
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.1

 Class Activity II,
 System Architectures I

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)

 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Quest ions f rom 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

OBJECTIVES – 1/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

ONLINE DAILY FEEDBACK SURVEY

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.4

 Please classify your perspective on material covered in today’s

class (30 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.53 ( - previous 7.04)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.67 ( - previous 6.09)

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

MATERIAL / PACE

 REST API

 …

 One thing worth d iscussing about Service -oriented-

architectures and API design is the downside:

 API versioning takes on a much more important role, and it

can be hard to migrate customers to a new API i f there is not

a compell ing reason for them to do so.

 That means legacy applications stay around for a long t ime,

with high maintenance costs.

 I ts just one of the tradeoffs but something I th ink worth

mentioning

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

FEEDBACK FROM 1/18

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.2

 Quest ions from 1/18

 Assignment 1: C loud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.7

OBJECTIVES – 1/23

 We have been approved to receive AWS CLOUD CREDITS
FOR TCSS 558

 Credits will be provided on email request when available

 Initially credits will be provided for students not in F'23

TCSS562

 Credit codes must be securely exchanged

 Request codes by sending an email with the subject
“AWS CREDIT REQUEST” to wlloyd@uw.edu

 Codes can also be obtained in person (or zoom), in the class,
during the breaks, after class, during office hours, by appt

 To track credit code distribution, codes not shared via IM

 For students unable to create a standard AWS account :
Please contact instructor by email -
Instructor will work to create hosted IAM user account

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

AWS CLOUD CREDITS UPDATE

 Preparing for Assignment 1:

Intro to Cloud Computing Infrastructure and Load Balancing

▪ Establish AWS Account - Standard account

 Now posted:

▪ Task 0 - Establish local Linux/Ubuntu environment

▪ Task 1 –AWS account setup, obtain user credentials

▪ Task 2 – Intro to: Amazon EC2 & Docker: create Dockerfile

for Apache Tomcat

▪ Task 3 – Create Dockerfile for haproxy (software load balancer)

▪ Task 4 – Working with Docker-Machine

▪ Task 5 – Submit Results of testing alternate server configs

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

ASSIGNMENT 1

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural S tyles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

OBJECTIVES – 1/23

IN-CLASS ACTIVITY:

ARCHITECTURAL

STYLES

L6.11

 We will form groups of ~2-3

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to the Doc as they appear in Canvas

 Once completed, one person submits a PDF to Canvas

 Instructor will score all group members based on the
uploaded PDF file

 To get started – link is under Class Activity 2 in Canvas:

▪ Log into your *** UW NET ID ***

▪ Link to shared doc file on Canvas

▪ Follow link:

https://canvas.uw.edu/files/114972397/

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

CLASS ACTIVITY 2

7 8

9 10

11 12

mailto:wlloyd@uw.edu
https://canvas.uw.edu/files/114972397/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.3

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

WE WILL RETURN AT

5:00PM

CH 2.3: SYSTEM

ARCHITECTURES

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.15

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

OBJECTIVES – 1/23

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their

interactions, and placement is a “realization” of an

architectural style

 System architectures represent designs used in

practice

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

SYSTEM ARCHITECTURES

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.18

OBJECTIVES – 1/23

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.4

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new

requests to other DB nodes for replication, synchronization, etc.

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.22

CLIENT-SERVER PROTOCOLS - 2

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.23

TCP/UDP

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.24

CONNECTIONLESS VS

CONNECTION ORIENTED

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.5

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent

- if client (or network) is

temporarily unavailable

• Message sequences

guaranteed

Disadvantages • Cannot tell difference of

request vs. response failure

• Requires idempotence

• Clients must be online and

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required

(protocol, retries, multinode-

communication)

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.25

CONNECTIONLESS VS

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server?

 Why should we consider component composition?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.26

MULTITIERED ARCHITECTURES

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat Application Server
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
 n components can be
 distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10
SC9

SC8
SC7

SC6
SC5
SC4

SC3
SC2

SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
 Min to Max Utilization

 m-bound d-bound

 CPU time: 6.5% 5.5%

 Disk sector reads: 14.8% 819.6%
 Disk sector writes: 21.8% 111.1%
 Network bytes received: 144.9% 145%

 Network bytes sent: 143.7% 143.9%

Resource utilization profile changes

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

29

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),

fileserver (F), and logging server (L)

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.30

MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.6

 Vertical d istribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.31

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

MULTITIERED RESOURCE SCALING - 2

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

OBJECTIVES – 1/23

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

TYPES OF SYSTEM ARCHITECTURES

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

 Nodes organized using specific topology

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.36

STRUCTURED PEER-TO-PEER

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.7

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number

of varying bits between neighboring nodes and destination

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.38

FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the f irst hop?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value

lookup to any node

 Node forwards cl ient

request to node with

m-bit ID closest to, but

not greater than key k

 Nodes must continual ly

refresh finger tables by

communicating with

adjacent nodes to

incorporate node

joins/depar tures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

CHORD SYSTEM

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.8

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide
walk when data is found…

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

SEARCHING FOR DATA - 2

 Policy -based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of

queries

 Nodes maintain lists of preferred neighbors which often

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

SEARCHING FOR DATA - 3

 Problem:

Adhoc system search performance does not scale well as

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage

nodes

▪ Weak peer – Store data

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements
must be met to become
a super peer?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.9

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.49

OBJECTIVES – 1/23

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.50

TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.51

HYBRID

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud → in the sky

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground

▪ compute/resource capacity is constrained and local…

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.52

HYBRID

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to

be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then

participates to reserve downloaded content or network

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.53

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE QUESTIONS

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.54

49 50

51 52

53 54

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/23
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/18
	Slide 7: OBJECTIVES – 1/23
	Slide 8: AWS Cloud Credits update
	Slide 9: Assignment 1
	Slide 10: OBJECTIVES – 1/23
	Slide 11: In-class activity: architectural styles
	Slide 12: Class activity 2
	Slide 13: Distributed system goals to consider
	Slide 14: We will return at 5:00pm
	Slide 15: Ch 2.3: System architectures
	Slide 16: OBJECTIVES – 1/23
	Slide 17: System architectures
	Slide 18: OBJECTIVES – 1/23
	Slide 19: Types of System architectures
	Slide 20: Centralized: simple client-server architecture
	Slide 21: Client-server protocols
	Slide 22: Client-server protocols - 2
	Slide 23: Tcp/udp
	Slide 24: Connectionless vs connection oriented
	Slide 25: Connectionless vs connection oriented
	Slide 26: Multitiered architectures
	Slide 27
	Slide 28
	Slide 29: Performance implications of component deployments
	Slide 30: Multitiered architectures - 2
	Slide 31: Multitiered resource scaling
	Slide 32: Multitiered resource scaling - 2
	Slide 33: OBJECTIVES – 1/23
	Slide 34: Types of System architectures
	Slide 35: Decentralized Peer-to-peer architectures
	Slide 36: Structured peer-to-peer
	Slide 37: Distributed hash table (DHT)
	Slide 38: Fixed hypercube example
	Slide 39: Fixed Hypercube example - 2
	Slide 40: Which connector leads to the shortest path?
	Slide 41: Dynamic topology
	Slide 42: Chord system
	Slide 43: unstructured peer-to-peer
	Slide 44: Searching for data: unstructured peer-to-peer systems
	Slide 45: Searching for data - 2
	Slide 46: Searching for data - 3
	Slide 47: Hierarchical peer-to-peer networks
	Slide 48: Hierarchical peer-to-peer networks - 2
	Slide 49: OBJECTIVES – 1/23
	Slide 50: Types of System architectures
	Slide 51: Hybrid architectures
	Slide 52: Hybrid architectures - 2
	Slide 53: Collaborative distributed system example
	Slide 54: Questions

