TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 30, 2024

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
|

Processes:
Threads & Virtualization,
Clients & Servers

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

OBJECTIVES - 1/30

|- Questlons from 1/2q
= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCsS558: Applied Distributed Computing [Winter 2024]
U School of Engineering and Technology, University of Washington - Tacoma 182

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

== TCSS558A » Assignments

Home

* Upcoming Assignments

o TCSS 558 - Online Daily Feedback Survey - 1/5

ot avalsbie undil Jan 5 ot 1:30pm | Bue Jan 6 at 10pm

TCSS558: Applied Distributed Computing [Winter 2024]

January 30,2023 School of Engineering and Technology, University of Washington - Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan &6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59m 1dsy Time Limit None
Question 1 0.5 pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 a 4 s 3 7 8 s 10

Equa1 ety

Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past

TCSS558: Applied Distributed Computing [Winter 2024]

24
January 30, 2024 School of Engineering and Technology, University of Washington - Tacoma Le4

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (26 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.77 (T - previous 5.95)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.73 (T - previous 5.45)

TCSS558: Applied Distributed Computing [Winter 2024]
GV School of Engineering and Technology, University of Washington -Tacoma e

FEEDBACK FROM 1/25

= When conducting a random walk In an unstructured peer-to-

peer system, is any logic employed to ensure you do not run a
cycle?

= As with flooding, with random walk, if a node has previously received
the data it is trying to propagate to a neighbor, from the neighbor,
then it will not forward the data to the neighbor

= Nodes only send the data to neighbors that are assumed to not have
the data

= Do we keep track of the nelghbors we have asked, and always
randomly select a new nelghbor from a list of unasked
neighbors if the neighbor we ask cannot find the data?

= Yes, there would be no purpose to forward the data twice to the
same node

TCSS558: Applied Distributed Computing [Winter 2024]
CLETER School of Engineering and Technology, University of Washington - Tacoma e

Slides by Wes J. Lloyd

L8.1

TCSS 558: Applied Distributed Computing January 30, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

FEEDBACK - 2 FEEDBACK - 3

J lnh'hh _t"d" : tm W’t'h" nth : :; o r ft" kd thkt . = The concept of hop In structured systems seemed slightl

which it doesn't store, then in the text book it's mentione at i ing. C youp : Frey

forwards the query to the smallest Id greater than or equal to k confusing. Cauld you please reiterate it?

which Is nothing but the successor of k. | = We are referring to the number of links used to exchange data
= But In the slides Its mentloned, It will be forwarded to node with m- between two nodes

= The finger table format from Chapter 5 has a slightly different format 1-hop 2-hops 3-hops

= The id(s) on page 248 (3" edition), are just indexes (from 1 to 5), they
do not correspond to node numbers in the chord. ._). ._)H ._)m
= In the example for lecture 7, the finger table has node numbers paired
with subsequent forwarding IDs, not just generic indexes
= For the textbook, forward to node q, where gq= FT,[j] < FT [j+1]
= The book does not make the following clear:
when you run out of table entries, forward to last one
when the first entry in the table is greater than k, forward it there
= The format used on the slides is preferred over the book in this case

TCSS558: Applied Distributed Computing Winter 2024] TCsS558: Applied Ditributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 187 U School of Engineering and Technology, University of Washington - Tacoma 18

FEEDBACK - 4 OBJECTIVES - 1/30

= | still don't understand what Is m-bound and d-bound. " Questions from 1/25
* The webservices application has two variants = Assignment 1: Cloud Computing Infrastructure Tutorial
= Variant #1: the resource-bound p is “M”- the appli ion = New testFibService.sh script
server N
The letter M stands for “Model”. The web service is a model that = Assignment 2: Key/Value Store - Posting Soon
estimates soil erosion due to water run-off.
* Variant #2: the resource-bound component is “D” - the relational ® Chapter 3: Processes
database = Chapter 3.1: Threads

The application was modified to have a nested SQL query
“select * from (select * from ...); X
For sequential search of a single table, nesting forces n2 evaluations as Threading Models
opposed to only n for the standard query. This makes the database more Multithreaded clients/servers
resource constrained than the web application server and is a bad SQL
bug! = Chapter 3.2: Virtualization
= Can you provide ppt flle? Because Images are blocked in pdf flles. = Chapter 3.3: Clients
= Some slides have old animations. Ppt is available by email request

Context Switches

= Chapter 3.4: Servers

TCsS558: Applied Distributed Computing [Winter 2024] 189 January 30, 2024 TCs5558: Applied Distributed Computing [Winter 2024] 1810
School of Engineering and Technology, University of Washington - Tacoma WL School of Engineering and Technology, University of Washington - Tacoma

‘ January 30, 2024

AWS CLOUD CREDITS UPDATE ASSIGNMENT 1

= We have been approved to receive AWS CLOUD CREDITS = Preparing for Assignment 1:
for TCSS 558 - Winter 2024 Intro to Clou mputing Infrastructure and L Balancin,
= Credits will be provided by email request = Establish AWS Account - Standard account
= Please include: 12-digit AWS account ID, and AWS account email
= Credits will first be provided for students not in F'23 TcSS562 = Now posted:
= Request codes by sending an email with the subject: = Task O - Establish local Linux/Ubuntu environment
“AWS CREDIT REQUEST” to wlloyd@uw.edu =Task 1 -AWS account setup, obtain user credentials
® Codes can also be obtained in person (or zoom), in the class, =Task 2 - Intro to: Amazon EC2 & Docker: create Dockerfile

during the breaks, after class, during office hours, by appt
= Credit codes are carefully exchanged, and not shared by IM

= For students unable to create a standard AWS account:
Please contact instructor by email -

for Apache Tomcat
=Task 3 - Create Dockerfile for haproxy (software load balancer)
=Task 4 - Working with Docker-Machine

Instructor will work to create hosted IAM user account =Task 5 - Submit Results of testing alternate server configs
TCSS558: Applied Distributed Computing [Winter 2024] TCss558: Applied Distributed Computing [Winter 2024]
‘ e) School of Engineering and Technology, University of Washington - Tacoma s ‘ e School of Engineering and Technology, University of Washington - Tacoma L

11 12

Slides by Wes J. Lloyd L8.2

mailto:wlloyd@uw.edu

TCSS 558: Applied Distributed Computing January 30, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

TESTING CONNECTIVITY TO SERVER (PG 16-18) OBJECTIVES - 1/30

= testFibPar.sh script is a parallel test script = Questlons from 1/25
= Orchestrates multiple threads on client to invoke server
multiple times in parallel

= To simplify coordination of parallel service calls in BASH,
testFibPar.sh script ignores errors !1! | = Assignment 2: Key/Value Store - Posting Soon |
= To help test client-to-server connectivity, there is also a = Chapter 3: Processes
testFlbService.sh script that supports 3 tests = Chapter 3.1: Threads
= Context Switches
= Threading Models

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= TEST 1: Network layer test
= Ping (ICMP)

Transportation et Application et

= TEST 2: Transport layer test 1;;3:':2::‘ = Multithreaded clients/servers
= TCP: telnet (TCP Port 8080) - security group (fw) test i = Chapter 3.2: Virtualization
= TEST 3: Applicatlon layer test = Chapter 3.3: Clients
= HTTP REST - web service test 031 Model Layers = Chapter 3.4: Servers
3 lied ibuted 3 lied ibuted
[i g s e N e L —

13 14

REVIEW QUESTIONS

= What is difference in finding/disseminating data in
unstructured vs. structured peer-to-peer networks?

= Structured: can grasp the number of messages required based on
the organization and structure of the system

= Fixed hypercube
CH 2.3: SYSTEM = Chord system
=U d: i broad like n h h i
ARCHITECTURES 40 fina/lsseminate dats Flooaing, Random watk

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
January 24, 2023 School of Engineering and Technology, Universityof Washington - llbma () School of Engineering and Technology, University of Washington -Tacoma e

15 16

.1} < Activities @ Visualseings (@) Edic < > .1} < Activities @ vaualsemings (3 Edie < >
] : M .

]]
When ool acive respni . PollEccomesbond When ool acive respni . PollEccomesbond

For a pear-to-poar system, which communication approach will On search, which system is most likely to be unable to locats data in
exchange the highest number of messages across the system to "
H the distributed system?

disseminate or find information?

Random walk Fixad hypercuba
o A <
Palicy-basad search mathods @ Unstructured peer-fo-peer with random walk
e S .
@ Flooding Chard System
[eeeagaa 00 0 RN N e . T 0%
[— [—
Response aptions o % [Response aptions o % [

17 18

Slides by Wes J. Lloyd L8.3

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 30, 2024

o
ol
B

< Activities € Visual settings @ Edit

Vit pok s e o 3t PolEwommestayd

<

W Which system requires the least effort to add a new node?
Fixed hypercube
0%

Chord System

S mmmm—— %%

& Unstructured peer-to-peer

o

ul

< Activities €3 Visual settings. & edie

When poll i activa fespond at - PollEv.comiweslloyd

% %

regarding how the system can add or remove
nodes?

w Which system features strict constraints

@ Fixed hypercube
79%
Chord System
17%
Unstructured peerto p - sgsmose

Current responses

Response optians Count W I',ﬂ;l

7%
wewoe
Current responses
Response optians Count %]
(1) < activities € Visual settings @ Edit <
od
B

Ve ok 5 e g 3l PolEnsommstayd

W Which serversinodes seek to store data very close to a user?

Cloud Gomputing server

%

Super peers

%

Fog server
T
scenoss
Current responses
Response options Count % =]

(1) < activities 5 Moderate €3 Visual settings @ Edit <
od
B

Join by Web PallEv.comiweslloyd

What are advantages of a decentralized
unstructured peer-to-peer architecture?

SEE MORE

3

Current responses

Respanses Sereen name Received at 3

23

Slides by Wes J. Lloyd

20

ul

< Activities # Moderate €3 Visual sertings @ Edit

When pol i activa fespond at - PollEv.comiweslloyd

< >

What are advantages of a decentralized structured
peer-to-peer architecture?

Nobody has responded yet.

Hang tight! Responses are coming in

Current responses

Responses Screen name Received at

22

OBJECTIVES - 1/30

= Questlons from 1/25

= Assignment 1: Cloud Computing Infrastructure Tutorial

= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon

= Chapter 3: Processes |

= Chapter 3.1: Threads
= Context Switches
= Threading Models
= Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCsS558: Applied Distributed Computing [Winter 2024]

CLETER School of Engineering and Technology, University of Washington - Tacoma

[o]

24

L8.4

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

scale
[rueing processes)

CH. 3: PROCESSES
CH. 3.1: THREADS

Workdaad dversity
process types)

January 30, 2024

CHAPTER 3

= Chapter 3 titled “processes”

= Covers variety of distributed system implementation
details

= “Grab bag” of topics

= Processes/threads
= Virtualization

= Clients

= Servers

= Code migration

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

25

OBJECTIVES - 1/30

= Questlons from 1/25

= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon
= Chapter 3: Processes
| = Chapter 3.1: Threads |
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

= Assignment 1: Cloud Computing Infrastructure Tutorial

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January 30,2023 School of Engineering and Technology, University of Washington - Tacoma.

527

26

CH. 3.1 - THREADS

|-

= For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

= What Is the difference between a process and a thread?
= (review?) from Operating Systems

= Key difference: what do threads share amongst each other
that processes do not.... 2

= What are the segments of a program stored In memory?
= Heap segment (dynamic shared memory)
= Code segment
= Stack segment
= Data segment (global variables)

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January30,2024 School of Engineering and Technology, University of Washington - Tacoma

27

= Do several processes on an operating system share...
* Heap segment?
= Stack segment?
= Code segment?

run multlpl 1 f th m ?
memory

= Processes are isolated from each other by the 0S
= Each has a separate heap, stack, code segment

o

= These may be managed as shared pages (across processes) in

TCSs558: Applied Distributed Computing [Winter 2024]

‘ GV School of Engineering and Technology, University of Washington - Tacoma

28

|-

= Threads avoid the overhead of process creation
= No new data, heap, or code segments required

= What is a context switch?

= Context switching among threads is considered to be more
efficient than context switching processes

= Less elements to swap-in and swap-out

= Unikernel: specialized single process 0OS for the cloud

= Example: Osv, Clive, MirageOS (see: http://unikernel.org/pr)
= Single process operating system with many threads

= Developed for the cloud to run only one application at a time

TCSS558: Applied Distributed Computing [Winter 2024]

‘ CLETER School of Engineering and Technology, University of Washington - Tacoma

29

Slides by Wes J. Lloyd

30

L8.5

http://unikernel.org/projects/

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 30, 2024

OSV: ONE PROCESS, MANY THREADS

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

531

THREADS - 4

= Important implications with threads:

® (1) multi-threading should lead to performance gains

® (2) thread programming requires additional effort when
threads share memory
= Known as thread synchronlzatlon, or enabling concurrency

= Access to critical sectlons of code which modify shared
variables must be mutually exclusive
= No more than one thread can execute at any given time
= Critical sections must run atomlcally on the CPU

TCSS558: Applied Distributed Computing [Winter 2024]

U School of Engineering and Technology, University of Washington - Tacoma

31

32

BLOCKING THREADS

= Example: spreadsheet with formula to compute sum of column
= User modifies values in column

= Multiple threads:

1. Supports interaction (Ul) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

= Single core CPU

= Tasks appear as if they are performed simultaneously
= Multi core CPU

= Tasks execute simultaneously

TCSS558: Applied Distributed Computing [Winter 2024]

January30,2024 School of Engineering and Technology, University of Washington - Tacoma

33

memory segments
= |[PC mechanisms incur context switching
= Process |/0 must execute in kernel mode

INTERPROCESS COMMUNICATION

= |PC - mechanism using pipes, message queues, and shared

Proc A>kernel thread
S1: Switch from user space
- 1o kemel space |

#2C/S:
Kernel thread>Proc B

-
Gperating system ™

= How man ntext switch re required for pr A
send a message to process B using IPC?
ProssA ProcsssB
= #1 C/S:

S3: Switch from kemed
space ko user spac

52 Switzh comext from
process Ao process

TCs5558: Applied Distributed Computing [Winter 2024]

‘ GV School of Engineering and Technology, University of Washington - Tacoma

35

Slides by Wes J. Lloyd

34

OBJECTIVES - 1/30

= Questlons from 1/25

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon

= Chapter 3: Processes
= Chapter 3.1: Threads

Context Switches |

Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2024]

CLETER School of Engineering and Technology, University of Washington - Tacoma

36

L8.6

TCSS 558: Applied Distributed Computing January 30, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

CONTEXT SWITCH -

CONTEXT SWITCHING CACHE PERTURBATION

= Direct overhead = Refers to cache reorganization that occurs as a result of a
= Time spent not executing program code (user or kernel) context switch
= Time spent executing interrupt routines to swap memory segments = Cache is not clear, but elements from cache are removed as a
of different processes (or threads) in the CPU result of another program running in the CPU
= Stack, code, heap, registers, code pointers, stack pointers = 80% performance overhead from context switching results
* Memory page cache invalidation from this “cache perturbation”

" Indirect overhead
= Overhead not directly attributed to the physical actions of the
context switch
= Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)
= Primarily cache perturbation

TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 1837 U School of Engineering and Technology, University of Washington - Tacoma 1838

37 38

OBJECTIVES - 1/30 THREADING MODELS

" Questions from 1/25 = Many-to-one threadIng: multiple user-level threads per process

= Assignment 1: Cloud Computing Infrastructure Tutorial = Thread operations (create, delete, locks) run in user mode
= New testFibService.sh script = Multithreaded process mapped to single schedulable entity

= Assignment 2: Key/Value Store - Posting Soon = Only one thread per process runs at any given time

= Chapter 3: Processes = Key take-away: thread management handled by user processes
= Chapter 3.1: Threads = This is what we experience with the Python virtual machine

= Python interpreter can execute only 1 thread at any given moment
= Limitation is enforced by the Python Global Interpreter Lock (GIL)

Context Switches
| Threading Models |
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ January 30,2023 School of Engineering and Technology, University of Washington - Tacoma. 1839 January30,2024 School of Engineering and Technology, University of Washington - Tacoma (a0

= What are some advantages of many-to-one threading?

= What are some disadvantages?

39 40

THREADING MODELS - 2 APPLICATION EXAMPLES

= One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

= The kernel API calls (e.g. 1/0, locking) are farmed out to an
existing kernel level thread

= Google chrome: processes
= Apache tomcat webserver: threads

= Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination

= Thread operations (create, delete, locks) run in kernel mode ; L) o
and data sharing via interprocess communication (IPC)

= Threads scheduled individually by the OS

= System calls required, context switches as expensive as = Each process maintains its own private memory
process context switching
= |dea is to have preinitialized kernel threads for user processes = While this approach avolds synchronizing concurrent access to
= Linux uses this model... shared memory, what Is the tradeoff(s) ??
= Replication instead of synchronization - must synchronize multiple
= What are some advantages of one-to-one threading? copies of the data
= What are some disadvantages? = Do distributed ob)ects share memory?
TCSS558: Applied Distributed C ing [Wir 2024] TCSS558: Applied Distributed C ing [Wi 2024]
[e T e e gton oo -

41 42

Slides by Wes J. Lloyd L8.7

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/30

= Questlons from 1/25

= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
| Multithreaded clients/servers |
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

= Assignment 1: Cloud Computing Infrastructure Tutorial

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

a3

January 30, 2024

MULTITHREADED CLIENTS

= Web browser

= Uses threads to load and render portions of a web page to the
user in parallel

= A client could have dozens of concurrent connections all
loading in parallel

= testFlbPar.sh
= Assignment O client script (GNU parallel)

= Important benefits:

= Several connections can be opened simultaneously

= Client: dozens of concurrent connections to the webserver all
loading data in parallel

TCsS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 184t

43

MULTIPLE THREADS

In Linux, threads also receive a process ID (PID)
To display threads of a process in Linux:

Identify parent process explicitly:

= top -H -p <pid>
= htop -p <pid>
ps -iT <pid>

Virtualbox process ~ 44 threads
No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January 30, 2024 School of Engineering and Technology, University of Washington - Tacoma

155

44

PROCESS METRICS

- dsreads: disk sector reads completed
- drm: merged adjacent disk reads
- readtime: time spent reading from
CPU disk
-cpuUsr: CPU time in user mode - dsw: disk sector writes
-cpuKrn: CPU time in kernel mode - dswrites: disk sector writes completed
-cpuldle: CPU idle tim - dwm: merged adjacent disk writes
- cpuloWait: CPU time waiting for I/0 - writetime: time spent writing to disk
- cpulntSrvc:CPU time serving interrupts
- cpuSftintSrvc: CPU time serving soft interrupts w
- cpuNice: CPU time executing prioritized - nbs: network bytes sent
processes - nbr: network bytes received
- cpuSteal: CPU ticks lost to virtualized guests
- contexts of context switches
- loadavg: (avg # proc / 60 secs)

45
LOAD AVERAGE

= Reported by: top, htop, w, uptime, and /proc/loadavg

= Updated every 5 seconds

= Average number of processes using or waiting for the CPU

= Three numbers show exponentially decaying usage

for 1 minute, 5 minutes, and 15 minutes

= One minute average: exponentially decaying average

= Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)

= 1.0 = 1-CPU core fully loaded

= 2.0 = 2-CPUcores

= 3.0 = 3-CPU cores . . .

[smarvan s [T e i s W) -

47

Slides by Wes J. Lloyd

THREAD-LEVEL PARALLELISM

= Metric - measures degree of parallelism realized by running
system, by calculating average utilization:

N
rip— b=l G
1—cp

= Ci - fraction of time that exactly | threads are executed

= N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

= Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLETER School of Engineering and Technology, University of Washington - Tacoma (e

48

L8.8

TCSS 558: Applied Distributed Computing January 30, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

MULTITHREADED SERVERS SINGLE THREAD & FSM SERVERS

= Multiple threads essential for servers in distributed systems
= Even on single-core machines greatly improves performance
= Take advantage of idle/blocking time

= Two designs:

= Single thread server
= A single thread handles all client requests
= BLOCKS for I/0
= All waiting requests are queued until thread is available
= Generate new thread for every request

= Thread pool - pre-initialize set of threads to service requests = Finite state machine

- Sorver = Server has a single thread of execution
i =1/0 performing asynchronously (non-BLOCKing)
= Server handles other requests while waiting for 1/0

Request dispatched
Dispatcher thread toa worker

—+ Worker thread

[Request coming in = Interrupt fired with 1/0 completes
rom the netivrk
Operating system =Single thread “jumps” back into context to finish request
TCSS558: Applied Distributed Cor iting [Winter 2024] TCSS558: Applied Distributed C uting [Winter 2024]
‘ U School of E::m!eermsg and :emn:;::v,ngniver:i:\‘: of Washington - Tacoma 1849 ‘ U School of E::ineeerinsg and ;ech::;:gy,nﬁniver"s‘\te; of Washington - Tacoma 1850

49 50

SERVER DESIGN ALTERNATIVES OBJECTIVES - 1/30

= A blocking system call implies that a thread servicing a ® Questlons from 1/25
request synchronously performs 1/0

= The thread BLOCKS to wait on disk/network I/0 before
proceeding with request processing

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon

= Ch r 3: Pr
= Consider the implications of these designs for responsiveness, ey & ocesses
availability, scalability. . . - iy S TiEES
|__Model | Characteristics | el
Characteristics Threading Models
Multithreading Parallelism, blocking /0 Multithreaded clients/servers
Single-thread No parallelism, blocking I/0 | = Chapter 3.2: Virtuallzation |
Finite-state machine Parallelism, non-blocking I/0 * Chapter 3.3: Clients
= Chapter 3.4: Servers
Il T e —
51 52

VIRTUALIZATION

= |nitially introduced in the 1970s
on IBM mainframe computers

= Legacy operating systems run in mainframe-based VMs
= Legacy software could be sustained by virtualizing legacy OSes
CH. 3.2:

= 1970s virtualization went away as desktop/rack-based
VIRTUALIZATION

hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

= Cloud computing: Amazon offers VMs as-a-service (laaS)

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLETER School of Engineering and Technology, University of Washington - Tacoma

53 54

Slides by Wes J. Lloyd L8.9

TCSS 558: Applied Distributed Computing January 30, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

TYPES OF VIRTUALIZATION TYPES OF VIRTUALIZATION - 2

Asplication/Lbraries
= Levels of Instructlons: (irary funcions V_VIAwl‘ww" = Process virtual machine ‘ ‘
= Interpret instructions: (interpreters) B
= Hardware: CPU System calls_ | Lbrany (JavaVM) byte code > HW instructions ’W‘
= Privi i i = Emulate instructions: (emulators) T T
;:Elrl\‘eEgLedMé)n;;ruchons e _Ommmmmm ‘ ﬁ:xlns (Wine) windows code - Linux code Hardware ‘
« General instructions Hardware = Natlve virtual machine monitor (VMM RS-
USER MODE = Hypervisor (XEN): small OS with its own kernel — "
= Provides an interface for multiple guest es perating system
| I Provid i f; f Itipl 0S: Operati
= Operating system: M . N T T T
erating system: system calls « Facilitates sharing/scheduling of e e o
= Library: programming APls: e.g. C/C++,C#, Java libraries CPU, device I/0 among many guests T T T
= Guest OSes require special kernel to interface w/ VMM | "=

= Application: = Supports Paravirtuallzatlon for performance boost to run code
= Goal of virtuallzation: d"ecl1|y on the_ CPU
mimic these interface to provide a virtual computer Type 1 hypervisor

TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 1855 U School of Engineering and Technology, University of Washington - Tacoma 1856

55 56

TYPES OF VIRTUALIZATION - 3 EVOLUTION OF AWS VIRTUALIZATION

AppliationLraries From http: gg.com/blog/2017-11-29, 2-vi ization-2047.html
= Hosted virtual machine monltor (VMM) AWS EC. alization Types
= Runs atop of hosted operating system Operaiirg system vSs: pornce
Virtuallzation ot = Loast

Baro metal parfommance

In software :::‘r::;ﬂ:"m::: % %ﬁ\“\’ﬁ:&

= Uses host OS facilities for CPU scheduling, 1/0 ‘wm‘mmmmm

= Full virtualization
= Type 2 hypervisor Iﬁuz-muvg ‘y‘q:q.. | ‘

n Pou partonmance “s NN
* Virtualbox Hordware ‘ Paravirtual S e T RN
i) o V[| Pty Emiaied
= Textbook: note 3.5-good explanation of full vs. paravirtualization VH: Ca [2] v Xen PV 3D PV dvers
= GOAL: run all user mode instructions directly on the CPU Virtualization [e O T |
«| v | enrivmans
= x86 instruction set has ~17 privileged user mode instructions In Hardware [5] w4 | renawsewss M + SAIOVIPRT
= Full virtualization: scan the EXE, insert code around privileged e e e B S
instructions to divert control to the VMM "*;rdware New [8 | HW | AWS Bars Mo 2017 H W [H[H|H|H
= Paravirtuallzatlon: special 0S kernel eliminates side effects of Bare et ICNENENENEN R
privileged instructions e aomn. S I e, P: P, o coeimons s

SRHOVinsi): igooona dives. SRHOVsiorage nvm drer.

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ January 30, 2024 School of Engineering and Technology, University of Washington - Tacoma 1857 January30,2024 School of Engineering and Technology, University of Washington - Tacoma 1858

57 58

AWS VIRTUALIZATION - 2 AWS VIRTUALIZATION - 3

= Full Virtuallzation - Fully Emul = XEN HVM 4.0.1
= Never used on EC2, before CPU extensions for virtualization = Hardware virtualization: CPU, memory (CPU VT-x required)
= Can boot any unmodified 0S = Paravirtual: network, storage, Interrupts,
= Support via slow emulation, performance 2x-10x slower = XEN AWS 2013 (diverges from opensource XEN)

= Paravirtuallzation: Xen PV 3.0 = Provides hardware virtualization for CPU, memory, network
= Software: Interrupts, timers = Paravirtual: storage, Interrupts, timers
= Paravirtual: CPU, Network I/0, Local+Network Storage = Called Single root I/0 Virtualization (SR-10V)

= Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs

= Improves VM network performance

= 34 & 4th generation instances (c3 family)

= Requires special OS kernels, interfaces with hypervisor for I/0
= Performance 1.1x - 1.5x slower than “bare metal”
= Instance store instances: 15T & 2"¢ generation- mi.large, m2.xlarge

= Xen HVM 3.0 = Network speeds up to 10 Gbps and 25 Gbps
= Hardware virtualization: CPU, memory (CPU VT-x required) = XEN AWS 2017
= Paravirtual: network, storage = Provides hardware virtualization for CPU, memory, network, local disk
= Software: interrupts, timers = Paravirtual: remote storage, Interrupts, timers
= EBS backed instances = Introduces hardware virtualization for EBS volumes (c4 instances)
= mi1, cl instances = Instance storage hardware virtualization (x1.32xlarge, i3 family)
[| o s s W e e [i | e s M s =

59 60

Slides by Wes J. Lloyd L8.10

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 30, 2024

AWS VIRTUALIZATION - 4 OBJECTIVES - 1/30

= AWS Nltro 2017 = Questlons from 1/25

= Provides hardware virtualization for CPU, memory, network, local
disk, remote disk, Interrupts, timers

= All aspects of virtualization enhanced with HW-level support

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= November 2017 = Assignment 2: Key/Value Store - Posting Soon
= Goal: provide performance indistinguishable from “bare metal” = Chapter 3: Processes
= 5th generation instances - c5 instances (also c¢5d, c5n) = Chapter 3.1: Threads

= Based on KVM hypervisor
= Overhead around ~1%

Context Switches

Threading Models

Multithreaded clients/servers
= Chapter 3.2: Virtualization

| = Chapter 3.3: Clients |
= Chapter 3.4: Servers
TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 1861 ‘ U School of Engineering and Technology, University of Washington - Tacoma 1862

61 62

TYPES OF CLIENTS

= Thick clients
=Web browsers
Client-side scripting
= Mobile apps

CH. 3.3: CLIENTS = Multi-tier MVC apps

= Thin clients
= Remote desktops/GUIs (very thin)

School of Engineering and Technology, University of Washington - Tacoma

‘ T R TCss558: Applied Distributed Computing [Winter 2024] o

63 64

CLIENTS X WINDOWS

3 =

= Application specific protocol = Layered architecture to transport Ul over network

= Thick clients [prvimen | { Arteron
) o A | MEET = Remote desktop functionality for Linux/Unix systems
= Clients maintain local data Madieware | protoool Middlewars
= Middleware (APIs) Ld 95 Lyowl 08 = X kernel acts as a server
= Clients synchronize data with remote nodes J—--------------.—. . . .
A = Provides the X protocol: application level protocol
= Example: shared calendar application

= Xlib instances (client applications) exchange data and
events with X kernels (servers)

= Application independent
= Thin clients

AT TECAE

[t))))
« Client acts as a remote terminal S vl I = Clients and servers on single machine > Linux GUI
I s Mool 1 . . .
* Provides interface to user (GUI / UI) P e = Client and server communication transported over the
= Server houses entire application stack 1T network - remote Linux GUI

TCSS558: Applied Distributed Computing [Winter 2024]
‘ GV School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

January30, 2024 TCsS558: Applied Distributed Computing [Winter 2024] \os6

65 66

Slides by Wes J. Lloyd L8.11

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

X WINDOWS - 2

= Window manager:
= Application running
atop of X-windows
which provides flair
= Many variants
= Without X windows is
quite bland

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

January 30, 2024

= Layered archlitecture

= X-kernel: low level
interface/APIs for
controlling screen,
capturing keyboard mﬂdmﬂm'ﬂm
and mouse events (o

M
X window Server
Session Manager
gnome-session, ksmserver

= Provided on Linux

Desktap Environment - Application and
File Marsgeme
Gome/KDE panes,desktop lcon managers

Toolkits
GTK, Ot Maif, Xaw

as Xlib
Display Manager - Local X Server Startup
. and User Authentication
= Provides network ‘gam, hdm, xdm
enabled GUI

;Wmuuwimw—lhmhy Hardware Management
g

= Layering allows for

use for custom
window managers

Network Transports - lent Server Connections
TCP/R Unix domain sockets

TCSS558: Applied Distributed Computing [Winter 2024]

January 30, 2024 School of Engineering and Technology, University of Washington - Tacoma

L8.68

67

EXAMPLE: VNC SERVER

®" sudo apt-get update

ubuntu 16.04
sudo apt-get install ubuntu-desktop

daemon metacity nautilus gnome-terminal

" # on ubuntu 2 18.04
" sudo apt install xfce4 xfced-goodies

sudo apt-get install tightvncserver # both

Start VNC server to create initial config file
® vncserver :1

= How to Install VNC server on Ubuntu EC2 Instance VM:

sudo apt-get install gnome-panel gnome-settings-

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January 30, 2024 School of Engineering and Technology, University of Washington - Tacoma

1869

69

" On the VM:
= Edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 18.04):

EXAMPLE: VNC SERVER - UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfced &

TCs5558: Applied Distributed Computing [Winter 2024]

‘ GV School of Engineering and Technology, University of Washington -Tacoma

71

Slides by Wes J. Lloyd

68

EXAMPLE: VNC SERVER - UBUNTU 16.04

= On the VM: edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 16.04):
#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION BUS_ADDRESS

[-x /etc/vnc/xstartup | && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2024] 1570

‘ January30,2024 School of Engineering and Technology, University of Washington - Tacoma

70

EXAMPLE: VNC SERVER - 3

= On the VM: reload config by restarting server
® vncserver -kill :1

® vncserver :1

= Open port 22 & 5901 in EC2 security group:

Editinbound rules x
Trpe (i Protecot (1 Par Range i Sourca (i
Arywbere = 0000 o
= Anywere : o
ama s o s |
TCsS558: Applied Distributed Computing [Winter 2024] o

‘ CLETER School of Engineering and Technology, University of Washington - Tacoma

72

L8.12

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 30, 2024

EXAMPLE: VNC CLIENT EXAMPLE: VNC CLIENT - 2

= On the client (e.g. laptop): = On the client (e.g. laptop):

= Create SSH connection to securely forward port 5901 on the = Use a VNC Client to connect
EC2 instance to your localhost port 5901

= This way your VNC client doesn’t need an SSH key

= Remmina is provided by default in Ubuntu
= Can “google” for many others
= Remmina login:

= Chose “VNC” protocol

= Log into “localhost:5901"

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example:

§ wnic - [[localhost:ss01 cannect!
; Name s Group Serve
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f - H
1 ubuntu 52.111.202.44
TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 1873 ‘ U School of Engineering and Technology, University of Washington - Tacoma 1874

73 74

REMOTE COMPUTER IN THE CLOUD THIN CLIENTS

= EC2 instance

= Thin clients
with a GUL. . .!!!

= X windows protocol
= A variety of other remote desktop protocols exist:

Remate deskiog

+ Appie Remol inal protocal for Apple Remate Deskiop on

ines.
specilc protocol leatuing audh

) remole printing, remate USB. accelerated video
callyfor high end worksiznan ren .

S8, H264-enabied.

s-platform protocol mainly used for displaying local appiicasons: X11 is network transperent

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ January 30,2023 School of Engineering and Technology, University of Washington - Tacoma 1875 January30,2024 School of Engineering and Technology, University of Washington - Tacoma

75 76

THIN CLIENTS - 2 THIN CLIENTS - 3

= Applications should separate application logic from Ul

= When application logic and Ul interaction are tightly coupled
many requests get sent to X kernel

= Client must wait for response

= Synchronous behavior and app-to-Ul coupling adverselt affects
performance of WAN / Internet

= Virtual network computing (VNC)

= Send display over the network at the pixel level
(instead of X lib events)

= Reduce pixel encodings to save bandwidth - fewer colors
= Pixel-based approaches loose application semantics
= Can transport any GUI this way

= Protocol optimlzatlons: reduce bandwidth by shrinking size of
X protocol messages

= THINC- hybrid approach

= Send video device driver commands over network
= More powerful than pixel based operations

= Less powerful compared to protocols such as X

= Send only differences between messages with same identifier
= Optimizations enable connections with 9600 kbps

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ GV School of Engineering and Technology, University of Washington - Tacoma s CLETER School of Engineering and Technology, University of Washington - Tacoma

77 78

Slides by Wes J. Lloyd L8.13

TCSS 558: Applied Distributed Computing January 30, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

TRADEOFFS: ABSTRACTION OF REMOTE TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols = Tradeoff space: abstraction level of remote display protocols
Pixel-level Graphics llb Plxel-level Graphics Ilb
VNG n X11 VNC B n Xil.:l.
< d > = U L
e Generic - no app context e Application context
e Graphics data is available
e Higher network bandwidth e Ul data/operations
e Fewer colors e Lower network bandwidth
e Utilize graphics compression e More colors
o More network traffic

TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 1879 U School of Engineering and Technology, University of Washington - Tacoma 1880

79 80

CLIENT ROLES IN PROVIDING CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY DISTRIBUTION TRANSPARENCY - 2

= Clients help enable distribution transparency of servers = Location/relocation/migration transparency

= Harness convenient naming system to allow client to infer new

= Replication transparency locations

= Client aggregates responses from multiple servers
= Only the client knows of replicas

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

Thent maching Server T erZ Server
-]
P P p— — Replication transparency
app! appl appl appl = Client aggregates responses from multiple servers
L
A x A ad = Failure transparency
imlside‘;\andles = - - /,/ = Client retries, or maps to another server, or uses cached data

request replication

. Fleptcatedrequest = Concurrency transparency

= Transaction servers abstract coordination of multithreading

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ January 30,2023 School of Engineering and Technology, University of Washington - Tacoma a1 January30,2024 School of Engineering and Technology, University of Washington - Tacoma 1882

81 82

OBJECTIVES - 1/30

= Questlons from 1/25

= Assignment 1: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 2: Key/Value Store - Posting Soon
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
| = Chapter 3.4: Servers |

TCS5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

‘ January 30, 2024

83 84

Slides by Wes J. Lloyd L8.14

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 30, 2024

SERVERS

= Cloud & Distributed Systems - rely on Llnux

" http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-

cloud-runs-on-linux-any-questions/
= |IT is moving to the cloud. And, what powers the cloud?

=Linux
= Uptime Institute survey - 1,000 IT executives (2016)

off-premise to cloud or colocation sites
= 23% expect the shift in 2017, 70% by 2020...
= Docker on Windows / Mac 0S X
= Based on LInux
= Mac: Hyperkit Linux VM
= Windows: Hyper-V Linux VM

= 50% of IT executives - plan to migrate majority of IT workloads to

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

585

SERVERS - 2

= Servers implement a specific service for a collection of clients
= Servers wait for incoming requests, and respond accordingly

= Server types
= |terative: immediately handle client requests
= Concurrent: Pass client request to separate thread

= Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

= Alternative: fork a new process for each incoming request
= Hybrid: mix the use of multiple processes with thread pools

TCS5558: Applied Distributed Computing [Winter 2024] 1886
School of Engineering and Technology, University of Washington - Tacoma

‘ January30, 2024

END POINTS

= Clients connect to servers via:
IP Address and Port Number

= How do ports get assigned?
= Many protocols support “default” port numbers
= Client must find IP address(es) of servers

= A single server often hosts multiple end points
(servers/services)

= When designing new TCP client/servers must be careful
not to repurpose ports already commonly used by others

TCSS558: Applied Distributed Computing [Winter 2024]
‘ January 30, 2024 School of Engineering and Technology, University of Washington - Tacoma

1587

TYPES OF SERVERS

=Daemon server
= Example: NTP server

= Superserver

= Stateless server
= Example: Apache server

= Stateful server
= Object servers

= EJB servers

TCs5558: Applied Distributed Computing [Winter 2024]

GV School of Engineering and Technology, University of Washington -Tacoma

89

Slides by Wes J. Lloyd

86

packetlife.net

ComMMON PORTS
TCP/UDP Pert Numbers

7 Ecne 554 ATse 2745 S ceor-eo01
19 Chargen 548547 DHCPVG 2987 Symantec AV 6970 Guicktime
2021 12 560 rmoritor 3050 nterbase DB 7212 Ghestsurt
22 N sez 307 76487648
23 Toine: sa7 sure 3124 HTTE Proy 8000 ntormct Radia
23 sure 591 FiieMaker 3127 R 8080 HITE Prary
42 WIS Repiication 593 Mcrosoft DEOM 3128 HTTP Prosy 80868087 Kaspersky AV
43 wHois 831 intemet Printing 3222 GL8e 8118 Privexy
48 TACACS 636 3280 15C51 Target 8200 VMware Server
53 ons 839 MsOP (M) 3308 MysQL 8500 Adobe CoidFusion
6768 DHCHIEOOT 835 L0P (uPLS) 3389 Terminal Server a7e7 SR
& T 891 M5 Exchange 3689 Tunes 8sss
0 Gopher 860 iscs! 3680 Subversion 9100 HP eiDirect
9 Finger 873 rsync s 92019103 Hacula
80 HrT 902 yaare Server 37843785 Versrio 119
88 Kerberos an5.900 [IEEUESSENNIN 4333 ms0L 9800 WenDAV
102 M5 Exchange 993 [AREERISSININ a44s sss EREGN
110 poP3 a9s 4868 Google Deskion P |
113 ident 1028 Microsoft RPC 672 S 9989 Urchin
118 WATP (Usenct) 1026-1028 Windaws Messenger 4899 Racmin 10000 Wetrin
123 wrP 1080 SOCKS Proxy 5000 UPnP 10000 8ackiptree
138 Microsoft APC 1050 EEEI 5001 Singbox 1011320116 Netio
157138 Netaics 1194 Openven 5001 ipert 11371 OpentGe
143 MAPs 1214 GES 50045005 TP 1203512036 RIS
161162 SHmP 1281 Nessus. ‘5050 Yahoa! Messanger | 12345 S
177 xomee 1311 Del Opentanage 5060 IF 13720-13721 NesBacup
179 BCP 1337 ISTER— 180 14567

88

NTP EXAMPLE

= Daemon servers
= Run locally on Linux
= Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)
Daemons routes local client traffic to the configured
endpoint servers
University of Washington: time.u.washington.edu
Example “ntpg -p”
= Queries local ntp daemon, routes traffic to configured server(s)

TCsS558: Applied Distributed Computing [Winter 2024] o0

‘ CLETER School of Engineering and Technology, University of Washington - Tacoma

90

L8.15

http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 30, 2024

SUPERSERVER

® Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines
= Used to configure box as a server for multiple internet services
E.g. ftp, pop, telnet
= inetd daemon responds to multiple endpoints for multiple
services
= Requests fork a process to run required executable program

= Check what ports you're listening on:
" sudo netstat -tap | grep LISTEN

TCSS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 1891

INTERRUPTING A SERVER

= Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

= Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)
2. Use a separate connection (different port) for admin control info

= Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCSS558: Applied Distributed Computing [Winter 2024] 1892

‘ U School of Engineering and Technology, University of Washington - Tacoma

91

STATELESS SERVERS

= Data about state of clients is not stored
= Example: web application servers are typically stateless
= Also function-as-a-service (FaaS) platforms

= Many servers maintain information on clients (e.g. log files)

= Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

= Soft state: server maintains state on the client for a limited
time (to support sessions)
= Soft state information expires and is deleted

TCSS558: Applied Distributed Computing [Winter 2024]
‘ January 30,2023 School of Engineering and Technology, University of Washington - Tacoma 1893

93

STATEFUL SERVERS - 2

= Session state

= Tracks series of operations by a single user

= Maintained temporarily, not indefinitely

= Often retained for multi-tier client server applications
Minimal q if ion state is lost
= Clients must start over, reinitialize sessions

= Permanent state
= Customer information, software keys

= Client-side cookies
= When servers don’'t maintain client state, clients can store state
locally in “cookies”
= Cookies are not executable, simply client-side data

TCSS558: Applied Distributed Computing [Winter 2024]
‘ GV School of Engineering and Technology, University of Washington - Tacoma 1898

95

Slides by Wes J. Lloyd

92

STATEFUL SERVERS

Maintain persistent information about clients
Information must be explicitly deleted by the server
= Example:
File server - allows clients to keep local file copies for RW
= Server tracks client file permissions and most recent versions
= Table of (client, file) entries

If server crashes data must be recovered
= Entire state before a crash must be restored
= Fault tolerance - Ch. 8

TCSS558: Applied Distributed Computing [Winter 2024] 150

‘ January30,2024 School of Engineering and Technology, University of Washington - Tacoma

94

OBJECT SERVERS

= OBJECTIVE: Host objects and enable remote client access
= Do not provide a specific service
= Do nothing if there are no objects to host
= Support adding/removing hosted objects
= Provide a home where objects live
= Objects, themselves, provide “services”

= Object parts
= State data
= Code (methods, etc.)

= Translent object(s)
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCSS558: Applied Distributed Computing [Winter 2024] o6

‘ CLETER School of Engineering and Technology, University of Washington - Tacoma

96

L8.16

TCSS 558: Applied Distributed Computing January 30, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OBJECT SERVERS - 2 EJB - ENTERPRISE JAVA BEANS

= Shoul rvers Isol. mem for Instan
= Share neither code nor data
= May be necessary if objects couple data and implementation

EJB- specialized Java object hosted by a EJB web container
4 types: stateless, stateful, entity, and message-driven beans

Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications

EJB web application containers integrate support for:

= Object server threading designs:

= Single thread of control for object server = Transaction processing
= One thread for each object = Persistence
= Servers use separate thread for client requests = Concurrency
= Event-driven programming
= Threads created on demand vs. = Asynchronous method invocation
Server maintains pool of threads = Job scheduling

= Naming and discovery services (JNDI)
= What are the tradeoffs for creating server threads on demand vs. ® Interprocess communication
using a thread pool?

= Security
= Software ploy to an ication server
TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 1897 U School of Engineering and Technology, University of Washington - Tacoma 1898

97 98

APACHE WEB SERVER SERVER CLUSTERS

= Highly configurable, extensible, platform independent = Hosted across an LAN or WAN

= Supports TCP HTTP protocol communication = Collection of interconnected machines
= Uses hooks - placeholders for group of functions = Can be organized in tiers:

= Requests processed in phases by hooks = Web server -> app server > DB server

= Many hooks: ook Mo Fucien Mok = App and DB server sometimes integrated

= Translate a URL TI I [Dl I QDI H Logical switch

Appicaonicompute servers Distibuted
. (possibly multipie) fleidatabase
= Write info to log . /{ink botwesn ' sytem
b T - function and h 1
= Check client ID -
) foor|—fec] o] Dspatored |
= Check access rights §H TR T - ‘ " Y —
5 w} == -
= Hooks processed in order 251 Hooks point to functions in modules |
enforcing flow-of-control *
g |]
= Functions in replaceable Fanckons cafled par bock lj— —-—
modules Requist * Fasponse Exst tior Serond ser Third tier
TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ January 30,2023 School of Engineering and Technology, University of Washington - Tacoma 1899 ‘ January30,2024 School of Engineering and Technology, University of Washington - Tacoma (8100

99 100

LAN REQUEST DISPATCHING

LAN REQUEST DISPATCHING - 2

= Front end of three tier architecture (logical switch) provides

= Who is the best server to handle the request?
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection = Switch plays important role in
requests, hands off to a server distributing requests single TEP.
= Example: hardware load balancer (F5 networks - Seattle) = Implements load balancing
= HW Load balancer - OSI layers 4-7 = Round-robln - routes client

requests to servers in a looping
fashion

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ GV School of Engineering and Technology, University of Washington - Tacoma Lot CLETER School of Engineering and Technology, University of Washington - Tacoma 1102

= Network-address-translation (NAT) approach:
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
= Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

101 102

Slides by Wes J. Lloyd L8.17

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 30, 2024

WIDE AREA CLUSTERS

= Deployed across the internet

= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

= Cloud computing simplifies building WAN clusters

= Resource from a single cloud provider can be combined to
form a cluster

= For deploying a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

= (1) a single availability zone (e.g. us-east-1e)?

® (2) across multiple availability zones?

TCSS558: Applied Distributed Computing [Winter 2024]
U School of Engineering and Technology, University of Washington - Tacoma 18103

WAN REQUEST DISPATCHING

= Goal: minimize network latency using WANs (e.g. Internet)
= Send requests to nearby servers

= Request dispatcher: routes requests to nearby server

= Example: Domain Name System
= Hierarchical decentralized naming system

= Linux: find your DNS servers:

Find you device name of interest
nmcli dev

Show device configuration

nmcli device show <device name>

TCSS558: Applied Distributed Computing [Winter 2024] 18108

U School of Engineering and Technology, University of Washington - Tacoma

103

104

DNS LOOKUP

= First query local server(s) for address
= Typically there are (2) local DNS servers
= One is backup
= Hostname may be cached at local DNS server
= E.g. www.google.com
= If not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCsS558: Applied Distributed Computing [Winter 2024] 15105
School of Engineering and Technology, University of Washington - Tacoma

‘ January 30, 2024

Local Name Server

5. Merative Query to root
4. Check ——— (root)
Cache Name Server for .edy
L ommg.
© 13 Update, Root Name Server
Cache s
Cache
Server 7. Herative
3. Recursive Query to edu
- (bl k-
‘Query - edu
“I'P e god 8 Name Server for
—‘ == googlepler.edu
2. Check ¥ .edu Name Server
Fon 9. terative Query .
§ to googleplex.edu
© 15, Update —_—
Cache 10. Hame Server for googleplex
Cache Resolver compsci.googleples.edy
s I googleplex.edu
1 “"n“"":'" Name Server
* 16 Requested 11. Nerative Query to

Y (|co
— sorond
m 12.1P Address for
) ey edu
mm’#%%
.

4T, HTTP Request
User & Browser to Resolved Address
Client

105

DNS: LINUX COMMANDS

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

" traceroute <ip addr / hostname>
= Traces network path to destination
= By default, output is limited to 30 hops, can be increased

TCSS558: Applied Distributed Computing [Winter 2024]
‘ GV School of Engineering and Technology, University of Washington - Tacoma 18107

107

Slides by Wes J. Lloyd

106

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
= Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

= From VA EC2 instance, ping WA www.google server
= Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
= Pinging the WA-local server is ~60x slower from VA

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2024] o108

‘ CLETER School of Engineering and Technology, University of Washington - Tacoma

108

L8.18

http://www.google.com/
http://www.google.com/
http://www.google.com/

TCSS 558: Applied Distributed Computing January 30, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

DNS EXAMPLE - WAN DISPATCHING

QUESTIONS

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
l (e, 21 School of Engineering and Technology, University of Washington - Tacoma. 1810 TS School of Engineering and Technology, University of Washington - Tilfo

109 110

Slides by Wes J. Lloyd L8.19

http://www.google.com/
http://www.google.com/

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/30
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/25
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: Feedback - 4
	Slide 10: OBJECTIVES – 1/30
	Slide 11: AWS Cloud Credits update
	Slide 12: Assignment 1
	Slide 13: Testing connectivity to server (pg 16-18)
	Slide 14: OBJECTIVES – 1/30
	Slide 15: Ch 2.3: System architectures
	Slide 16: Review questions
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: OBJECTIVES – 1/30
	Slide 25: Ch. 3: processes Ch. 3.1: threads
	Slide 26: Chapter 3
	Slide 27: OBJECTIVES – 1/30
	Slide 28: Ch. 3.1 - threads
	Slide 29: Threads - 2
	Slide 30: Threads - 3
	Slide 31: Osv: one process, many threads
	Slide 32: Threads - 4
	Slide 33: We will return at 2:40pm
	Slide 34: blocking threads
	Slide 35: Interprocess communication
	Slide 36: OBJECTIVES – 1/30
	Slide 37: Context switching
	Slide 38: Context switch – cache perturbation
	Slide 39: OBJECTIVES – 1/30
	Slide 40: Threading models
	Slide 41: Threading models - 2
	Slide 42: Application examples
	Slide 43: OBJECTIVES – 1/30
	Slide 44: Multithreaded clients
	Slide 45: Multiple threads
	Slide 46: Process metrics
	Slide 47: Load average
	Slide 48: Thread-level parallelism
	Slide 49: Multithreaded servers
	Slide 50: Single thread & fsm servers
	Slide 51: Server design alternatives
	Slide 52: OBJECTIVES – 1/30
	Slide 53: Ch. 3.2: virtualization
	Slide 54: virtualization
	Slide 55: Types of virtualization
	Slide 56: Types of virtualization - 2
	Slide 57: Types of virtualization - 3
	Slide 58: Evolution of Aws virtualization
	Slide 59: Aws virtualization - 2
	Slide 60: Aws virtualization - 3
	Slide 61: Aws virtualization - 4
	Slide 62: OBJECTIVES – 1/30
	Slide 63: Ch. 3.3: clients
	Slide 64: Types of clients
	Slide 65: clients
	Slide 66: X windows
	Slide 67: X windows - 2
	Slide 68
	Slide 69: EXAMPLE: Vnc server
	Slide 70: Example: Vnc server – ubuntu 16.04
	Slide 71: Example: Vnc server – ubuntu 18.04
	Slide 72: Example: Vnc server - 3
	Slide 73: Example: Vnc client
	Slide 74: Example: Vnc client - 2
	Slide 75: Remote computer in the cloud
	Slide 76: Thin Clients
	Slide 77: Thin clients - 2
	Slide 78: Thin clients - 3
	Slide 79: Tradeoffs: abstraction of remote display protocols
	Slide 80: Tradeoffs: abstraction of remote display protocols
	Slide 81: Client roles in providing distribution transparency
	Slide 82: Client roles in providing distribution transparency - 2
	Slide 83: OBJECTIVES – 1/30
	Slide 84: Ch. 3.4: servers
	Slide 85: servers
	Slide 86: Servers - 2
	Slide 87: End points
	Slide 88
	Slide 89: Types of servers
	Slide 90: Ntp example
	Slide 91: Superserver
	Slide 92: Interrupting a server
	Slide 93: Stateless servers
	Slide 94: Stateful servers
	Slide 95: Stateful servers - 2
	Slide 96: Object servers
	Slide 97: Object servers - 2
	Slide 98: Ejb – enterprise java beans
	Slide 99: Apache web server
	Slide 100: Server clusters
	Slide 101: Lan Request dispatching
	Slide 102: Lan Request dispatching - 2
	Slide 103: Wide area clusters
	Slide 104: Wan request dispatching
	Slide 105: Dns lookup
	Slide 106
	Slide 107: Dns: Linux commands
	Slide 108: Dns example – wan dispatching
	Slide 109: Dns example – wan dispatching
	Slide 110: Questions

