
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.1

 Class Activity II,
 System Architectures I

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)

 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Quest ions f rom 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

OBJECTIVES – 1/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

ONLINE DAILY FEEDBACK SURVEY

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.4

 Please classify your perspective on material covered in today’s

class (30 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.53 (- previous 7.04)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.67 (- previous 6.09)

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

MATERIAL / PACE

 REST API

 …

 One thing worth d iscussing about Service -oriented-

architectures and API design is the downside:

 API versioning takes on a much more important role, and it

can be hard to migrate customers to a new API i f there is not

a compell ing reason for them to do so.

 That means legacy applications stay around for a long t ime,

with high maintenance costs.

 I ts just one of the tradeoffs but something I th ink worth

mentioning

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

FEEDBACK FROM 1/18

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.2

 Quest ions from 1/18

 Assignment 1: C loud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.7

OBJECTIVES – 1/23

 We have been approved to receive AWS CLOUD CREDITS
FOR TCSS 558

 Credits will be provided on email request when available

 Initially credits will be provided for students not in F'23

TCSS562

 Credit codes must be securely exchanged

 Request codes by sending an email with the subject
“AWS CREDIT REQUEST” to wlloyd@uw.edu

 Codes can also be obtained in person (or zoom), in the class,
during the breaks, after class, during office hours, by appt

 To track credit code distribution, codes not shared via IM

 For students unable to create a standard AWS account :
Please contact instructor by email -
Instructor will work to create hosted IAM user account

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

AWS CLOUD CREDITS UPDATE

 Preparing for Assignment 1:

Intro to Cloud Computing Infrastructure and Load Balancing

▪ Establish AWS Account - Standard account

 Now posted:

▪ Task 0 - Establish local Linux/Ubuntu environment

▪ Task 1 –AWS account setup, obtain user credentials

▪ Task 2 – Intro to: Amazon EC2 & Docker: create Dockerfile

for Apache Tomcat

▪ Task 3 – Create Dockerfile for haproxy (software load balancer)

▪ Task 4 – Working with Docker-Machine

▪ Task 5 – Submit Results of testing alternate server configs

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

ASSIGNMENT 1

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural S tyles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

OBJECTIVES – 1/23

IN-CLASS ACTIVITY:

ARCHITECTURAL

STYLES

L6.11

 We will form groups of ~2-3

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to the Doc as they appear in Canvas

 Once completed, one person submits a PDF to Canvas

 Instructor will score all group members based on the
uploaded PDF file

 To get started – link is under Class Activity 2 in Canvas:

▪ Log into your *** UW NET ID ***

▪ Link to shared doc file on Canvas

▪ Follow link:

https://canvas.uw.edu/files/114972397/

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

CLASS ACTIVITY 2

7 8

9 10

11 12

mailto:wlloyd@uw.edu
https://canvas.uw.edu/files/114972397/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.3

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

WE WILL RETURN AT

5:00PM

CH 2.3: SYSTEM

ARCHITECTURES

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.15

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

OBJECTIVES – 1/23

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their

interactions, and placement is a “realization” of an

architectural style

 System architectures represent designs used in

practice

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

SYSTEM ARCHITECTURES

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.18

OBJECTIVES – 1/23

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.4

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new

requests to other DB nodes for replication, synchronization, etc.

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.22

CLIENT-SERVER PROTOCOLS - 2

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.23

TCP/UDP

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.24

CONNECTIONLESS VS

CONNECTION ORIENTED

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.5

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent

- if client (or network) is

temporarily unavailable

• Message sequences

guaranteed

Disadvantages • Cannot tell difference of

request vs. response failure

• Requires idempotence

• Clients must be online and

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required

(protocol, retries, multinode-

communication)

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.25

CONNECTIONLESS VS

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server?

 Why should we consider component composition?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.26

MULTITIERED ARCHITECTURES

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat Application Server
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
 n components can be
 distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10
SC9

SC8
SC7

SC6
SC5
SC4

SC3
SC2

SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
 Min to Max Utilization

 m-bound d-bound

 CPU time: 6.5% 5.5%

 Disk sector reads: 14.8% 819.6%
 Disk sector writes: 21.8% 111.1%
 Network bytes received: 144.9% 145%

 Network bytes sent: 143.7% 143.9%

Resource utilization profile changes

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

29

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),

fileserver (F), and logging server (L)

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.30

MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.6

 Vertical d istribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.31

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

MULTITIERED RESOURCE SCALING - 2

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

OBJECTIVES – 1/23

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

TYPES OF SYSTEM ARCHITECTURES

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

 Nodes organized using specific topology

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.36

STRUCTURED PEER-TO-PEER

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.7

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number

of varying bits between neighboring nodes and destination

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.38

FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the f irst hop?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value

lookup to any node

 Node forwards cl ient

request to node with

m-bit ID closest to, but

not greater than key k

 Nodes must continual ly

refresh finger tables by

communicating with

adjacent nodes to

incorporate node

joins/depar tures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

CHORD SYSTEM

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.8

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide
walk when data is found…

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

SEARCHING FOR DATA - 2

 Policy -based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of

queries

 Nodes maintain lists of preferred neighbors which often

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

SEARCHING FOR DATA - 3

 Problem:

Adhoc system search performance does not scale well as

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage

nodes

▪ Weak peer – Store data

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements
must be met to become
a super peer?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.9

 Quest ions from 1/18

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.49

OBJECTIVES – 1/23

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.50

TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.51

HYBRID

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud → in the sky

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground

▪ compute/resource capacity is constrained and local…

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.52

HYBRID

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to

be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then

participates to reserve downloaded content or network

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.53

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE QUESTIONS

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.54

49 50

51 52

53 54

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/23
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/18
	Slide 7: OBJECTIVES – 1/23
	Slide 8: AWS Cloud Credits update
	Slide 9: Assignment 1
	Slide 10: OBJECTIVES – 1/23
	Slide 11: In-class activity: architectural styles
	Slide 12: Class activity 2
	Slide 13: Distributed system goals to consider
	Slide 14: We will return at 5:00pm
	Slide 15: Ch 2.3: System architectures
	Slide 16: OBJECTIVES – 1/23
	Slide 17: System architectures
	Slide 18: OBJECTIVES – 1/23
	Slide 19: Types of System architectures
	Slide 20: Centralized: simple client-server architecture
	Slide 21: Client-server protocols
	Slide 22: Client-server protocols - 2
	Slide 23: Tcp/udp
	Slide 24: Connectionless vs connection oriented
	Slide 25: Connectionless vs connection oriented
	Slide 26: Multitiered architectures
	Slide 27
	Slide 28
	Slide 29: Performance implications of component deployments
	Slide 30: Multitiered architectures - 2
	Slide 31: Multitiered resource scaling
	Slide 32: Multitiered resource scaling - 2
	Slide 33: OBJECTIVES – 1/23
	Slide 34: Types of System architectures
	Slide 35: Decentralized Peer-to-peer architectures
	Slide 36: Structured peer-to-peer
	Slide 37: Distributed hash table (DHT)
	Slide 38: Fixed hypercube example
	Slide 39: Fixed Hypercube example - 2
	Slide 40: Which connector leads to the shortest path?
	Slide 41: Dynamic topology
	Slide 42: Chord system
	Slide 43: unstructured peer-to-peer
	Slide 44: Searching for data: unstructured peer-to-peer systems
	Slide 45: Searching for data - 2
	Slide 46: Searching for data - 3
	Slide 47: Hierarchical peer-to-peer networks
	Slide 48: Hierarchical peer-to-peer networks - 2
	Slide 49: OBJECTIVES – 1/23
	Slide 50: Types of System architectures
	Slide 51: Hybrid architectures
	Slide 52: Hybrid architectures - 2
	Slide 53: Collaborative distributed system example
	Slide 54: Questions

