TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 25, 2024

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
|

System Architectures I,
Processes

Wes J. Lloyd

School of Engineering
& Technology (SET)
University of Washington - Tacoma

OBJECTIVES - 1/25

| = Questlons from 1/23 |
= Assignment 1: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

TCSS558: Applied Distributed Computing [Winter 2024]

‘ T School of Engineering and Technology, University of Washington - Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

== TCSS558A » Assignments

Home

* Upcoming Assignments

o TCSS 558 - Online Daily Feedback Survey - 1/5

ot avalsbie undil Jan 5 ot 1:30pm | Bue Jan 6 at 10pm

TCSS558: Applied Distributed Computing [Winter 2024]

January2s; 2024 School of Engineering and Technology, University of Washington - Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan &6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59m 1dsy Time Limit None
Question 1 0.5 pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 a 4 s 3 7 8 s 10

Equa1 ety

Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past

TCSS558: Applied Distributed Computing [Winter 20:

241
January 25, 2024 School of Engineering and Technology, University of Washington - Tacoma 74

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (22 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.95 (I - previous 6.53)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.45 (I - previous 5.67)

TCsS558: Applied Distributed Computing [Winter 2024]

(RN School of Engineering and Technology, University of Washington -Tacoma

FEEDBACK FROM 1/23

= I'm confused about architectural styles and system
architectures, what are the differences between them?

= System architectures “are” architectural styles, that provide
general, reusable solutions (designs/structures) for commonly
occurring system design problems

= Styles (and architectures) are represented with components
and connectors

= An implementation of a system can be a “realization” of a
given architectural style

= For example, for a given system architecture design, we can
ask - - what Is the architectural style ?

= Is it centralized client-server? Centralized multi-tiered? Structured
peer-to-peer? Unstructured peer-to-peer? etc...

TCsS558: Applied Distributed Computing [Winter 2024]

CLEERR School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L7.1

TCSS 558: Applied Distributed Computing January 25, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/25

AWS CLOUD CREDITS UPDATE

= We have been approved to receive AWS CLOUD CREDITS
for TCSS 558 - Winter 2024
= Credits will be provided by email request

= Chapter 2.3: System Architectures = Please include: 12-digit AWS account ID, and AWS account email
= Centralized system architectures

= Decentralized peer-to-peer architectures

® Questions from 1/23

ssignment 1: Cloud Computing Infrastructure Tutoria
= testFibPar.sh and testFibService.sh scripts

= Credits will first be provided for students not in F'23 TCSS562
= Request codes by sending an email with the subject:

= Hybrid architectures “AWS CREDIT REQUEST” to wlloyd@uw.edu
= Chapter 3: Processes = Codes can also be obtained in person (or zoom), in the class,

= Chapter 3.1: Threads during the breaks, after class, during office hours, by appt
Context Switches = Credit codes are carefully exchanged, and not shared by IM
Threading Models = For students unable to create a standard AWS account:
Multithreaded clients/servers Please contact instructor by email -

= Chapter 3.2: Virtualization Instructor will work to create hosted IAM user account

\ 25,2028 Ty rierg o washingion - Tacoms \ 16,2028 S Ty rierg o wasington - Tacoma e

ASSIGNMENT 1 TESTING CONNECTIVITY TO SERVER (PG 16-18)
= Preparing for Assignment 1: = testFibPar.sh script is a parallel test script
Intro to Cloud Computing Infrastructure and Load Balancing = Orchestrates multiple threads on client to invoke server
= Establish AWS Account - Standard account IR Wines [parEiliel) _
= To simplify coordination of parallel service calls in BASH,
= Now posted: testFibPar.sh script ignores errors !!!
= Task O - Establish local Linux/Ubuntu environment = To help test client-to-server connectivity, there is also a
. . H i h %
= Task 1 -AWS account setup, obtain user credentials testFlbService.sh script that supports 3 tests .
=Task 2 - Intro to: Amazon EC2 & Docker: create Dockerfile = TEST 1: Network layer test H
for Apache Tomcat = Ping (ICMP) <
; = TEST 2: Transport layer test 5 [BIEnspors
=Task 3 - Create Dockerfile for haproxy (software load balancer) : lransport layer) H
.) . = TCP: telnet (TCP Port 8080) - security group (fw) test E -
Task 4 - Working with Docker-Machine = TEST 3: Application laver test i :
=Task 5 - Submit Results of testing alternate server configs = HTTP REST - web service test - Model Layers
[z | et e [s e esngon e o rons
9 10

OBJECTIVES - 1/25

® Questions from 1/23
= Assignment 1: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
| = Centrallzed system archltectures |
= Decentralized peer-to-peer architectures
= Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEERR School of Engineering and Technology, University of Washington - Tacoma i

CH 2.3: SYSTEM

ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2024]
Sonuay2s 2028 School of Engineering and Technology, University of Washington -

11 12

Slides by Wes J. Lloyd L7.2

mailto:wlloyd@uw.edu

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 25, 2024

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures

= Client-server
| =Multitiered |

= Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

= Hybrid architectures

TCSS558: Applied Distributed Computing Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma v

MULTITIERED ARCHITECTURES

= Where should functionality be distributed?
= At the client?
= At the server?

Client machine

|Userinmr{qc_gj User interface| | User interface | | Userinterface| | User interface
T ‘ Application J Application Application
User interface Pl N I a——

[appication | [Application | T‘Apu\lcalwﬂﬂ o

[Dstabase | [Database | [Database | [Database | |"'Dmsnm ‘

rver maching

= Why should we consider component composition?

TCSS558: Applied Distributed Computing [Winter 2024] e
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

13

14

ME--
0000

M: Tomcat Application Server
D: Postgresql DB

F: nginx file server

L: Logging server (high O/H)

Component Composition Example

* An application with 4 components has 15 compositions
* One or more component(s) deployed to each VM
* Each VM launched to separate physical machine

M: Tomcat Application Server
D: Postgresql DB

F: nginx file server

L: Logging server (high O/H)

15

Bell's Number: 4 15
5 52
k: number of ways
n components can be 6 203
distributed across containers 7 877
8 4,140
9 21,14
7
n o j

: Tomcat Application Server
: Postgresql DB

nginx file server

Logging server (high O/H)

rTmo=

17

Slides by Wes J. Lloyd

16

Resource footprint
§

00

o
s
L
o
e
o
o
o
o

CPUtime diskreads diskwrites networkreads network writes

18

L7.3

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 25, 2024

Resource utilization profile changes
from component composition

M-bound RUSLE2 - Soil Erosion Model Webservice
* Box size shows absolute deviation (+/-) from mean

SN

A Resource Utilization Change\

Shows relative magnitude of performance variance) Min to Max Utilization -

| Tl evute o
E%, - D-bound: Moditiod service, D isscg;pzltjeebozl;d E%, CPU time: 6.5% 55% ©»
2 3 Disk sector reads: 14.8% 819.6% &
& & Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145% g

Network bytes sent: 143.7% 143.9% pe1

19 20
PERFORMANCE IMPLICATIONS OF PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS COMPONENT DEPLOYMENTS
I A Performance Change:
HN Min to max performance
=1 |
Slower deployments E o+ {I [I I] S M bound' 140/
ol | D-bound: 25.7%
Faster deployments g F: -bound: " °
" U oo
21 22

MULTITIERED ARCHITECTURES - 2

=MD FL architecture
= M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client
Cliant Application Databas:
server server
Request |
operation

Request

Wit for | Wi for
reply | data

Retum

MULTITIERED RESOURCE SCALING

= Vertlcal distribution
® The distribution of “M D F L”
= Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server
= Vertical distribution impacts “network footprint” of application
= Service isolation: each component is isolated on its own HW
= Horlzontal distributlion ﬁﬁﬁﬁ
= Scaling an individual tier
= Add multiple machines and distribute load

I(o data
m .
reply = Load balancing
TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ [ETELE, 0 School of Engineering and Technology, University of Washington - Tacoma v QanuanyZs 2020 School of Engineering and Technology, University of Washington - Tacoma 7

23

Slides by Wes J. Lloyd

24

L7.4

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

= Horlzontal distribution cont’d

= Distributed hash table
= Or replica servers

MULTITIERED RESOURCE SCALING - 2

= Sharding: portions of a database map” to a specific server

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

w25

January 25, 2024

OBJECTIVES - 1/25

® Questions from 1/23
= Assignment 1: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
| = Decentralized peer-to-peer architectures |
= Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

TCSS558: Applied Distributed Computing [Winter 2024] 6
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

25

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured

= Unstructured
= Hierarchically organized
= Hybrid architectures

TYPES OF SYSTEM ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January2s; 2024 School of Engineering and Technology, University of Washington - Tacoma

w27

26

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

= Client/server:
= Nodes have specific roles

= Peer-to-peer:
= Nodes are seen as all equal...

= How should nodes be organlzed for communication?

TCSS558: Applied Distributed Computing [Winter 2024]
‘ January2s;2024 School of Engineering and Technology, University of Washington - Tacoma .28

27

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

= Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

= Nodes store data associated with a subset of keys

TCsS558: Applied Distributed Computing [Winter 2024]

‘ (RN School of Engineering and Technology, University of Washington - Tacoma

w2

28

DISTRIBUTED HASH TABLE (DHT)

= Distributed hash table (DHT) (ch. 5)
= Hash function

key(data item) = hash(data item’s value)
= Hash function “generates” a unique key based on the data
= System supports data lookup via key

= Any node can receive and resolve the request
= Lookup function determines which node stores the key

existing node = lookup (key)

= Node forwards request to node with the data

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEERR School of Engineering and Technology, University of Washington - Tacoma 1730

29

Slides by Wes J. Lloyd

30

L7.5

TCSS 558:

Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

= Statically sized 4-D hypercube, every node has 4 connectors

= 2 x 3-D cubes, 8 vertices, 12 edges

= Node IDs represented as 4-bit code (0000 to 1111)

= Hash data items to 4-bit key (1 of 16 slots)

= Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

0010

o110
1110

TCsS558: Applied Distributed Computing Winter 2024]
U School of Engineering and Technology, University of Washington - Tacoma 3

31

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

0111] Nelghbors:
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)
0110 (1 bit different than 1110) 0101 (3 bits different- bad path)

= Does It matter which node Is selected for the first hop?

0010

o110 ;
—__ _ 1110

TCSS558: Applied Distributed Computing [Winter 2024]
January2s; 2024 School of Engineering and Technology, University of Washington - Tacoma 1733

33

CHORD SYSTEM

= Data items have m-bit key

Data item is stored at closest “successor” node with ID > key k
Each node maintains finger table of successor nodes

Client sends key/value

lookup to any node . A, : Queries
< [}
= Node forwards client e @ o /)l \ clochwise
request to node with # AR

m-bit ID closest to, but
not greater than key k
Nodes must contlnually

Node respansiie for

refresh finger tables by . ron BT
communicating with VA B‘r
adjacent nodes to - ’ &
incorporate node i *@ ot A
joins/departures D482

[somarzsan [Ttk o oo M 220

January 25, 2024

FIXED HYPERCUBE EXAMPLE - 2

= Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

= Node 1110 is not a neighbor to 0111

= Which connector leads to the shortest path?

0.

0010

o110

‘ January 25, 2024

TCSS558: Applied Distributed Computing [Winter 2024] o
School of Engineering and Technology, University of Washington - Tacoma

32

DYNAMIC TOPOLOGY

= Fixed hypercube requires static topology
= Nodes cannot join or leave

= Relies on symmetry of number of nodes

= Can force the DHT to a certain size

= Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)
= Shortest path between any pair of nodes is ~ order O(log N)
= N is the total number of nodes

TCS5558: Applied Distributed Computing [Winter 2024] 3
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

34

CHORD SYSTEM - 2

= CHORD SYSTEM: How is the shortest path O(log N)?
(N Is the number of nodes)

= Chord provides an alternative to implement a DHT but
without the fixed size requirement as with the
four-dimensional hypercube

= Each node keeps a finger table containing m entries
=m is the number of bits in the hash key

= A query is sent to an arbitrary node

= The node will look up the hash k in the finger table

= The finger table identifies the node to send the query to

= Nodes in the chord system are responsible for
maintaining up-to-date finger tables

TCSS558: Applied Distributed Computing [Winter 2024] 6
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

35

Slides by Wes J. Lloyd

36

L7.6

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 25, 2024

5-NODE CHORD SYSTEM

= Consider a 5 node Chord system with a 4-bit hash

= A query is sent to an arbitrary node /—\

fnger table Minger table

Lookup item
with hash key

Send query to z:::-.,:;
arbitrary node T
win
ul

TCSS558: Applied Distributed Computing Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 37

= NADECUARD SYSTEM

Data each node stores in this 5-node chord:
n0 k={14,15,0}

n3 k={1,2,3}

né k={4,56} with a 4-bit hash
n10k={7,8,9,10}

n13k={11,12,13} ode

fnger table Minger table

Lookup item

with hash key
Send query to finger table
arbitrary node tar | nad
R

TCss558: Applied Distributed Computing [Winter 2024]
‘ T School of Engineering and Technology, University of Washington - Tacoma 1738

37

38

HOW TO COMPUTE FINGER TABLE (FT)

= jth entry in FT at peer with id n is first node >= (n+2/)(mod 2"‘)
= For our example hash has 4 bits (m=4)

= Will index storage location of 16 items (0-15) n 3
= Consider that we have 5 nodes
= Let’s compute the finger table for n3 (node 3) 6
= Every time a node wants to lookup a key it will n10
pass the query to the flrst node which is the closest successor
(going clockwise) of k in it’s finger table
u 3 FIngngah e fori=0 to m il
lon n: 1]
(3+2')(mod 24) first node going clockwise >= idx items w hash
né hash 1=0
5 né hash I=1
7 ni0 hash I=2
11 ni3 hash I=3
3 d ibuted i i
[somarznaun [T ket o o Mt 2 o

5-NODE CHORD SYSTEM

= Consider a 5 node Chord system with a 4-bit hash

= A query is sent to an arbitrary node /—\

fnger table Minger table

Lookup item
with hash key
k=8

Send query to
arbitrary node

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January2s;2024 School of Engineering and Technology, University of Washington - Tacoma

39

TO FIND THE DATA

= To lookup an item with hash key k, the node will pass the
query to the closest successor of k in the finger table (the
node with the highest ID in the circle whose ID is smaller than
k)

= |f k =8 and the query first goes to node n3

= Query is passed to node n10

= Data each node is responsible for storing in this 5-node chord:
n0 k={14,15,0}
n3 k={1,2,3}
n6 k= {4,5,6}
n10 k={7,8,9,10}
n13 k={11,12,13}

= Path to data n3 - n10 (data found) - 1 hop ~ O(log n)

TCSS558: Applied Distributed Computing [Winter 2024]
‘ (RN School of Engineering and Technology, University of Washington -Tacoma e

41

Slides by Wes J. Lloyd

40

HOW MANY HOPS ?

= To find data item “n”? where hops ~ O(log n)

mn=4

Tinger table

mn=8
=n=15
mp=11

Mager table

Tinger tabls

TCsS558: Applied Distributed Computing [Winter 2024]
‘ CLEERR School of Engineering and Technology, University of Washington - Tacoma e

42

L7.7

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

WE WILL RETURN AT
4:59PM

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

= Flooding
® [Node u] sends request for data item to all neighbors
= [Node v]
= Searches locally, responds to u (or forwarder) if having data
= Forwards request to ALL neighbors
= Ignores repeated requests
= Features
= High network traffic
= Fast search results by saturating the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified
= Requests can “retry” by gradually increasing TTL/max hops until

TCSS558: Applied Distributed Computing [Winter 2024]

January2s; 2024 School of Engineering and Technology, University of Washington - Tacoma

data is found
s

45

SEARCHING FOR DATA - 3

= Policy-based search methods

= Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

= Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

= Favor neighbors having highest number of neighbors
= Can help minimize hops

TCSs558: Applied Distributed Computing [Winter 2024]

(RN School of Engineering and Technology, University of Washington - Tacoma

a7

47

Slides by Wes J. Lloyd

January 25, 2024

UNSTRUCTURED PEER-TO-PEER

= No topology: How do nodes find out about each other?
= Each node maintains adhoc list of neighbors
= Facilitates nodes frequently joining, leaving, adhoc systems

= Nelghbor: node reachable from another via a network path

= Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
= Forms a “random graph”
= Predetermining network routes not possible

= How would you calculate the route algorithmically?

= Routes must be discovered

TCSS558: Applied Distributed Computing [Winter 2024]

‘ T School of Engineering and Technology, University of Washington - Tacoma 1ran

44

SEARCHING FOR DATA - 2

= Random walks
® [Node u] asks a randomly chosen neighbor [node v]

= If [node v] does not have data, forwards request to a
random neighbor

= Features
= Low network traffic
= Akin to sequential search
= Longer search time

= [node u] can start “n” random walks simultaneously to
reduce search time

= As few as n=16..64 random walks sufficient to reduce search
time (LVetal. 2002)

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCSS558: Applied Distributed Computing [Winter 2024]

January2s;2024 School of Engineering and Technology, University of Washington - Tacoma 17

46

HIERARCHICAL
PEER-TO-PEER NETWORKS

= Problem:

Adhoc system search performance does not scale well as
system grows

= Allow nodes to assume ROLES to improve search
= Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)
= Broker node - tracks resource usage and node availability
Track where data is needed
Track which nodes have capacity (disk/CPU resources) to host data
= Node roles
= Super peer -Broker node, routes client requests to storage
nodes
= Weak peer - Store data

TCSS558: Applied Distributed Computing [Winter 2024]

CLEERR School of Engineering and Technology, University of Washington - Tacoma e

48

L7.8

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

HIERARCHICAL
PEER-TO-PEER NETWORKS - 2

= Super peers
= Head node of local centralized network
= Interconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

= Leader-election problem:
= Who can become a
super peer?
= What requirements
must be met to become
a super peer?

Weak peer ¢y !
&0

TCs5558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma

49

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

| = Hybrid architectures |

‘ January 25, 2024

TCsS558: Applied Distributed Computing [Winter 2024] s
School of Engineering and Technology, University of Washington - Tacoma

51

HYBRID
ARCHITECTURES - 2

= Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

= End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

= Cloud - in the sky
= compute/resource capacity is huge, but far away...
= Fog > (devices) on the ground
= compute/resource capacity is constrained and local...

TCSS558: Applied Distributed Computing [Winter 2024] s
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

January 25, 2024

OBJECTIVES - 1/25

® Questions from 1/23
= Assignment 1: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
| = Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

TCsS558: Applied Ditributed Computing [Winter 2024]
T School of Engineering and Technology, University of Washington - Tacoma 1750

50

HYBRID
ARCHITECTURES

> <& > Eneryina natvers

= Combine centralized server concepts with decentralized
peer-to-peer models

= Edge-server systems:
= Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

= Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

= Example:

= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

= https://www.Infoq.com/news/2017/07/aws-lambda-at-edge

TCSS558: Applied Distributed Computing [Winter 2024]
January2s;2024 School of Engineering and Technology, University of Washington - Tacoma 172

52

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BltTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

= Original implementation features hybrid architecture
= Leverages idle client network capacity in the background
= User joins the system by interacting with a central server

= Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

= Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth Is reduced!!

= Chunks can be downloaded in parallel from distributed nodes

TCSS558: Applied Distributed Computing [Winter 2024]
CLEERR School of Engineering and Technology, University of Washington - Tacoma s

53

Slides by Wes J. Lloyd

54

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 25, 2024

|| |
u |
Which of the following system architectures features a deterministic -
number of steps to find data distributed across nodes in the system 7
A - Unstructured peer-to-peer architecture
0%
B - Hierarchical peer-to-peer architecture
0%
C - Distributed Hash Table based on a Chord System
0%
D - All of the above
0%
None of the above
0%
.. October24, 2015 TCSS558: Applied Distributed Computing [Winter 2024] — ..

REVIEW QUESTIONS

= What is the difference in finding/disseminating data in
unstructured vs. structured peer-to-peer networks?
= Spreading/finding data
= Flooding, Random walk

= What are some advantages of a decentralized structured peer-
to-peer architecture?

= What are some disadvantages?

= What are some advantages of a decentralized unstructured
peer-to-peer architecture?

= What are some disadvantages?

TCSS558: Applied Distributed Computing [Winter 2024]

{EIUIETRS G School of Engineering and Technology, University of Washington - Tacoma

76

55

56

OBJECTIVES - 1/25

® Questions from 1/23

= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
|= Chapter 3: Processes |
= Chapter 3.1: Threads
= Context Switches
= Threading Models
= Multithreaded clients/servers
= Chapter 3.2: Virtualization

= Assignment 1: Cloud Computing Infrastructure Tutorial

TCSS558: Applied Distributed Computing [Winter 2024]

l January2s, 2024 School of Engineering and Technology, University of Washington - Tacoma

s

57

CHAPTER 3

= Chapter 3 titled “processes”

details
= “Grab bag” of topics

= Processes/threads
= Virtualization

= Clients

= Servers

= Code migration

= Covers variety of distributed system implementation

TCsS558: Applied Distributed Computing [Winter 2024]

l (RN School of Engineering and Technology, University of Washington - Tacoma

s

59

Slides by Wes J. Lloyd

scale
[rueing processes)

Workdaad dversity
process types)

CH. 3: PROCESSES
CH. 3.1: THREADS

OBJECTIVES - 1/25

= Questions from 1/23
= Assignment 1: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
= Chapter 3: Processes

= Chapter 3.1: Threads |

= Context Switches

= Threading Models

= Multithreaded clients/servers
= Chapter 3.2: Virtualization

TCSS558: Applied Distributed Computing [Winter 2024] 5o

CLEERR School of Engineering and Technology, University of Washington - Tacoma

60

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

CH. 3.1 - THREADS

(.

= For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

= What Is the dlfference between a process and a thread?

January 25, 2024

(.

= Do several processes on an operating system share...
= Heap segment?
= Stack segment?

= Code segment?
= (review?) from Operating Systems

= Can we run multiple copies of the same code?

= These may be managed as shared pages (across processes) in
memory

= Key difference: what do threads share amongst each other
that processes do not...

= What are the segments of a program stored in memory?
= Heap segment (dynamic shared memory)
= Code segment
= Stack segment
= Data segment (global variables)

TCsS558: Applied Distributed Computing [Winter 2024] et
School of Engineering and Technology, University of Washington - Tacoma

= Processes are isolated from each other by the 0S
= Each has a separate heap, stack, code segment

‘ January 25, 2024 January 25, 2024

TCSS558: Applied Distributed Computing [Winter 2024] e
School of Engineering and Technology, University of Washington - Tacoma

61 62

OSV: ONE PROCESS, MANY THREADS

(.

= Threads avoid the overhead of process creation
= No new heap or code segments required

= What Is a context switch?

= Context switching among threads is considered to be more
efficient than context switching processes

= Less elements to swap-in and swap-out

= Unikernel: specialized single process 0S for the cloud

= Example: Osv, Clive, MirageOS (see: http://unikernel.org/pr)
= Single process operating system with many threads

= Developed for the cloud to run only one application at a time

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January 25, 2024 Sanuanv2Si2028 School of Engineering and Technology, University of Washington - Tacoma

TCsS558: Applied Distributed Computing [Winter 2024] 63
School of Engineering and Technology, University of Washington - Tacoma

63 64

THREADS - 4 BLOCKING THREADS

(.

= I[mportant implications with threads:
= (1) multi-threading should lead to performance gains

= (2) thread programming requires additional effort when
threads share memory

= Known as thread synchronization, or enabling concurrency

= Example: spreadsheet with formula to compute sum of column
= User modifies values in column

= Multiple threads:

1. Supports interaction (Ul) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

= Access to ¢ al sections of code which modify shared
variables must be mutually exclusive

= No more than one thread can execute at any given time DERg e @A

= Tasks appear as if they are performed simultaneously
= Multi core CPU
= Tasks execute simultaneously

= Critical sections must run atomically on the CPU

TCSS558: Applied Distributed Computing [Winter 2024]

QanuanyZs 2020 School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2024]
‘ IR School of Engineering and Technology, University of Washington - Tacoma e

65 66

Slides by Wes J. Lloyd L7.11

http://unikernel.org/projects/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 25, 2024

INTERPROCESS COMMUNICATION

= |[PC - mechanism using pipes, message queues, and shared
memory segments

= |[PC mechanisms incur context switching
= Process |/0 must execute in kernel mode

= How many context switches are required for process A to
send a message to process B using IPC?

ProoessA ProcessB
= #1 C/S:
Proc A->kernel thread
S1: Swikch from user space
- okl spaca l " 53 Switch from kemel
#2.C/S: — g
Kernel thread>Proc B (Oporaing system ™

52: Switch comext from
process A fo proce:

TCsS558: Applied Distributed Computing [Winter 2024] e
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

OBJECTIVES - 1/25

® Questions from 1/23
= Assignment 1: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
= Chapter 3: Processes

= Chapter 3.1: Threads
Context Switches

Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

TCSS558: Applied Distributed Computing [Winter 2024]

{EIUIETRS G School of Engineering and Technology, University of Washington - Tacoma

67

68

CONTEXT SWITCHING

= Direct overhead
= Time spent not executing program code (user or kernel)
= Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU
= Stack, code, heap, registers, code pointers, stack pointers
= Memory page cache invalidation

= Indlrect overhead
= Overhead not directly attributed to the physical actions of the
context switch

= Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)
= Primarily cache perturbation

TCsS558: Applied Distributed Computing [Winter 2024] .
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

CONTEXT SWITCH -

CACHE PERTURBATION

= Refers to cache reorganization that occurs as a result of a
context switch

= Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

= 80% performance overhead from context switching results
from this “cache perturbation”

TCSS558: Applied Distributed Computing [Winter 2024]
January2s;2024 School of Engineering and Technology, University of Washington - Tacoma w70

69

OBJECTIVES - 1/25

= Questions from 1/23
= Assignment 1: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
| Threading Models |
Multithreaded clients/servers
= Chapter 3.2: Virtualization

TCSS558: Applied Distributed Computing [Winter 2024] o
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

71

Slides by Wes J. Lloyd

70

THREADING MODELS

= Many-to-one threading: multiple user-level threads per process
= Thread operations (create, delete, locks) run in user mode
= Multithreaded process mapped to single schedulable entity
= Only run thread per process runs at any given time
= Key take-away: thread management handled by user processes
= This is what we experience with the Python virtual machine

= Python interpreter can execute only 1 thread at any given moment

= Limitation is enforced by the Python Global Interpreter Lock (GIL)

= What are some advantages of many-to-one threading?

= What are some disadvantages?

TCSS558: Applied Distributed Computing [Winter 2024]
CLEERR School of Engineering and Technology, University of Washington - Tacoma 17

72

L7.12

TCSS 558:

Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 25, 2024

THREADING MODELS - 2

= One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

= The kernel API calls (e.g. 1/0, locking) are farmed out to an
existing kernel level thread

= Thread operations (create, delete, locks) run in kernel mode

= Threads scheduled individually by the 0OS

= System calls required, context switches as expensive as
process context switching

= |dea is to have preinitialized kernel threads for user processes

® Linux uses this model...

= What are some advantages of one-to-one threading?
= What are some dlsadvantages?

TCSS558: Applied Distributed Computing Winter 2024]
U School of Engineering and Technology, University of Washington - Tacoma w7

APPLICATION EXAMPLES

= Google chrome: processes
= Apache tomcat webserver: threads
= Multiprocess programming avoids synchronization of

concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

= Each process maintains its own private memory

= While this approach avoids synchronizing concurrent access to
shared memory, what is the tradeoff(s) ?2?
= Replication instead of synchronization - must synchronize multiple
copies of the data

= Do distributed objects share memory?

TCSS558: Applied Distributed Computing [Winter 2024] e
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

73

74

OBJECTIVES - 1/25

= Questions from 1/23
= Assignment 1: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models

| Multithreaded clients/servers |
= Chapter 3.2: Virtualization
TCSS558: Applied Distributed Computing [Winter 2024]
‘ January 25, 2024 School of Engineering and Technology, University of Washington - Tacoma e

MULTITHREADED CLIENTS

= Web browser

= Uses threads to load and render portions of a web page to the
user in parallel

= A client could have dozens of concurrent connections all
loading in parallel

= testFlbPar.sh
= Assignment O client script (GNU parallel)

= Important benefits:

= Several connections can be opened simultaneously

= Client: dozens of concurrent connections to the webserver all
loading data in parallel

TCS5558: Applied Distributed Computing [Winter 2024] .
School of Engineering and Technology, University of Washington - Tacoma

‘ January 25, 2024

75

MULTIPLE THREADS

= |n Linux, threads also receive a process ID (PID)
= To display threads of a process in Linux:

= |dentify parent process explicitly:
= top -H -p <pid>
= htop -p <pid>

= ps -iT <pid>

= Virtualbox process ~ 44 threads
= No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing [Winter 2024]
(RN School of Engineering and Technology, University of Washington -Tacoma 77

77

Slides by Wes J. Lloyd

76

PROCESS METRICS

isk sector reads

- dsreads: disk sector reads completed
- drm: merged adjacent disk reads

adti ime spent reading from
disk
- dsw: disk sector writes
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes

writetime: time spent writing to disk

-cpulsr: CPU time in user mode
-cpuKm: CPU time in kernel mode

-cpuldle: CPU idle time

- cpuloWait: CPU time waiting for /0

- cpulntSrvc:CPU time serving interrupts
- cpuSftintSrvc: CPU time serving soft interrupts Network

- nbs: network bytes sent
- nbr: network bytes received

- cpuNice: CPU time executing prit ed
processes

- cpuSteal: CPU ticks lost to virtualized guests

- contextsw: # of context switches

- loadavg: (avg # proc / 60 secs)

L7.13

TCSS 558: Applied Distributed Computing January 25, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

LOAD AVERAGE THREAD-LEVEL PARALLELISM
= Reported by: top, htop, w, uptime, and /proc/loadavg = Metric - measures degree of parallelism realized by running
= Updated every 5 seconds system, by calculating average utilization:
= Average number of processes using or waiting for the CPU N
= Three numbers show exponentially decaying usage TLP — E,:I 1-¢f
for L minute, 5 minutes, and 15 minutes - 1— o

= One minute average: exponentially decaying average

= Load average = 1 = (avg last minute load) - 1/e = (avg load since boot) = Ci - fraction of time that exactly | threads are executed

= N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

= Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

TCSS558: Applied Distributed Computing Winter 2024] TCsS558: Applied Ditributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma w7 T School of Engineering and Technology, University of Washington - Tacoma

= 1.0 = 1-CPU core fully loaded
® 2.0 = 2-CPUcores
= 3.0 = 3-CPU cores . . .

79 80

MULTITHREADED SERVERS

SINGLE THREAD & FSM SERVERS

= Multiple threads essential for servers in distributed systems = Single thread server
= Even on single-core machines greatly improves performance
= Take advantage of idle/blocking time
= Two designs:

= Generate new thread for every request

= Thread pool - pre-initialize set of threads to service requests

= A single thread handles all client requests
= BLOCKS for I/0
= All waiting requests are queued until thread is available

= Finite state machine

Reguest dispatched

Dispatcher thread toawokertread . Server = Server has a single thread of execution
! g =1/0 performing asynchronously (non-BLOCKing)
| osker throad =Server handles other requests while waiting for /0
IRequest coming in = [nterrupt fired with 1/0 completes
rem the netwark
Operating system = Single thread “jumps” back into context to finish request
TCSS558: Applied Distributed C ing (Wir 2024] TCSS558: Applied Distributed C ing [Wir 2024]
‘ January2s; 2024 School of z:;n;rin:‘ an‘::em:m::\:ngnive:::\; of Washington - Tacoma e ‘ January2s;2024 School of E::ineeerinsg‘randm;ch::;:gu\:nﬁnivelrn:‘:\; of Washington - Tacoma 1782

81 82

SERVER DESIGN ALTERNATIVES

QUESTIONS

= A blocking system call implies that a thread servicing a
request synchronously performs 1/0

= The thread BLOCKS to wait on disk/network I/0 before
proceeding with request processing

= Consider the implications of these designs for responsiveness,
availability, scalability. . .

m Characteristics

Multithreading Parallelism, blocking I/0
Single-thread No parallelism, blocking I/0
Finite-state machine Parallelism, non-blocking /0

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ IR School of Engineering and Technology, University of Washington - Tacoma e TS School of Engineering and Tachnology, University of Washington -

83 84

Slides by Wes J. Lloyd L7.14

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/25
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/23
	Slide 7: OBJECTIVES – 1/25
	Slide 8: AWS Cloud Credits update
	Slide 9: Assignment 1
	Slide 10: Testing connectivity to server (pg 16-18)
	Slide 11: Ch 2.3: System architectures
	Slide 12: OBJECTIVES – 1/25
	Slide 13: Types of System architectures
	Slide 14: Multitiered architectures
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Performance implications of component deployments
	Slide 22: Performance implications of component deployments
	Slide 23: Multitiered architectures - 2
	Slide 24: Multitiered resource scaling
	Slide 25: Multitiered resource scaling - 2
	Slide 26: OBJECTIVES – 1/25
	Slide 27: Types of System architectures
	Slide 28: Decentralized Peer-to-peer architectures
	Slide 29: Structured peer-to-peer
	Slide 30: Distributed hash table (DHT)
	Slide 31: Fixed hypercube example
	Slide 32: Fixed Hypercube example - 2
	Slide 33: Which connector leads to the shortest path?
	Slide 34: Dynamic topology
	Slide 35: Chord system
	Slide 36: Chord system - 2
	Slide 37: 5-node chord system
	Slide 38: 5-node chord system
	Slide 39: How to compute finger table (ft)
	Slide 40: 5-node chord system
	Slide 41: To find the data
	Slide 42: How many hops ?
	Slide 43: We will return at 4:59pm
	Slide 44: unstructured peer-to-peer
	Slide 45: Searching for data: unstructured peer-to-peer systems
	Slide 46: Searching for data - 2
	Slide 47: Searching for data - 3
	Slide 48: Hierarchical peer-to-peer networks
	Slide 49: Hierarchical peer-to-peer networks - 2
	Slide 50: OBJECTIVES – 1/25
	Slide 51: Types of System architectures
	Slide 52: Hybrid architectures
	Slide 53: Hybrid architectures - 2
	Slide 54: Collaborative distributed system example
	Slide 55
	Slide 56: Review questions
	Slide 57: OBJECTIVES – 1/25
	Slide 58: Ch. 3: processes Ch. 3.1: threads
	Slide 59: Chapter 3
	Slide 60: OBJECTIVES – 1/25
	Slide 61: Ch. 3.1 - threads
	Slide 62: Threads - 2
	Slide 63: Threads - 3
	Slide 64: Osv: one process, many threads
	Slide 65: Threads - 4
	Slide 66: blocking threads
	Slide 67: Interprocess communication
	Slide 68: OBJECTIVES – 1/25
	Slide 69: Context switching
	Slide 70: Context switch – cache perturbation
	Slide 71: OBJECTIVES – 1/25
	Slide 72: Threading models
	Slide 73: Threading models - 2
	Slide 74: Application examples
	Slide 75: OBJECTIVES – 1/25
	Slide 76: Multithreaded clients
	Slide 77: Multiple threads
	Slide 78: Process metrics
	Slide 79: Load average
	Slide 80: Thread-level parallelism
	Slide 81: Multithreaded servers
	Slide 82: Single thread & fsm servers
	Slide 83: Server design alternatives
	Slide 84: Questions

