪ Never used on EC2, before CPU extensions for virtualization

▪ Can boot any unmodified OS

▪ Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0

▪ Software: Interrupts, timers

▪ Paravirtual: CPU, Network I/O, Local+Network Storage

▪ Requires special OS kernels, interfaces with hypervisor for I/O

▪ Performance 1.1x – 1.5x slower than “bare metal”

▪ Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage

▪ Software: interrupts, timers

▪ EBS backed instances

▪ m1, c1 instances
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AWS VIRTUALIZATION - 2

 XEN HVM 4.0.1

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)

▪ Provides hardware virtualization for CPU, memory, network

▪ Paravirtual: storage, interrupts, timers

▪ Called Single root I/O Virtualization (SR-IOV)

▪ Allows sharing single physical PCI Express device ( i.e. network adapter) 
with multiple VMs

▪ Improves VM network performance

▪ 3rd & 4th generation instances (c3 family)

▪ Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017

▪ Provides hardware virtualization for CPU, memory, network, local disk

▪ Paravirtual: remote storage, interrupts, timers

▪ Introduces hardware virtualization for EBS volumes (c4 instances)

▪ Instance storage hardware virtualization (x1.32xlarge, i3 family)
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AWS VIRTUALIZATION - 3

59

60



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

January 30, 2024

Slides by Wes J. Lloyd L8.31

 AWS Nitro 2017

▪ Provides hardware virtualization for CPU, memory, network, local 

disk, remote disk, interrupts, timers

▪ All aspects of virtualization enhanced with HW-level support

▪ November 2017

▪ Goal: provide performance indistinguishable from “bare metal”

▪ 5th generation instances – c5 instances (also c5d, c5n)

▪ Based on KVM hypervisor

▪ Overhead around ~1%
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AWS VIRTUALIZATION - 4

 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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OBJECTIVES – 1/30
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CH. 3.3: CLIENTS

L8.63

 Thick clients

▪Web browsers

▪ Client-side scripting

▪Mobile apps

▪Multi-tier MVC apps

 Thin clients

▪Remote desktops/GUIs (very thin)
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TYPES OF CLIENTS
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 Application specific protocol

▪ Thick clients

▪ Clients maintain local data

▪ Middleware (APIs)

▪ Clients synchronize data with remote nodes 

▪ Example: shared calendar application

 Application independent 

▪ Thin clients

▪ Client acts as a remote terminal

▪ Provides interface to user (GUI / UI)

▪ Server houses entire application stack

January 30, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.65

CLIENTS

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

▪ Provides the X protocol: application level protocol

▪ Xlib instances (client applications) exchange data and 

events with X kernels (servers)

▪ Clients and servers on single machine → Linux GUI

▪ Client and server communication transported over the 

network → remote Linux GUI
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X WINDOWS
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 Window manager:

▪ Application running 

atop of X-windows 

which provides flair

▪ Many variants

▪ Without X windows is 

quite bland
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X WINDOWS - 2
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 Layered architecture

 X-kernel: low level 

interface/APIs for 

controlling screen, 

capturing keyboard 

and mouse events

(X window Server)

 Provided on Linux 

as Xlib

 Provides network 

enabled GUI

 Layering allows for

use for custom

window managers
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 How to Install  VNC server on Ubuntu EC2 instance VM:

 sudo apt-get update

 # ubuntu 16.04

 sudo apt-get install ubuntu-desktop

 sudo apt-get install gnome-panel gnome-settings-

daemon metacity nautilus gnome-terminal

 # on ubuntu ≥ 18.04

 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file

 vncserver :1
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EXAMPLE: VNC SERVER

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):
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EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1

unset SESSION_MANAGER

unset DBUS_SESSION_BUS_ADDRESS

[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup

[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources

xsetroot -solid grey

vncconfig -iconic &

gnome-panel &

gnome-settings-daemon &

metacity &

nautilus &

gnome-terminal &
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 On the VM:

 Edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):
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EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash

xrdb $HOME/.Xresources

startxfce4 &

 On the VM: reload config by restarting server

 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:
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EXAMPLE: VNC SERVER - 3
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 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the 

EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N 

-f -l <username> <EC2-instance ip_address>

 For example:

ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -

l ubuntu 52.111.202.44
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EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default in Ubuntu

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”
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EXAMPLE: VNC CLIENT - 2
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 EC2 instance

with a GUI. . .!!!
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REMOTE COMPUTER IN THE CLOUD

 Thin clients

▪ X windows protocol

▪ A variety of other remote desktop protocols exist:
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THIN CLIENTS
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 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled

many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adverselt affects 

performance of WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of 

X protocol messages

 Send only dif ferences between messages with same identifier

 Optimizations enable connections with 9600 kbps
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THIN CLIENTS - 2

 Virtual network computing (VNC)

 Send display over the network at the pixel level 

(instead of X lib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X
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THIN CLIENTS - 3
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TRADEOFFS: ABSTRACTION OF REMOTE 

DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib

VNC X11
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TRADEOFFS: ABSTRACTION OF REMOTE 

DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context

● Graphics data is available

● Higher network bandwidth ● UI data/operations

● Fewer colors ● Lower network bandwidth

● Utilize graphics compression ● More colors

● More network traffic
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 Clients help enable distribution transparency of servers

 Replication transparency 

▪ Client aggregates responses from multiple servers

▪ Only the client knows of replicas
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CLIENT ROLES IN PROVIDING 

DISTRIBUTION TRANSPARENCY

 Location/relocation/migration transparency

▪ Harness convenient naming system to allow client to infer new 

locations

▪ Server inform client of moves / Client reconnects to new endpoint

▪ Client hides network address of server, and reconnects as needed

▪ May involve temporary loss in performance

 Replication transparency 

▪ Client aggregates responses from multiple servers

 Failure transparency

▪ Client retries, or maps to another server, or uses cached data

 Concurrency transparency

▪ Transaction servers abstract coordination of multithreading
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CLIENT ROLES IN PROVIDING 

DISTRIBUTION TRANSPARENCY - 2
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 Questions from 1/25

 Assignment 1: Cloud Computing Infrastructure Tutorial

▪ New testFibService.sh script 

 Assignment 2: Key/Value Store - Posting Soon

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers
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OBJECTIVES – 1/30

CH. 3.4: SERVERS

L8.84
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 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it -runs-on-the-cloud-and-the-

cloud-runs-on-linux-any-questions/

 IT is moving to the cloud. And, what powers the cloud? 

▪Linux

 Uptime Institute survey - 1,000 IT executives (2016)

▪ 50% of IT executives – plan to migrate majority of IT workloads to 

off-premise to cloud or colocation sites

▪ 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

▪ Based on Linux

▪ Mac: Hyperkit Linux VM

▪ Windows: Hyper-V Linux VM
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SERVERS

 Servers implement a specific service for a collection of clients

 Servers wait for incoming requests, and respond accordingly

 Server types

 Iterative: immediately handle client requests

 Concurrent: Pass client request to separate thread

 Multithreaded servers are concurrent servers

▪ E.g. Apache Tomcat

 Alternative :  fork a new process for each incoming request

 Hybrid :  mix the use of multiple processes with thread pools
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SERVERS - 2
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 Clients connect to servers via:

IP Address and Port Number

 How do ports get assigned?

▪Many protocols support “default” port numbers

▪ Client must find IP address(es) of servers

▪ A single server often hosts multiple end points 

(servers/services)

▪When designing new TCP client/servers must be careful 

not to repurpose ports already commonly used by others
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END POINTS
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Daemon server

▪ Example: NTP server

Superserver

Stateless server

▪ Example: Apache server

Stateful server

Object servers

EJB servers

January 30, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.89

TYPES OF SERVERS

 Daemon servers 

▪ Run locally on Linux

▪ Track current server end points (outside servers)

▪ Example: network time protocol (ntp) daemon

▪ Listen locally on specific port (ntp is 123)

▪ Daemons routes local client traffic to the configured 

endpoint servers

▪ University of Washington: time.u.washington.edu

▪ Example “ntpq –p”

▪ Queries local ntp daemon, routes traffic to configured server(s)
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NTP EXAMPLE
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 Linux inetd / xinetd

▪ Single superserver

▪ Extended internet service daemon

▪ Not installed by default on Ubuntu

▪ Intended for use on server machines

▪ Used to configure box as a server for multiple internet services

▪ E.g. ftp, pop, telnet

▪ inetd daemon responds to multiple endpoints for multiple 
services

▪ Requests fork a process to run required executable program

 Check what ports you’re listening on:

▪ sudo netstat -tap | grep LISTEN
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SUPERSERVER

 Server design issue:

▪ Active client/server communication is taking place over a port

▪ How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a 

unrelated message in this stream?

1. Out-of-band data:  special messages sent in-stream to support 

interrupting the server  (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol

▪ Once a file transfer is started, can’t be stopped easily

▪ Must kill the client and/or server
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INTERRUPTING A SERVER
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 Data about state of clients is not stored

 Example: web application servers are typically stateless

▪ Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability

▪ Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited 

time (to support sessions )

 Soft state information expires and is deleted

January 30, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.93

STATELESS SERVERS

 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example: 

File server - allows clients to keep local file copies for RW

 Server tracks client file permissions and most recent versions

▪ Table of (client, file) entries

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8
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STATEFUL SERVERS
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 Session state

▪ Tracks series of operations by a single user

▪ Maintained temporarily, not indefinitely

▪ Often retained for multi-tier client server applications

▪ Minimal consequence if session state is lost

▪ Clients must start over, reinitialize sessions

 Permanent state

▪ Customer information, software keys

 Client-side cookies

▪ When servers don’t maintain client state, clients can store state 

locally in “cookies”

▪ Cookies are not executable, simply client -side data
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STATEFUL SERVERS - 2

 OBJECTIVE: Host objects and enable remote client access

 Do not provide a specific service 

▪ Do nothing if there are no objects to host

 Support adding/removing hosted objects 

 Provide a home where objects live

 Objects, themselves ,  provide “services”

 Object parts

▪ State data

▪ Code (methods, etc.)

 Transient object(s)

▪ Objects with limited lifetime (< server)

▪ Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

▪ Disadvantage: initialization may be expensive

▪ Alternative: preinitialize and retain objects on server start -up
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OBJECT SERVERS
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 Should object servers isolate memory for object instances?

▪ Share neither code nor data

▪ May be necessary if objects couple data and implementation

 Object server threading designs:

▪ Single thread of control for object server

▪ One thread for each object

▪ Servers use separate thread for client requests

 Threads created on demand    vs.
Server maintains pool of threads

 What are the tradeof fs for creating server threads on demand vs.  
using a thread pool?
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OBJECT SERVERS - 2

 EJB- specialized Java object hosted by a EJB web container

 4 types: stateless, stateful, entity, and message-driven beans

 Provides “middleware” standard (framework) for implementing 
back-ends of enterprise applications

 EJB web application containers integrate support for:

▪ Transaction processing

▪ Persistence

▪ Concurrency

▪ Event-driven programming

▪ Asynchronous method invocation

▪ Job scheduling

▪ Naming and discovery services (JNDI)

▪ Interprocess communication

▪ Security 

▪ Software component deployment to an application server
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EJB – ENTERPRISE JAVA BEANS
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 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:

▪ Translate a URL

▪ Write info to log

▪ Check client ID

▪ Check access rights

 Hooks processed in order

enforcing flow-of-control

 Functions in replaceable

modules
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APACHE WEB SERVER

Hooks point to functions in modules

 Hosted across an LAN or WAN

 Collection of interconnected machines 

 Can be organized in tiers:

▪ Web server → app server → DB server

▪ App and DB server sometimes integrated
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 Front end of three tier architecture (logical switch) provides 

distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection 

requests, hands off to a server

▪ Example: hardware load balancer (F5 networks – Seattle)

▪ HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:

▪ All requests pass through switch

▪ Switch sits in the middle of the client/server TCP connection

▪ Maps (rewrites) source and destination addresses

 Connection hand-off approach:

▪ TCP Handoff: switch hands of connection to a selected server
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LAN REQUEST DISPATCHING

 Who is the best server to handle the request?

 Switch plays important role in 

distributing requests

 Implements load balancing

 Round-robin – routes client 

requests to servers in a looping

fashion

 Transport-level – route client 

requests based on TCP port number

 Content-aware request distribution – route requests based on 

inspecting data payload and determining which server node 

should process the request
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 Deployed across the internet 

 Leverage resource/infrastructure from Internet Service 

Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to 

form a cluster

 For deploying a cloud-based cluster (WAN), what are the 

implications of deploying nodes to:

 (1) a single availability zone (e.g. us-east-1e)?

 (2) across multiple availability zones?
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WIDE AREA CLUSTERS

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System

▪ Hierarchical decentralized naming system

 Linux: find your DNS servers:

# Find you device name of interest

nmcli dev

# Show device configuration

nmcli device show <device name>
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WAN REQUEST DISPATCHING
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 First query local server(s) for address

 Typically there are (2) local DNS servers

▪ One is backup

 Hostname may be cached at local DNS server
▪ E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the 
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not 
necessarily close to the client
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DNS LOOKUP
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 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is limited to 30 hops, can be increased
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DNS: LINUX COMMANDS

 Ping www.google.com in WA from wireless network:

▪ nslookup: 6 alternate addresses returned, choose (74.125.28.147)

▪ Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:

▪ nslookup: 1 address returned, choose 172.217.9.196

▪ Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server 

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us -east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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 Ping www.google.com in WA from wireless network:

▪ nslookup: 6 alternate addresses returned, choose (74.125.28.147)

▪ Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:

▪ nslookup: 1 address returned, choose 172.217.9.196

▪ Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server 

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us -east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!

QUESTIONS
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