TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

TCSS 558:

APPLIED DISTRIBUTED COMPUTING OBJECTIVES - 1/23
| |

| * Questions from 1/18]

= Assignment O: Cloud Computing Infrastructure Tutorial

C|ass Acthlty "’ E) “ = Chapter 2: Distributed System Architectures:
System Al’chitectures I - = Chapter 2.1 - Architectural Styles
= Resource-centered architectures

Representational state transfer (REST)
= Event-based
Wes J. Lond Publish and subscribe (Rich Site Summary RSS feeds)
School of Engineering = Class Activity: Architectural Styles
& TeChnOIOgy (SET) = Chapter 2.2: Middleware Organization
University of Washington - Tacoma = Chapter 2.3: System Architectures
. = Centralized system architectures
= Decentralized peer-to-peer architectures

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2024

TCSS 558 - Online Daily Feedback Survey - 1/5

ONLINE DAILY FEEDBACK SURVEY o 5 30 o8 S Tene it N

= Daily Feedback Quiz in Canvas - Available After Each Class

Ona scale of 1 to 10, please classify your perspective on material covered in today's

= Extra credit available for completing surveys ON TIME class
= Tuesday surveys: due by Wed @ 10p 1 2 3 4 & & 7 @ ’ e
= Thursday surveys: due Mon @ 10p i To 1 o B Py

== TCSS558A » Assignments

Home

Question 2 a5 pis

* Upcoming Assignments Please rate the pace of today's class:

ot avalsbie undil Jan 5 ot 1:30pm | Bue Jan 6 at 10pm

o TCSS 558 - Online Daily Feedback Survey - 1/5 | 1 z 3 4 s L} 7 8] 10

P et might Past

TCSS558: Applied Distributed Computing [Winter 2024]

TCSS558: Applied Distributed Computing [Winter 20
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2024 163 24]
‘ i SO School of Engineering and Technology, University of Washington - Tacoma L64

MATERIAL / PACE

FEEDBACK FROM 1/18

= Please classify your perspective on material covered in today’s = REST API
class (30 respondents): L

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.53 (1 - previous 7.04)

= One thing worth discussing about Service-oriented-
rchi r nd API ign Is th wnslde:

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.67 (T - previous 6.09)

TCsS558: Applied Distributed Computing [Winter 2024]

‘ (IR School of Engineering and Technology, University of Washington -Tacoma

= API versioning takes on a much more Important role, and It
can be hard to migrate customers to a new API if there is not
a compelling reason for them to do so.

= That means legacy applicatlons stay around for a long time,
with high maintenance costs.

= Its Just one of the tradeoffs but something | think worth
mentioning

TCsS558: Applied Distributed Computing [Winter 2024]

CLEERR School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L6.1

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 23, 2024

OBJECTIVES - 1/23

= Questions from 1/18

| = Asslgnment 1: Cloud Computing Infrastructure Tutorlal |

= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

AWS CLOUD CREDITS UPDATE

= We have been approved to receive AWS CLOUD CREDITS
FOR TCSS 558

= Credits will be provided on email request when available

= |nitially credits will be provided for students not in F'23
TCSS562

= Credit codes must be securely exchanged

= Request codes by sending an email with the subject
“AWS CREDIT REQUEST” to wlloyd@uw.edu

= Codes can also be obtained in person (or zoom), in the class,
during the breaks, after class, during office hours, by appt

= To track credit code distribution, codes not shared via IM

= For students unable to create a standard AWS account:
Please contact instructor by email -
Instructor will work to create hosted IAM user account

January 16, 2024 TCSS558: Applied Distributed Computing [Winter 2024] s

School of Engineering and Technology, University of Washington - Tacoma

ASSIGNMENT 1

= Preparing for Assignment 1:
= Establish AWS Account - Standard account

= Now posted:
= Task O - Establish local Linux/Ubuntu environment
= Task 1 -AWS account setup, obtain user credentials

for Apache Tomcat

=Task 4 - Working with Docker-Machine

Intro to Cloud Computing Infrastructure and Load Balancing

=Task 2 - Intro to: Amazon EC2 & Docker: create Dockerfile

=Task 3 - Create Dockerfile for haproxy (software load balancer)

=Task 5 - Submit Results of testing alternate server configs

TCSS558: Applied Distributed Computing [Winter 2024]

January2s, 2024 School of Engineering and Technology, University of Washington - Tacoma

159

OBJECTIVES - 1/23

= Questions from 1/18
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
| = Class Actlvity: Architectural Styles |
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures

= Hybrid architectures
January23, 2024 TCS5558: Applied Distributed Computing [Winter 2024] to10

School of Engineering and Technology, University of Washington - Tacoma

10

[[F
IN-CLASS ACTIVITY:

ARCHITECTURAL
STYLES

CLASS ACTIVITY 2

= We will form groups of ~2-3
= 0On Zoom breakout rooms will be created
= Each group will complete a MS Doc worksheet
= Add names to the Doc as they appear in Canvas
= Once completed, one person submits a PDF to Canvas
= |Instructor will score all group members based on the
uploaded PDF file
= To get started - link is under Class Activity 2 in Canvas:
= Log into your *** UW NETID ***
= Link to shared doc file on Canvas
= Follow link:
https://canvas.uw.edu/files/114972397

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEERR School of Engineering and Technology, University of Washington - Tacoma L1z

11

Slides by Wes J. Lloyd

12

L6.2

mailto:wlloyd@uw.edu
https://canvas.uw.edu/files/114972397/

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

= Availability

= Accessibility

= Responsiveness

= Scalability

= Openness

= Distribution transparency

= Supporting resource sharing
= QOther factors...

= Conslder how the architectural change may Impact:

TCSS558: Applied Distributed Computing [Winter 2024]

l U School of Engineering and Technology, University of Washington - Tacoma

1613

January 23, 2024

WE WILL RETURN AT

5:00PM

13

CH 2.3: SYSTEM
ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington -

January 23, 2024

14

OBJECTIVES - 1/23

Questions from 1/18
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:

= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
= Representational state transfer (REST)
= Event-based
* Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization

| = Chapter 2.3: System Archltectures |

= Centralized system architectures

= Decentralized peer-to-peer architectures

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2024]

l January23, 2024 School of Engineering and Technology, University of Washington - Tacoma

15

1616

SYSTEM ARCHITECTURES

= Architectural styles (or patterns)
system design problems
and connectors
= Deciding on the system components, their

architectural style

= System architectures represent designs used in
practice

= General, reusable solutions to commonly occurring

= Expressed as a logical organization of components

interactions, and placement is a “realization” of an

TCsS558: Applied Distributed Computing [Winter 2024]

l (IR School of Engineering and Technology, University of Washington - Tacoma

1517

16

OBJECTIVES - 1/23

= Questions from 1/18
= Assignment 0: Cloud Computing Infrastructure Tutorial

= Chapter 2: Distributed System Architectures:
= Ch: r 2.1 - Archi ral
= Resource-centered architectures
= Representational state transfer (REST)
= Event-based
* Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Archltectures
| -c system |
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2024]

CLEERR School of Engineering and Technology, University of Washington - Tacoma

1618

17

Slides by Wes J. Lloyd

18

L6.3

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured

= Unstructured
= Hierarchically organized
= Hybrid architectures

TCSS558: Applied Distributed Computing Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 119

January

23,2024

CENTRALIZED:
SIMPLE CLIENT-SERVER ARCHITECTURE

. B Cliant Sarver
= Clients request services —
= Servers provide services
= Request-reply behavior fait onty Pravida serice

= Connectionless protocols (UDP)

= Assume stable network communication with no failures

= Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

= Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

= Clients can resend the request when no reply is received
= But what Is the server dolng?

TCSS558: Applied Distributed Computing [Winter 2024] 620
School of Engineering and Technology, University of Washington - Tacoma

‘ January 23, 2024

19

CLIENT-SERVER PROTOCOLS

= Connectlonless cont’d
= |s resending the client request a good idea?
= Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”
= |dempotent - repeating requests is safe
= Connection-oriented (TCP)
= Client/server communication over wide-area networks (WANs)

= When communication is inherently reliable
= Leverage “reliable” TCP/IP connections

TCsS558: Applied Distributed Computing [Winter 2024] 21
School of Engineering and Technology, University of Washington - Tacoma

‘ January 23, 2024

20

CLIENT-SERVER PROTOCOLS - 2

= Connectlon-oriented cont’d
= Set up and tear down of connections is relatively expensive
= Overhead can be amortized with longer lived connections

= Example: database connections often retained

= Ongoing debate:
= How do you differentiate between a client and server?
= Roles are blurred

= Blurred Roles Example: Distributed databases
= DB nodes both service client requests, *and* submit new
requests to other DB nodes for replication, synchronization, etc.

TCS5558: Applied Distributed Computing [Winter 2024] 622
School of Engineering and Technology, University of Washington - Tacoma

‘ January 23, 2024

22

CONNECTIONLESS VS
CONNECTION ORIENTED

n nl o]
stateless

Advantages

Disadvantages

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEERR School of Engineering and Technology, University of Washington - Tacoma toz

21
TCP UDP
Reliable Unreliable
siended
retransi
No windowing or
‘and flow control through e ions
Segment No
No
- oo

Slides by Wes J. Lloyd

24

L6.4

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

Connectlonless (UDP)

CONNECTIONLESS VS

CONNECTION ORIENTED

Connectlon-oriented (TCP)

Disadvantages ° Cannot tell difference of
request vs. failure

stateless stateful
Ad * Fastto i (no . delivery confirmation
connection overhead) * ldempotence not required
© toan ° ically resent
* Network bandwidth savings - if client (or network) is

temporarily unavailable
Message sequences
guaranteed

+ Connection setup is time-

Requires idempotence
Clients must be online and
ready to receive

* More bandwidth is required
(protocol, retries, multinode-

‘ January23, 2024

TCsS558: Applied Distributed Computing [Winter 2024] 1625
School of Engineering and Technology, University of Washington - Tacoma

25

Bell’'s Number:

k: number of ways
n components can be
distributed across containers

A

4,140
21,14

SC1&

MD F
L

M: Tomcat Application Server
D D:

F

IS

Postgresql DB

: nginx file server
: Logging server (high O/H)

January 23, 2024

MULTITIERED ARCHITECTURES

= Where should functionality be distributed?
= At the client?
= At the server?

Client machine

User interface| | User interface | | Userinterface| | User interface
Application. J Application Application
i e ‘ ey Database
User interface Sy e

| Application

| User interface

Application | “Application

[patabase Datsbase | | Database | | Databass | |'"'n-msnase‘
rver maching

= Why should we consider component composition?

TCSS558: Applied Distributed Computing [Winter 2024] l626
School of Engineering and Technology, University of Washington - Tacoma

‘ January 23, 2024

26

Resource utilization profile changes
from component composition
M-bound RUSLE2 - Soil Erosion Model Webservice

* Box size shows absolute deviation (+/-) from mean
« Shows relative magnitude of performance variance

Two application varlants tested
* M-bound: Standard service, M is compute bound
* D-bound: Modified service, D is compute bound

roTY T =Tro7v

Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

CPUtime diskreads disk writes networkreads network writes

28

MULTITIERED ARCHITECTURES - 2

=MD FL architecture
= M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client
Cliant Application Databas:
server server

Request ,
operation |

Request |
data !

Wit for | Wait for
reply | data

Retum

dala
Return
reply

TCSS558: Applied Distributed Computing [Winter 2024] 630
School of Engineering and Technology, University of Washington - Tacoma

‘ January 23, 2024

27
PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS
A Performance Change:
Min to max performance
3 M-bound: 14%
. D-bound: 25.7%
I

29

Slides by Wes J. Lloyd

30

L6.5

TCSS 558:

Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

MULTITIERED RESOURCE SCALING

= Vertlcal distribution
® The distribution of “M D F L"
= Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server
= Vertical distribution impacts “network footprint” of application
= Service isolation: each component is isolated on its own HW
= Horizontal distribution ﬁﬁﬁﬁ
= Scaling an individual tier
= Add multiple machines and distribute load
= Load balancing

TCSS558: Applied Distributed Computing Winter 2024]
U School of Engineering and Technology, University of Washington - Tacoma 131

MULTITIERED RESOURCE SCALING - 2

= Horlzontal distribution cont’d
= Sharding: portions of a database map” to a specific server
= Distributed hash table
= Or replica servers

TCsS558: Applied Ditributed Computing [Winter 2024]
T2 School of Engineering and Technology, University of Washington - Tacoma 1632

31

32

OBJECTIVES - 1/23

= Questions from 1/18
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures

= Decentrallzed peer-to-peer archltectures |

* Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2024]
January2s, 2024 School of Engineering and Technology, University of Washington - Tacoma. 1633

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured
= Unstructured

= Hierarchically organized

= Hybrid architectures

TCS5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

1638

January 23, 2024

33

34

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

= Client/server:
= Nodes have specific roles

= Peer-to-peer:
= Nodes are seen as all equal...

= How should nodes be organlzed for communlication?

TCSS558: Applied Distributed Computing [Winter 2024]
(IR School of Engineering and Technology, University of Washington - Tacoma 1038

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

= Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

= Nodes store data associated with a subset of keys

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

1636

January 23, 2024

35

Slides by Wes J. Lloyd

36

L6.6

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

DISTRIBUTED HASH TABLE (DHT)

= Distributed hash table (DHT) (ch. 5)
® Hash function

key(data item) = hash(data item’s value)
= Hash function “generates” a unique key based on the data
= No two data elements will have the same key (hash)
= System supports data lookup via key
= Any node can receive and resolve the request
= Lookup function determines which node stores the key

existing node = lookup (key)

= Node forwards request to node with the data

‘ Tamiary23) 2024 TCSS558: Applied Distributed Computing Winter 2024] 637

School of Engineering and Technology, University of Washington - Tacoma

37

FIXED HYPERCUBE EXAMPLE - 2
= Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

= Which connector leads to the shortest path?

Vads

0010

o110 I —Qm

TCsS558: Applied Distributed Computing [Winter 2024] 1639
School of Engineering and Technology, University of Washington - Tacoma

‘ January 23, 2024

39

DYNAMIC TOPOLOGY

= Fixed hypercube requires static topology
= Nodes cannot join or leave

= Relies on symmetry of number of nodes

= Can force the DHT to a certain size

= Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)
= Shortest path between any pair of nodes is ~ order O(log N)
= N is the total number of nodes

TCSS558: Applied Distributed Computing [Winter 2024]
‘ (IR School of Engineering and Technology, University of Washington - Tacoma et

41

Slides by Wes J. Lloyd

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

= Statically sized 4-D hypercube, every node has 4 connectors

= 2 x 3-D cubes, 8 vertices, 12 edges

= Node IDs represented as 4-bit code (0000 to 1111)

= Hash data items to 4-bit key (1 of 16 slots)

= Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

0010

o110 ;
—_ ~ g

TCSS558: Applied Distributed Computing [Winter 2024] 1638
School of Engineering and Technology, University of Washington - Tacoma

‘ January 23, 2024

38

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

0111] Nelghbors:
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)
0110 (1 bit different than 1110) 0101 (3 bits different- bad path)

= Does It matter which node Is selected for the first hop?

0010

o110

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January2372024 School of Engineering and Technology, University of Washington - Tacoma

40

CHORD SYSTEM

= Data items have m-bit key

Data item is stored at closest “successor” node with ID > key k
Each node maintains finger table of successor nodes

Client sends key/value

lookup to any node o e ,

= Node forwards client hetustnoce g o /| E0)
request to node with AN Pk
m-bit ID closest to, but | % SN
not greater than key k nate 4 A z

Nodes must continually /
refresh finger tables by | V)
communicating with =LA
adjacent nodes to [’ o
incorporate node 18 ‘@ . 6
joins/departures 30— 454

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEERR School of Engineering and Technology, University of Washington - Tacoma e

Node respansiie for
heys (56789

42

L6.7

TCSS 558: Applied Distributed Computing January 23, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

SEARCHING FOR DATA:

URED PEER-TO-PEER

UNSTRUCTURED PEER-TO-PEER SYSTEMS

= No topology: How do nodes find out about each other? = Flooding

= Each node maintains adhoc list of neighbors = [Node u] sends request for data item to all neighbors
= Facilitates nodes frequently joining, leaving, adhoc systems " [Node v]

= Nelghbor: node reachable from another via a network path = Searches locally, responds to u (or forwarder) if having data

= Forwards request to ALL neighbors
= Ignores repeated requests
= Features

= Neighbor lists constantly refreshed
= Nodes query each other, remove unresponsive neighbors
= Forms a “random graph” = High network traffic
= Predetermining network routes not possible = Fast search results by saturating the network with requests
= How would you calculate the route algorithmically? = Variable # of hops
O RS sk Bo dseamsicd = Max number of hops or time-to-live (TTL) often specified

= Requests can “retry” by gradually increasing TTL/max hops until
data is found

TCSS558: Applied Distributed Computing Winter 2024] TCsS558: Applied Ditributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 143 T2 toat

School of Engineering and Technology, University of Washington - Tacoma

43 44

SEARCHING FOR DATA - 2 SEARCHING FOR DATA - 3

= Random walks

= Pollcy-based search methods
® [Node u] asks a randomly chosen neighbor [node v]

- .
® If [node v] does not have data, forwards request to a Incorporate history and knowledge about thfe adhoc
random neighbor network at the n -level to enhance effectiveness of
= Features queries
= Low network traffic
= Akin to sequential search = Nodes maintain lists of preferred neighbors which often
= Longer search time succeed at resolving queries

= [node u] can start “n” random walks simultaneously to
reduce search time = Favor neighbors having highest number of neighbors
= As few as n=16..64 random walks sufficient to reduce search . R
time (LV et al. 2002) Can help minimize hops

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCSS558: Applied Distributed Computing [Winter 2024]

Sanuanv25i2028 School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

‘ LD TCSS558: Applied Distributed Computing [Winter 2024] 1o ‘

45 46

HIERARCHICAL HIERARCHICAL

PEER-TO-PEER NETWORKS

PEER-TO-PEER NETWORKS - 2

= Problem:
Adhoc system search performance does not scale well as
system grows

= Allow nodes to assume ROLES to improve search

= Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)
= Broker node - tracks resource usage and node availability

= Super peers
= Head node of local centralized network
= Interconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

- 0]
Track where data is needed = Leader-election problem: SD
Track which nodes have capacity (disk/CPU resources) to host data * Who can become a &
super peer? | Super paer
= Node roles) ¥ i | s
R network of super peers |
= Super peer -Broker node, routes client requests to storage grisatieauiremonts e - -
45_137) q g must be met to become ; \Q o — 0
n - {
odes a super peer? Weak peer oy [B o O," =
= Weak peer - Store data O 9} =
TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ (IR School of Engineering and Technology, University of Washington - Tacoma i ‘ OIS School of Engineering and Technology, University of Washington - Tacoma toe8

47 48

Slides by Wes J. Lloyd L6.8

TCSS 558: Applied Distributed Computing January 23, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/23 TYPES OF SYSTEM ARCHITECTURES

= Questions from 1/18

= Centralized system architectures
= Assignment O: Cloud Computing Infrastructure Tutorial

= Client-server
= Chapter 2: Distributed System Architectures:

= Multitiered
= Chapter 2.1 - Architectural Styles i .
- FEsaEEenet arEiieEies = Decentralized peer-to-peer architectures
Representational state transfer (REST) = Structured

giEventbased = Unstructured
Publish and subscribe (Rich Site Summary RSS feeds) . Hierarchically organized
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization I = Hybrid arChiteCturesl
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures

= Hybrld archltectures J
TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Ditributed Computing [Winter 2024]
U School of Engineering and Technology, University of Washington - Tacoma 149 T2 School of Engineering and Technology, University of Washington - Tacoma 1650

49 50

HYBRID DU . HYBRID

ARCHITECTURES - AN - ARCHITECTURES - 2
= Combine centralized server concepts with decentralized = Fog computing:

pesr-to-pesrmodels = Extend the scope of managed resources beyond the
= Edge-server systems: cloud to leverage compute and storage capacity of
= Adhoc peer-to-peer devices connect to the internet through an end-user devices

d rver (origi r o
CrE0 SRy (BHED SOR) = End-user devices become part of the overall system
= Edge servers (provided by an ISP) can optimize content and . . .

application distribution by storing assets near the edge = Middleware extended to incorporate managing edge
devices as participants in the distributed system
= Example:
= AWS Lambda@Edge: Enables Node.js Lambda Functions to = Cloud - in the sky

execute “at the edge” harnessing existing CloudFront Content

= compute/resource capacity is huge, but far away...
Delivery Network (CDN) servers pute/| U pacity is huge, bu way.

- .
= https://www.Infoq.com/news/2017/07/aws-lambda-at-edge Fog > (devices) on the ground
= compute/resource capacity is constrained and local...
TCSS558: Applied Distributed C iting [Winter 2024] TCSS558: Applied Distributed C uting [Winter 2024]
‘ January 23, 2024 School of E::meeer‘msg and :em::;::y:ngnive:‘si:\: of Washington - Tacoma 1631 ‘ January2372024 School of E::ineeerinsg and ;ech::;:gy:nﬁnivelrns‘:\; of Washington - Tacoma 1652

51 52

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

QUESTIONS

= BltTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

= Original implementation features hybrid architecture
= Leverages idle client network capacity in the background
= User joins the system by interacting with a central server

= Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

= Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwldth Is reduced!!

= Chunks can be downloaded in parallel from distributed nodes

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ (IR School of Engineering and Technology, University of Washington - Tacoma o5 SSnde a2 School of Engineering and Tachnology, University of Washington -

53 54

Slides by Wes J. Lloyd L6.9

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/23
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/18
	Slide 7: OBJECTIVES – 1/23
	Slide 8: AWS Cloud Credits update
	Slide 9: Assignment 1
	Slide 10: OBJECTIVES – 1/23
	Slide 11: In-class activity: architectural styles
	Slide 12: Class activity 2
	Slide 13: Distributed system goals to consider
	Slide 14: We will return at 5:00pm
	Slide 15: Ch 2.3: System architectures
	Slide 16: OBJECTIVES – 1/23
	Slide 17: System architectures
	Slide 18: OBJECTIVES – 1/23
	Slide 19: Types of System architectures
	Slide 20: Centralized: simple client-server architecture
	Slide 21: Client-server protocols
	Slide 22: Client-server protocols - 2
	Slide 23: Tcp/udp
	Slide 24: Connectionless vs connection oriented
	Slide 25: Connectionless vs connection oriented
	Slide 26: Multitiered architectures
	Slide 27
	Slide 28
	Slide 29: Performance implications of component deployments
	Slide 30: Multitiered architectures - 2
	Slide 31: Multitiered resource scaling
	Slide 32: Multitiered resource scaling - 2
	Slide 33: OBJECTIVES – 1/23
	Slide 34: Types of System architectures
	Slide 35: Decentralized Peer-to-peer architectures
	Slide 36: Structured peer-to-peer
	Slide 37: Distributed hash table (DHT)
	Slide 38: Fixed hypercube example
	Slide 39: Fixed Hypercube example - 2
	Slide 40: Which connector leads to the shortest path?
	Slide 41: Dynamic topology
	Slide 42: Chord system
	Slide 43: unstructured peer-to-peer
	Slide 44: Searching for data: unstructured peer-to-peer systems
	Slide 45: Searching for data - 2
	Slide 46: Searching for data - 3
	Slide 47: Hierarchical peer-to-peer networks
	Slide 48: Hierarchical peer-to-peer networks - 2
	Slide 49: OBJECTIVES – 1/23
	Slide 50: Types of System architectures
	Slide 51: Hybrid architectures
	Slide 52: Hybrid architectures - 2
	Slide 53: Collaborative distributed system example
	Slide 54: Questions

