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OBJECTIVES - 1/30

|- Questlons from 1/2q
= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers
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ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

== TCSS558A » Assignments

Home

* Upcoming Assignments

o TCSS 558 - Online Daily Feedback Survey - 1/5

ot avalsbie undil Jan 5 ot 1:30pm | Bue Jan 6 at 10pm
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TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan &6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59m 1dsy  Time Limit None
Question 1 0.5 pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 a 4 s 3 7 8 s 10

Equa1 ety

Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past
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MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (26 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.77 (T - previous 5.95)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.73 (T - previous 5.45)
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FEEDBACK FROM 1/25

= When conducting a random walk In an unstructured peer-to-

peer system, is any logic employed to ensure you do not run a
cycle?

= As with flooding, with random walk, if a node has previously received
the data it is trying to propagate to a neighbor, from the neighbor,
then it will not forward the data to the neighbor

= Nodes only send the data to neighbors that are assumed to not have
the data

= Do we keep track of the nelghbors we have asked, and always
randomly select a new nelghbor from a list of unasked
neighbors if the neighbor we ask cannot find the data?

= Yes, there would be no purpose to forward the data twice to the
same node

TCSS558: Applied Distributed Computing [Winter 2024]
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FEEDBACK - 2 FEEDBACK - 3

J lnh'hh _t"d" : tm W’t'h" nth : :; o r ft" kd thkt . = The concept of hop In structured systems seemed slightl

which it doesn't store, then in the text book it's mentione at i ing. C youp : Frey

forwards the query to the smallest Id greater than or equal to k confusing. Cauld you please reiterate it?

which Is nothing but the successor of k. | = We are referring to the number of links used to exchange data
= But In the slides Its mentloned, It will be forwarded to node with m- between two nodes

= The finger table format from Chapter 5 has a slightly different format 1-hop 2-hops 3-hops

= The id(s) on page 248 (3" edition), are just indexes (from 1 to 5), they
do not correspond to node numbers in the chord. ._). ._)H ._)m
= In the example for lecture 7, the finger table has node numbers paired
with subsequent forwarding IDs, not just generic indexes
= For the textbook, forward to node q, where gq= FT,[j] < FT [j+1]
= The book does not make the following clear:
when you run out of table entries, forward to last one
when the first entry in the table is greater than k, forward it there
= The format used on the slides is preferred over the book in this case

TCSS558: Applied Distributed Computing Winter 2024] TCsS558: Applied Ditributed Computing [Winter 2024]
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FEEDBACK - 4 OBJECTIVES - 1/30

= | still don't understand what Is m-bound and d-bound. " Questions from 1/25
* The webservices application has two variants = Assignment 1: Cloud Computing Infrastructure Tutorial
= Variant #1: the resource-bound p is “M”- the appli ion = New testFibService.sh script
server N
The letter M stands for “Model”. The web service is a model that = Assignment 2: Key/Value Store - Posting Soon
estimates soil erosion due to water run-off.
* Variant #2: the resource-bound component is “D” - the relational ® Chapter 3: Processes
database = Chapter 3.1: Threads

The application was modified to have a nested SQL query
“select * from (select * from ...); X
For sequential search of a single table, nesting forces n2 evaluations as Threading Models
opposed to only n for the standard query. This makes the database more Multithreaded clients/servers
resource constrained than the web application server and is a bad SQL
bug! = Chapter 3.2: Virtualization
= Can you provide ppt flle? Because Images are blocked in pdf flles. = Chapter 3.3: Clients
= Some slides have old animations. Ppt is available by email request

Context Switches

= Chapter 3.4: Servers
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AWS CLOUD CREDITS UPDATE ASSIGNMENT 1

= We have been approved to receive AWS CLOUD CREDITS = Preparing for Assignment 1:
for TCSS 558 - Winter 2024 Intro to Clou mputing Infrastructure and L Balancin,
= Credits will be provided by email request = Establish AWS Account - Standard account
= Please include: 12-digit AWS account ID, and AWS account email
= Credits will first be provided for students not in F'23 TcSS562 = Now posted:
= Request codes by sending an email with the subject: = Task O - Establish local Linux/Ubuntu environment
“AWS CREDIT REQUEST” to wlloyd@uw.edu =Task 1 -AWS account setup, obtain user credentials
® Codes can also be obtained in person (or zoom), in the class, =Task 2 - Intro to: Amazon EC2 & Docker: create Dockerfile

during the breaks, after class, during office hours, by appt
= Credit codes are carefully exchanged, and not shared by IM

= For students unable to create a standard AWS account:
Please contact instructor by email -

for Apache Tomcat
=Task 3 - Create Dockerfile for haproxy (software load balancer)
=Task 4 - Working with Docker-Machine

Instructor will work to create hosted IAM user account =Task 5 - Submit Results of testing alternate server configs
TCSS558: Applied Distributed Computing [Winter 2024] TCss558: Applied Distributed Computing [Winter 2024]
‘ e ) School of Engineering and Technology, University of Washington - Tacoma s ‘ e School of Engineering and Technology, University of Washington - Tacoma L

11 12

Slides by Wes J. Lloyd L8.2


mailto:wlloyd@uw.edu

TCSS 558: Applied Distributed Computing January 30, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

TESTING CONNECTIVITY TO SERVER (PG 16-18) OBJECTIVES - 1/30

= testFibPar.sh script is a parallel test script = Questlons from 1/25
= Orchestrates multiple threads on client to invoke server
multiple times in parallel

= To simplify coordination of parallel service calls in BASH,
testFibPar.sh script ignores errors !1! | = Assignment 2: Key/Value Store - Posting Soon |
= To help test client-to-server connectivity, there is also a = Chapter 3: Processes
testFlbService.sh script that supports 3 tests = Chapter 3.1: Threads
= Context Switches
= Threading Models

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= TEST 1: Network layer test
= Ping (ICMP)

Transportation et Application et

= TEST 2: Transport layer test 1;;3:':2::‘ = Multithreaded clients/servers
= TCP: telnet (TCP Port 8080) - security group (fw) test i = Chapter 3.2: Virtualization
= TEST 3: Applicatlon layer test = Chapter 3.3: Clients
= HTTP REST - web service test 031 Model Layers = Chapter 3.4: Servers
3 lied ibuted 3 lied ibuted
[ i g s e N e L —
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REVIEW QUESTIONS

= What is difference in finding/disseminating data in
unstructured vs. structured peer-to-peer networks?

= Structured: can grasp the number of messages required based on
the organization and structure of the system

= Fixed hypercube
CH 2.3: SYSTEM = Chord system
=U d: i broad like n h h i
ARCHITECTURES 40 fina/lsseminate dats Flooaing, Random watk

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
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.1} < Activities @ Visualseings (@) Edic < > .1} < Activities @ vaualsemings (3 Edie < >
] : M .

] ]
When ool acive respni . PollEccomesbond When ool acive respni . PollEccomesbond

For a pear-to-poar system, which communication approach will On search, which system is most likely to be unable to locats data in
exchange the highest number of messages across the system to "
H the distributed system?

disseminate or find information?

Random walk Fixad hypercuba
o A <
Palicy-basad search mathods @ Unstructured peer-fo-peer with random walk
e S .
@ Flooding Chard System
[ eeeagaa 00 0 RN N e . T 0%
[ — [ —
Response aptions o % [ Response aptions o % [
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< Activities € Visual settings @ Edit

Vit pok s e o 3t PolEwommestayd

<

W Which system requires the least effort to add a new node?
Fixed hypercube
0%

Chord System

S mmmm—— %%

& Unstructured peer-to-peer

o

ul

< Activities €3 Visual settings. & edie

When poll i activa fespond at - PollEv.comiweslloyd

% %

regarding how the system can add or remove
nodes?

w Which system features strict constraints

@ Fixed hypercube
79%
Chord System
17%
Unstructured peerto p - sgsmose

Current responses

Response optians Count W I',ﬂ;l

7%
wewoe
Current responses
Response optians Count % ]
(1) < activities € Visual settings @ Edit <
od
B

Ve ok 5 e g 3l PolEnsommstayd

W Which serversinodes seek to store data very close to a user?

Cloud Gomputing server

%

Super peers

%

Fog server
T
scenoss
Current responses
Response options Count % =]

(1) < activities 5 Moderate €3 Visual settings @ Edit <
od
B

Join by Web  PallEv.comiweslloyd

What are advantages of a decentralized
unstructured peer-to-peer architecture?

SEE MORE

3

Current responses

Respanses Sereen name Received at 3
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< Activities # Moderate €3 Visual sertings @ Edit

When pol i activa fespond at - PollEv.comiweslloyd

< >

What are advantages of a decentralized structured
peer-to-peer architecture?

Nobody has responded yet.

Hang tight! Responses are coming in

Current responses

Responses Screen name Received at

22

OBJECTIVES - 1/30

= Questlons from 1/25

= Assignment 1: Cloud Computing Infrastructure Tutorial

= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon

= Chapter 3: Processes |

= Chapter 3.1: Threads
= Context Switches
= Threading Models
= Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCsS558: Applied Distributed Computing [Winter 2024]
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CH. 3: PROCESSES
CH. 3.1: THREADS

Workdaad dversity
process types)
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CHAPTER 3

= Chapter 3 titled “processes”

= Covers variety of distributed system implementation
details

= “Grab bag” of topics

= Processes/threads
= Virtualization

= Clients

= Servers

= Code migration

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES - 1/30

= Questlons from 1/25

= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon
= Chapter 3: Processes
| = Chapter 3.1: Threads |
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

= Assignment 1: Cloud Computing Infrastructure Tutorial

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January 30,2023 School of Engineering and Technology, University of Washington - Tacoma.
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CH. 3.1 - THREADS

|-

= For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

= What Is the difference between a process and a thread?
= (review?) from Operating Systems

= Key difference: what do threads share amongst each other
that processes do not.... 2

= What are the segments of a program stored In memory?
= Heap segment (dynamic shared memory)
= Code segment
= Stack segment
= Data segment (global variables)

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January30,2024 School of Engineering and Technology, University of Washington - Tacoma
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= Do several processes on an operating system share...
* Heap segment?
= Stack segment?
= Code segment?

run multlpl 1 f th m ?
memory

= Processes are isolated from each other by the 0S
= Each has a separate heap, stack, code segment

o

= These may be managed as shared pages (across processes) in

TCSs558: Applied Distributed Computing [Winter 2024]

‘ GV School of Engineering and Technology, University of Washington - Tacoma
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|-

= Threads avoid the overhead of process creation
= No new data, heap, or code segments required

= What is a context switch?

= Context switching among threads is considered to be more
efficient than context switching processes

= Less elements to swap-in and swap-out

= Unikernel: specialized single process 0OS for the cloud

= Example: Osv, Clive, MirageOS (see: http://unikernel.org/pr )
= Single process operating system with many threads

= Developed for the cloud to run only one application at a time

TCSS558: Applied Distributed Computing [Winter 2024]

‘ CLETER School of Engineering and Technology, University of Washington - Tacoma
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OSV: ONE PROCESS, MANY THREADS

TCSS558: Applied Distributed Computing [Winter 2024]
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THREADS - 4

= Important implications with threads:

® (1) multi-threading should lead to performance gains

® (2) thread programming requires additional effort when
threads share memory
= Known as thread synchronlzatlon, or enabling concurrency

= Access to critical sectlons of code which modify shared
variables must be mutually exclusive
= No more than one thread can execute at any given time
= Critical sections must run atomlcally on the CPU

TCSS558: Applied Distributed Computing [Winter 2024]

U School of Engineering and Technology, University of Washington - Tacoma
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BLOCKING THREADS

= Example: spreadsheet with formula to compute sum of column
= User modifies values in column

= Multiple threads:

1. Supports interaction (Ul) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

= Single core CPU

= Tasks appear as if they are performed simultaneously
= Multi core CPU

= Tasks execute simultaneously

TCSS558: Applied Distributed Computing [Winter 2024]

January30,2024 School of Engineering and Technology, University of Washington - Tacoma
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memory segments
= |[PC mechanisms incur context switching
= Process |/0 must execute in kernel mode

INTERPROCESS COMMUNICATION

= |PC - mechanism using pipes, message queues, and shared

Proc A>kernel thread
S1: Switch from user space
- 1o kemel space |

#2C/S:
Kernel thread>Proc B

-
Gperating system ™

= How man ntext switch re required for pr A
send a message to process B using IPC?
ProssA ProcsssB
= #1 C/S:

S3: Switch from kemed
space ko user spac

52 Switzh comext from
process Ao process

TCs5558: Applied Distributed Computing [Winter 2024]

‘ GV School of Engineering and Technology, University of Washington - Tacoma

35

Slides by Wes J. Lloyd

34

OBJECTIVES - 1/30

= Questlons from 1/25

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon

= Chapter 3: Processes
= Chapter 3.1: Threads

Context Switches |

Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2024]

CLETER School of Engineering and Technology, University of Washington - Tacoma
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CONTEXT SWITCH -

CONTEXT SWITCHING CACHE PERTURBATION

= Direct overhead = Refers to cache reorganization that occurs as a result of a
= Time spent not executing program code (user or kernel) context switch
= Time spent executing interrupt routines to swap memory segments = Cache is not clear, but elements from cache are removed as a
of different processes (or threads) in the CPU result of another program running in the CPU
= Stack, code, heap, registers, code pointers, stack pointers = 80% performance overhead from context switching results
* Memory page cache invalidation from this “cache perturbation”

" Indirect overhead
= Overhead not directly attributed to the physical actions of the
context switch
= Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)
= Primarily cache perturbation

TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
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OBJECTIVES - 1/30 THREADING MODELS

" Questions from 1/25 = Many-to-one threadIng: multiple user-level threads per process

= Assignment 1: Cloud Computing Infrastructure Tutorial = Thread operations (create, delete, locks) run in user mode
= New testFibService.sh script = Multithreaded process mapped to single schedulable entity

= Assignment 2: Key/Value Store - Posting Soon = Only one thread per process runs at any given time

= Chapter 3: Processes = Key take-away: thread management handled by user processes
= Chapter 3.1: Threads = This is what we experience with the Python virtual machine

= Python interpreter can execute only 1 thread at any given moment
= Limitation is enforced by the Python Global Interpreter Lock (GIL)

Context Switches
| Threading Models |
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ January 30,2023 School of Engineering and Technology, University of Washington - Tacoma. 1839 January30,2024 School of Engineering and Technology, University of Washington - Tacoma (a0

= What are some advantages of many-to-one threading?

= What are some disadvantages?

39 40

THREADING MODELS - 2 APPLICATION EXAMPLES

= One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

= The kernel API calls (e.g. 1/0, locking) are farmed out to an
existing kernel level thread

= Google chrome: processes
= Apache tomcat webserver: threads

= Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination

= Thread operations (create, delete, locks) run in kernel mode ; L ) o
and data sharing via interprocess communication (IPC)

= Threads scheduled individually by the OS

= System calls required, context switches as expensive as = Each process maintains its own private memory
process context switching
= |dea is to have preinitialized kernel threads for user processes = While this approach avolds synchronizing concurrent access to
= Linux uses this model... shared memory, what Is the tradeoff(s) ??
= Replication instead of synchronization - must synchronize multiple
= What are some advantages of one-to-one threading? copies of the data
= What are some disadvantages? = Do distributed ob)ects share memory?
TCSS558: Applied Distributed C ing [Wir 2024] TCSS558: Applied Distributed C ing [Wi 2024]
[ e T e e gton oo -
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OBJECTIVES - 1/30

= Questlons from 1/25

= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
| Multithreaded clients/servers |
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

= Assignment 1: Cloud Computing Infrastructure Tutorial

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma
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MULTITHREADED CLIENTS

= Web browser

= Uses threads to load and render portions of a web page to the
user in parallel

= A client could have dozens of concurrent connections all
loading in parallel

= testFlbPar.sh
= Assignment O client script (GNU parallel)

= Important benefits:

= Several connections can be opened simultaneously

= Client: dozens of concurrent connections to the webserver all
loading data in parallel

TCsS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 184t
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MULTIPLE THREADS

In Linux, threads also receive a process ID (PID)
To display threads of a process in Linux:

Identify parent process explicitly:

= top -H -p <pid>
= htop -p <pid>
ps -iT <pid>

Virtualbox process ~ 44 threads
No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January 30, 2024 School of Engineering and Technology, University of Washington - Tacoma
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PROCESS METRICS

- dsreads: disk sector reads completed
- drm: merged adjacent disk reads
- readtime: time spent reading from
CPU disk
-cpuUsr:  CPU time in user mode - dsw: disk sector writes
-cpuKrn:  CPU time in kernel mode - dswrites: disk sector writes completed
-cpuldle: CPU idle tim - dwm: merged adjacent disk writes
- cpuloWait: CPU time waiting for I/0 - writetime: time spent writing to disk
- cpulntSrvc:CPU time serving interrupts
- cpuSftintSrvc: CPU time serving soft interrupts w
- cpuNice: CPU time executing prioritized - nbs: network bytes sent
processes - nbr: network bytes received
- cpuSteal: CPU ticks lost to virtualized guests
- contexts of context switches
- loadavg: (avg # proc / 60 secs)

45
LOAD AVERAGE

= Reported by: top, htop, w, uptime, and /proc/loadavg

= Updated every 5 seconds

= Average number of processes using or waiting for the CPU

= Three numbers show exponentially decaying usage

for 1 minute, 5 minutes, and 15 minutes

= One minute average: exponentially decaying average

= Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)

= 1.0 = 1-CPU core fully loaded

= 2.0 = 2-CPUcores

= 3.0 = 3-CPU cores . . .

[ smarvan s [T e i s W ) -

47
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THREAD-LEVEL PARALLELISM

= Metric - measures degree of parallelism realized by running
system, by calculating average utilization:

N
rip— b=l G
1—cp

= Ci - fraction of time that exactly | threads are executed

= N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

= Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLETER School of Engineering and Technology, University of Washington - Tacoma (e
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MULTITHREADED SERVERS SINGLE THREAD & FSM SERVERS

= Multiple threads essential for servers in distributed systems
= Even on single-core machines greatly improves performance
= Take advantage of idle/blocking time

= Two designs:

= Single thread server
= A single thread handles all client requests
= BLOCKS for I/0
= All waiting requests are queued until thread is available
= Generate new thread for every request

= Thread pool - pre-initialize set of threads to service requests = Finite state machine

- Sorver = Server has a single thread of execution
i =1/0 performing asynchronously (non-BLOCKing)
= Server handles other requests while waiting for 1/0

Request dispatched
Dispatcher thread toa worker

—+ Worker thread

[Request coming in = Interrupt fired with 1/0 completes
rom the netivrk
Operating system =Single thread “jumps” back into context to finish request
TCSS558: Applied Distributed Cor iting [Winter 2024] TCSS558: Applied Distributed C uting [Winter 2024]
‘ U School of E::m!eermsg and :emn:;::v,ngniver:i:\‘: of Washington - Tacoma 1849 ‘ U School of E::ineeerinsg and ;ech::;:gy,nﬁniver"s‘\te; of Washington - Tacoma 1850
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SERVER DESIGN ALTERNATIVES OBJECTIVES - 1/30

= A blocking system call implies that a thread servicing a ® Questlons from 1/25
request synchronously performs 1/0

= The thread BLOCKS to wait on disk/network I/0 before
proceeding with request processing

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon

= Ch r 3: Pr
= Consider the implications of these designs for responsiveness, ey & ocesses
availability, scalability. . . - iy S TiEES
|__Model | Characteristics | el
Characteristics Threading Models
Multithreading Parallelism, blocking /0 Multithreaded clients/servers
Single-thread No parallelism, blocking I/0 | = Chapter 3.2: Virtuallzation |
Finite-state machine Parallelism, non-blocking I/0 * Chapter 3.3: Clients
= Chapter 3.4: Servers
Il T e —
51 52

VIRTUALIZATION

= |nitially introduced in the 1970s
on IBM mainframe computers

= Legacy operating systems run in mainframe-based VMs
= Legacy software could be sustained by virtualizing legacy OSes
CH. 3.2:

= 1970s virtualization went away as desktop/rack-based
VIRTUALIZATION

hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

= Cloud computing: Amazon offers VMs as-a-service (laaS)

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLETER School of Engineering and Technology, University of Washington - Tacoma
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TYPES OF VIRTUALIZATION TYPES OF VIRTUALIZATION - 2

Asplication/Lbraries
= Levels of Instructlons: (irary funcions V_VIAwl‘ww" = Process virtual machine ‘ ‘
= Interpret instructions: (interpreters) B
= Hardware: CPU System calls_ | Lbrany (JavaVM) byte code > HW instructions ’W‘
= Privi i i = Emulate instructions: (emulators) T T
;:Elrl\‘eEgLedMé)n;;ruchons e _Ommmmmm ‘ ﬁ:xlns (Wine) windows code - Linux code Hardware ‘
« General instructions Hardware = Natlve virtual machine monitor (VMM RS-
USER MODE = Hypervisor (XEN): small OS with its own kernel — "
= Provides an interface for multiple guest es perating system
| I Provid i f; f Itipl 0S: Operati
= Operating system: M . N T T T
erating system: system calls « Facilitates sharing/scheduling of e e o
= Library: programming APls: e.g. C/C++,C#, Java libraries CPU, device I/0 among many guests T T T
= Guest OSes require special kernel to interface w/ VMM | "=

= Application: = Supports Paravirtuallzatlon for performance boost to run code
= Goal of virtuallzation: d"ecl1|y on the_ CPU
mimic these interface to provide a virtual computer Type 1 hypervisor
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TYPES OF VIRTUALIZATION - 3 EVOLUTION OF AWS VIRTUALIZATION

AppliationLraries From http: gg.com/blog/2017-11-29, 2-vi ization-2047.html
= Hosted virtual machine monltor (VMM) AWS EC. alization Types
= Runs atop of hosted operating system Operaiirg system vSs: pornce
Virtuallzation ot = Loast

Baro metal parfommance

In software :::‘r::;ﬂ:"m::: % %ﬁ\“\’ﬁ:&

= Uses host OS facilities for CPU scheduling, 1/0 ‘wm‘mmmmm

= Full virtualization
= Type 2 hypervisor Iﬁuz-muvg ‘y‘q:q.. | ‘

n Pou partonmance “s NN
* Virtualbox Hordware ‘ Paravirtual S e T RN
i ) o V[ | Pty Emiaied
= Textbook: note 3.5-good explanation of full vs. paravirtualization VH: Ca [2] v Xen PV 3D PV dvers
= GOAL: run all user mode instructions directly on the CPU Virtualization [ e O T |
«| v | enrivmans
= x86 instruction set has ~17 privileged user mode instructions In Hardware [5] w4 | renawsewss M + SAIOVIPRT
= Full virtualization: scan the EXE, insert code around privileged e e e B S
instructions to divert control to the VMM "*;rdware New [8 | HW | AWS Bars Mo 2017 H W [H[H|H|H
= Paravirtuallzatlon: special 0S kernel eliminates side effects of Bare et ICNENENENEN R
privileged instructions e aomn. S I e, P: P, o coeimons s

SRHOVinsi): igooona dives. SRHOVsiorage nvm drer.
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AWS VIRTUALIZATION - 2 AWS VIRTUALIZATION - 3

= Full Virtuallzation - Fully Emul = XEN HVM 4.0.1
= Never used on EC2, before CPU extensions for virtualization = Hardware virtualization: CPU, memory (CPU VT-x required)
= Can boot any unmodified 0S = Paravirtual: network, storage, Interrupts,
= Support via slow emulation, performance 2x-10x slower = XEN AWS 2013 (diverges from opensource XEN)

= Paravirtuallzation: Xen PV 3.0 = Provides hardware virtualization for CPU, memory, network
= Software: Interrupts, timers = Paravirtual: storage, Interrupts, timers
= Paravirtual: CPU, Network I/0, Local+Network Storage = Called Single root I/0 Virtualization (SR-10V)

= Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs

= Improves VM network performance

= 34 & 4th generation instances (c3 family)

= Requires special OS kernels, interfaces with hypervisor for I/0
= Performance 1.1x - 1.5x slower than “bare metal”
= Instance store instances: 15T & 2"¢ generation- mi.large, m2.xlarge

= Xen HVM 3.0 = Network speeds up to 10 Gbps and 25 Gbps
= Hardware virtualization: CPU, memory (CPU VT-x required) = XEN AWS 2017
= Paravirtual: network, storage = Provides hardware virtualization for CPU, memory, network, local disk
= Software: interrupts, timers = Paravirtual: remote storage, Interrupts, timers
= EBS backed instances = Introduces hardware virtualization for EBS volumes (c4 instances)
= mi1, cl instances = Instance storage hardware virtualization (x1.32xlarge, i3 family)
[ | o s s W e e [ i | e s M s =

59 60
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AWS VIRTUALIZATION - 4 OBJECTIVES - 1/30

= AWS Nltro 2017 = Questlons from 1/25

= Provides hardware virtualization for CPU, memory, network, local
disk, remote disk, Interrupts, timers

= All aspects of virtualization enhanced with HW-level support

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= November 2017 = Assignment 2: Key/Value Store - Posting Soon
= Goal: provide performance indistinguishable from “bare metal” = Chapter 3: Processes
= 5th generation instances - c5 instances (also c¢5d, c5n) = Chapter 3.1: Threads

= Based on KVM hypervisor
= Overhead around ~1%

Context Switches

Threading Models

Multithreaded clients/servers
= Chapter 3.2: Virtualization

| = Chapter 3.3: Clients |
= Chapter 3.4: Servers
TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 1861 ‘ U School of Engineering and Technology, University of Washington - Tacoma 1862

61 62

TYPES OF CLIENTS

= Thick clients
=Web browsers
Client-side scripting
= Mobile apps

CH. 3.3: CLIENTS = Multi-tier MVC apps

= Thin clients
= Remote desktops/GUIs (very thin)

School of Engineering and Technology, University of Washington - Tacoma
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CLIENTS X WINDOWS

3 =

= Application specific protocol = Layered architecture to transport Ul over network

= Thick clients [prvimen | { Arteron
) o A | MEET = Remote desktop functionality for Linux/Unix systems
= Clients maintain local data Madieware | protoool Middlewars
= Middleware (APIs) Ld 95 Lyowl 08 = X kernel acts as a server
= Clients synchronize data with remote nodes J—--------------.—. . . .
A = Provides the X protocol: application level protocol
= Example: shared calendar application

= Xlib instances (client applications) exchange data and
events with X kernels (servers)

= Application independent
= Thin clients

AT TECAE

[t ) ) ) )
« Client acts as a remote terminal S vl I = Clients and servers on single machine > Linux GUI
I s Mool 1 . . .
* Provides interface to user (GUI / UI) P e = Client and server communication transported over the
= Server houses entire application stack 1T network - remote Linux GUI

TCSS558: Applied Distributed Computing [Winter 2024]
‘ GV School of Engineering and Technology, University of Washington - Tacoma
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X WINDOWS - 2

= Window manager:
= Application running
atop of X-windows
which provides flair
= Many variants
= Without X windows is
quite bland
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= Layered archlitecture

= X-kernel: low level
interface/APIs for
controlling screen,
capturing keyboard mﬂdmﬂm'ﬂm
and mouse events (o

M
X window Server
Session Manager
gnome-session, ksmserver

= Provided on Linux

Desktap Environment - Application and
File Marsgeme
Gome/KDE panes,desktop lcon managers

Toolkits
GTK, Ot Maif, Xaw

as Xlib
Display Manager - Local X Server Startup
. and User Authentication
= Provides network ‘gam, hdm, xdm
enabled GUI

;Wmuuwimw—lhmhy Hardware Management
g

= Layering allows for

use for custom
window managers

Network Transports - lent Server Connections
TCP/R Unix domain sockets

TCSS558: Applied Distributed Computing [Winter 2024]
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EXAMPLE: VNC SERVER

®" sudo apt-get update

# ubuntu 16.04
sudo apt-get install ubuntu-desktop

daemon metacity nautilus gnome-terminal

" # on ubuntu 2 18.04
" sudo apt install xfce4 xfced-goodies

sudo apt-get install tightvncserver # both

Start VNC server to create initial config file
® vncserver :1

= How to Install VNC server on Ubuntu EC2 Instance VM:

sudo apt-get install gnome-panel gnome-settings-

TCSS558: Applied Distributed Computing [Winter 2024]
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" On the VM:
= Edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 18.04):

EXAMPLE: VNC SERVER - UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfced &

TCs5558: Applied Distributed Computing [Winter 2024]

‘ GV School of Engineering and Technology, University of Washington -Tacoma
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EXAMPLE: VNC SERVER - UBUNTU 16.04

= On the VM: edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 16.04):
#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION BUS_ADDRESS

[ -x /etc/vnc/xstartup | && exec /etc/vnc/xstartup
[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2024] 1570
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EXAMPLE: VNC SERVER - 3

= On the VM: reload config by restarting server
® vncserver -kill :1

® vncserver :1

= Open port 22 & 5901 in EC2 security group:

Editinbound rules x
Trpe (i Protecot (1 Par Range i Sourca (i
Arywbere = 0000 o
= Anywere : o
ama s o s |
TCsS558: Applied Distributed Computing [Winter 2024] o
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EXAMPLE: VNC CLIENT EXAMPLE: VNC CLIENT - 2

= On the client (e.g. laptop): = On the client (e.g. laptop):

= Create SSH connection to securely forward port 5901 on the = Use a VNC Client to connect
EC2 instance to your localhost port 5901

= This way your VNC client doesn’t need an SSH key

= Remmina is provided by default in Ubuntu
= Can “google” for many others
= Remmina login:

= Chose “VNC” protocol

= Log into “localhost:5901"

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example:

§ wnic - [[localhost:ss01 cannect!
; Name s Group  Serve
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f - H
1 ubuntu 52.111.202.44
TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
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REMOTE COMPUTER IN THE CLOUD THIN CLIENTS

= EC2 instance

= Thin clients
with a GUL. . .!!!

= X windows protocol
= A variety of other remote desktop protocols exist:

Remate deskiog

+ Appie Remol inal protocal for Apple Remate Deskiop on

ines.
specilc protocol leatuing audh

) remole printing, remate USB. accelerated video
callyfor high end worksiznan ren .

S8, H264-enabied.

s-platform protocol mainly used for displaying local appiicasons: X11 is network transperent
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THIN CLIENTS - 2 THIN CLIENTS - 3

= Applications should separate application logic from Ul

= When application logic and Ul interaction are tightly coupled
many requests get sent to X kernel

= Client must wait for response

= Synchronous behavior and app-to-Ul coupling adverselt affects
performance of WAN / Internet

= Virtual network computing (VNC)

= Send display over the network at the pixel level
(instead of X lib events)

= Reduce pixel encodings to save bandwidth - fewer colors
= Pixel-based approaches loose application semantics
= Can transport any GUI this way

= Protocol optimlzatlons: reduce bandwidth by shrinking size of
X protocol messages

= THINC- hybrid approach

= Send video device driver commands over network
= More powerful than pixel based operations

= Less powerful compared to protocols such as X

= Send only differences between messages with same identifier
= Optimizations enable connections with 9600 kbps

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
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TRADEOFFS: ABSTRACTION OF REMOTE TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols = Tradeoff space: abstraction level of remote display protocols
Pixel-level Graphics llb Plxel-level Graphics Ilb
VNG n X11 VNC B n Xil.:l.
< d > = U L
e Generic - no app context e Application context
e Graphics data is available
e Higher network bandwidth e Ul data/operations
e Fewer colors e Lower network bandwidth
e Utilize graphics compression e More colors
o More network traffic
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CLIENT ROLES IN PROVIDING CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY DISTRIBUTION TRANSPARENCY - 2

= Clients help enable distribution transparency of servers = Location/relocation/migration transparency

= Harness convenient naming system to allow client to infer new

= Replication transparency locations

= Client aggregates responses from multiple servers
= Only the client knows of replicas

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

Thent maching Server T erZ Server
- ]
P P p— — Replication transparency
app! appl appl appl = Client aggregates responses from multiple servers
L
A x A ad = Failure transparency
imlside‘;\andles = - - /,/ = Client retries, or maps to another server, or uses cached data

request replication

. Fleptcatedrequest = Concurrency transparency

= Transaction servers abstract coordination of multithreading
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OBJECTIVES - 1/30

= Questlons from 1/25

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
| = Chapter 3.4: Servers |

TCS5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma
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SERVERS

= Cloud & Distributed Systems - rely on Llnux

" http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-

cloud-runs-on-linux-any-questions/
= |IT is moving to the cloud. And, what powers the cloud?

=Linux
= Uptime Institute survey - 1,000 IT executives (2016)

off-premise to cloud or colocation sites
= 23% expect the shift in 2017, 70% by 2020...
= Docker on Windows / Mac 0S X
= Based on LInux
= Mac: Hyperkit Linux VM
= Windows: Hyper-V Linux VM

= 50% of IT executives - plan to migrate majority of IT workloads to

TCSS558: Applied Distributed Computing [Winter 2024]
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SERVERS - 2

= Servers implement a specific service for a collection of clients
= Servers wait for incoming requests, and respond accordingly

= Server types
= |terative: immediately handle client requests
= Concurrent: Pass client request to separate thread

= Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

= Alternative: fork a new process for each incoming request
= Hybrid: mix the use of multiple processes with thread pools

TCS5558: Applied Distributed Computing [Winter 2024] 1886
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‘ January30, 2024

END POINTS

= Clients connect to servers via:
IP Address and Port Number

= How do ports get assigned?
= Many protocols support “default” port numbers
= Client must find IP address(es) of servers

= A single server often hosts multiple end points
(servers/services)

= When designing new TCP client/servers must be careful
not to repurpose ports already commonly used by others

TCSS558: Applied Distributed Computing [Winter 2024]
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TYPES OF SERVERS

=Daemon server
= Example: NTP server

= Superserver

= Stateless server
= Example: Apache server

= Stateful server
= Object servers

= EJB servers

TCs5558: Applied Distributed Computing [Winter 2024]
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NTP EXAMPLE

= Daemon servers
= Run locally on Linux
= Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)
Daemons routes local client traffic to the configured
endpoint servers
University of Washington: time.u.washington.edu
Example “ntpg -p”
= Queries local ntp daemon, routes traffic to configured server(s)

TCsS558: Applied Distributed Computing [Winter 2024] o0
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SUPERSERVER

® Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines
= Used to configure box as a server for multiple internet services
E.g. ftp, pop, telnet
= inetd daemon responds to multiple endpoints for multiple
services
= Requests fork a process to run required executable program

= Check what ports you're listening on:
" sudo netstat -tap | grep LISTEN

TCSS558: Applied Distributed Computing [Winter 2024]
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INTERRUPTING A SERVER

= Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

= Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)
2. Use a separate connection (different port) for admin control info

= Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCSS558: Applied Distributed Computing [Winter 2024] 1892
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STATELESS SERVERS

= Data about state of clients is not stored
= Example: web application servers are typically stateless
= Also function-as-a-service (FaaS) platforms

= Many servers maintain information on clients (e.g. log files)

= Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

= Soft state: server maintains state on the client for a limited
time (to support sessions)
= Soft state information expires and is deleted

TCSS558: Applied Distributed Computing [Winter 2024]
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STATEFUL SERVERS - 2

= Session state

= Tracks series of operations by a single user

= Maintained temporarily, not indefinitely

= Often retained for multi-tier client server applications
Minimal q if ion state is lost
= Clients must start over, reinitialize sessions

= Permanent state
= Customer information, software keys

= Client-side cookies
= When servers don’'t maintain client state, clients can store state
locally in “cookies”
= Cookies are not executable, simply client-side data

TCSS558: Applied Distributed Computing [Winter 2024]
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STATEFUL SERVERS

Maintain persistent information about clients
Information must be explicitly deleted by the server
= Example:
File server - allows clients to keep local file copies for RW
= Server tracks client file permissions and most recent versions
= Table of (client, file) entries

If server crashes data must be recovered
= Entire state before a crash must be restored
= Fault tolerance - Ch. 8

TCSS558: Applied Distributed Computing [Winter 2024] 150
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OBJECT SERVERS

= OBJECTIVE: Host objects and enable remote client access
= Do not provide a specific service
= Do nothing if there are no objects to host
= Support adding/removing hosted objects
= Provide a home where objects live
= Objects, themselves, provide “services”

= Object parts
= State data
= Code (methods, etc.)

= Translent object(s)
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCSS558: Applied Distributed Computing [Winter 2024] o6
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OBJECT SERVERS - 2 EJB - ENTERPRISE JAVA BEANS

= Shoul rvers Isol. mem for Instan
= Share neither code nor data
= May be necessary if objects couple data and implementation

EJB- specialized Java object hosted by a EJB web container
4 types: stateless, stateful, entity, and message-driven beans

Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications

EJB web application containers integrate support for:

= Object server threading designs:

= Single thread of control for object server = Transaction processing
= One thread for each object = Persistence
= Servers use separate thread for client requests = Concurrency
= Event-driven programming
= Threads created on demand vs. = Asynchronous method invocation
Server maintains pool of threads = Job scheduling

= Naming and discovery services (JNDI)
= What are the tradeoffs for creating server threads on demand vs. ® Interprocess communication
using a thread pool?

= Security
= Software ploy to an ication server
TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
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APACHE WEB SERVER SERVER CLUSTERS

= Highly configurable, extensible, platform independent = Hosted across an LAN or WAN

= Supports TCP HTTP protocol communication = Collection of interconnected machines
= Uses hooks - placeholders for group of functions = Can be organized in tiers:

= Requests processed in phases by hooks = Web server -> app server > DB server

= Many hooks: ook Mo Fucien Mok = App and DB server sometimes integrated

= Translate a URL TI I [Dl I QDI H Logical switch

Appicaonicompute servers Distibuted
. (possibly multipie) fleidatabase
= Write info to log . /{ink botwesn ' sytem
b T - function and h 1
= Check client ID -
) foor|—fec] o] Dspatored |
= Check access rights §H TR T - ‘ " Y —
5 w} == -
= Hooks processed in order 251 Hooks point to functions in modules |
enforcing flow-of-control *
g | ]
= Functions in replaceable Fanckons cafled par bock lj— —-—
modules Requist * Fasponse Exst tior Serond ser Third tier
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LAN REQUEST DISPATCHING

LAN REQUEST DISPATCHING - 2

= Front end of three tier architecture (logical switch) provides

= Who is the best server to handle the request?
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection = Switch plays important role in
requests, hands off to a server distributing requests single TEP.
= Example: hardware load balancer (F5 networks - Seattle) = Implements load balancing
= HW Load balancer - OSI layers 4-7 = Round-robln - routes client

requests to servers in a looping
fashion

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
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= Network-address-translation (NAT) approach:
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
= Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server
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WIDE AREA CLUSTERS

= Deployed across the internet

= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

= Cloud computing simplifies building WAN clusters

= Resource from a single cloud provider can be combined to
form a cluster

= For deploying a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

= (1) a single availability zone (e.g. us-east-1e)?

® (2) across multiple availability zones?
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WAN REQUEST DISPATCHING

= Goal: minimize network latency using WANs (e.g. Internet)
= Send requests to nearby servers

= Request dispatcher: routes requests to nearby server

= Example: Domain Name System
= Hierarchical decentralized naming system

= Linux: find your DNS servers:

# Find you device name of interest
nmcli dev

# Show device configuration

nmcli device show <device name>

TCSS558: Applied Distributed Computing [Winter 2024] 18108
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DNS LOOKUP

= First query local server(s) for address
= Typically there are (2) local DNS servers
= One is backup
= Hostname may be cached at local DNS server
= E.g. www.google.com
= If not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client
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DNS: LINUX COMMANDS

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

" traceroute <ip addr / hostname>
= Traces network path to destination
= By default, output is limited to 30 hops, can be increased
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DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
= Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

= From VA EC2 instance, ping WA www.google server
= Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
= Pinging the WA-local server is ~60x slower from VA

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE - WAN DISPATCHING

QUESTIONS

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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