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 Class Activity II,
 System Architectures I

 Wes J. Lloyd

 School of Engineering 
 & Technology (SET)

 University of Washington - Tacoma

TCSS 558: 

APPLIED DISTRIBUTED COMPUTING

 Quest ions f rom 1/18

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (30 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.53 ( - previous 7.04)  

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.67 ( - previous 6.09)
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MATERIAL / PACE

 REST API

 …

 One thing worth d iscussing about Service -oriented-

architectures and API design is  the downside:

 API versioning takes on a much more important role, and it  

can be hard to migrate customers to a new API i f  there is  not 

a compell ing reason for them to do so. 

 That means legacy applications stay around for a  long t ime, 

with high maintenance costs. 

 I ts just one of  the tradeoffs but  something I  th ink worth 

mentioning
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FEEDBACK FROM 1/18
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 Quest ions from 1/18

 Assignment 1:  C loud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/23

 We have been approved to receive AWS CLOUD CREDITS 
FOR TCSS 558

 Credits will be provided on email request when available

 Initially credits will be provided for students not in F'23 

TCSS562

 Credit codes must be securely exchanged

 Request codes by sending an email with the subject
“AWS CREDIT REQUEST” to wlloyd@uw.edu

 Codes can also be obtained in person (or zoom), in the class, 
during the breaks, after class, during office hours, by appt

 To track credit code distribution, codes not shared via IM

 For students unable to create a standard AWS account : 
Please contact instructor by email -
Instructor will work to create hosted IAM user account
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AWS CLOUD CREDITS UPDATE

 Preparing for  Assignment 1:

Intro to Cloud Computing Infrastructure and Load Balancing

▪ Establish AWS Account - Standard account

 Now posted:

▪ Task 0 - Establish local Linux/Ubuntu environment

▪ Task 1 –AWS account setup, obtain user credentials

▪ Task 2 – Intro to: Amazon EC2 & Docker: create Dockerfile

for Apache Tomcat

▪ Task 3 – Create Dockerfile for haproxy (software load balancer)

▪ Task 4 – Working with Docker-Machine

▪ Task 5 – Submit Results of testing alternate server configs
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ASSIGNMENT 1

 Quest ions from 1/18

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural S tyles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/23

IN-CLASS ACTIVITY:

ARCHITECTURAL 

STYLES

L6.11

 We will form groups of ~2-3 

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to the Doc as they appear in Canvas

 Once completed, one person submits a PDF to Canvas

 Instructor will score all group members based on the 
uploaded PDF file

 To get started – link is under Class Activity 2 in Canvas:

▪ Log into your *** UW NET ID ***

▪ Link to shared doc file on Canvas

▪ Follow link:

https://canvas.uw.edu/files/114972397/
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CLASS ACTIVITY 2
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9 10

11 12

mailto:wlloyd@uw.edu
https://canvas.uw.edu/files/114972397/


TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

January 23, 2024

Slides by Wes J. Lloyd L6.3

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 

TO CONSIDER

WE WILL RETURN AT 

5:00PM

CH 2.3: SYSTEM 

ARCHITECTURES
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 Quest ions from 1/18

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/23

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring 

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their 

interactions, and placement is a “realization” of an 

architectural style

 System architectures represent designs used in 

practice
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SYSTEM ARCHITECTURES

 Quest ions from 1/18

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/23
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 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message 
arrival without errors, duplication, delays, or in sequence. 
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request 
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

CENTRALIZED: 

SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples: 

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections
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CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new 

requests to other DB nodes for replication, synchronization, etc.
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CLIENT-SERVER PROTOCOLS - 2
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TCP/UDP

Connectionless (UDP) 

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages
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CONNECTIONLESS VS 

CONNECTION ORIENTED

19 20

21 22

23 24
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Connectionless (UDP) 

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no 

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent 

- if client (or network) is 

temporarily unavailable

• Message sequences 

guaranteed

Disadvantages • Cannot tell difference of 

request vs. response failure

• Requires idempotence

• Clients must be online and 

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required 

(protocol, retries, multinode-

communication)

January 23, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.25

CONNECTIONLESS VS 

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server? 

 Why should we consider component composition?
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MULTITIERED ARCHITECTURES

SC2

M D
F 

L
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SC12
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SC13
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SC14
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L

F

SC15
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F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM 
• Each VM launched to separate physical machine

M: Tomcat Application Server
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways 
 n components can be 
 distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10
SC9

SC8
SC7

SC6
SC5
SC4

SC3
SC2

SC1

CPU time          disk reads        disk writes  network reads     network writes

∆  Resource Utilization Change
     Min to Max Utilization

              m-bound     d-bound       

 CPU time:      6.5%   5.5%

 Disk sector reads:   14.8%  819.6%
 Disk sector writes:   21.8%  111.1%
 Network bytes received: 144.9%  145%

 Network bytes sent:  143.7%  143.9%

Resource utilization profile changes 

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

29

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆  Performance Change:
Min to max performance

M-bound:   14%

D-bound:  25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D), 

fileserver (F), and logging server (L)
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MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client
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27 28

29 30
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 Vertical d istribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing
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MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers
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MULTITIERED RESOURCE SCALING - 2

 Quest ions from 1/18

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/23

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?
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DECENTRALIZED PEER-TO-PEER 

ARCHITECTURES

 Nodes organized using specific topology 

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys
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STRUCTURED PEER-TO-PEER
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 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data
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DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number 

of varying bits between neighboring nodes and destination
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FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?
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FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it  matter which node is  selected for the f irst hop?
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WHICH CONNECTOR LEADS TO THE 

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent–  bad path)

0101 (3 bits dif ferent–  bad path)

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes
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DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value 

lookup to any node

 Node forwards cl ient 

request to node with 

m-bit ID closest to, but 

not greater than key k 

 Nodes must continual ly 

refresh finger tables by 

communicating with 

adjacent nodes to 

incorporate node 

joins/depar tures
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CHORD SYSTEM
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 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered
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UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until 

data is found
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SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If  [node v] does not have data, forwards request to a 
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to 
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search 
time  (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide 
walk when data is found…
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SEARCHING FOR DATA - 2

 Policy -based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of 

queries

 Nodes maintain lists of preferred neighbors which often 

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops
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SEARCHING FOR DATA - 3

 Problem:

Adhoc system search performance does not scale well as 

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs)   (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage 

nodes

▪ Weak peer – Store data
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HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements 
must be met to become 
a super peer?
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HIERARCHICAL 

PEER-TO-PEER NETWORKS - 2
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 Quest ions from 1/18

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/23

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an 
edge server (origin server) 

 Edge servers (provided by an ISP) can optimize content and 
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to 
execute “at the edge” harnessing existing CloudFront Content 
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge
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HYBRID 

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the 
cloud to leverage compute and storage capacity of 
end-user devices  

 End-user devices become part of the overall system 

 Middleware extended to incorporate managing edge 
devices as participants in the distributed system  

 Cloud → in the sky   

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground   

▪ compute/resource capacity is constrained and local…
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HYBRID 

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to 

be eligible to download file resources 

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well 

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then 

participates to reserve downloaded content or  network 

bandwidth is  reduced!!

 Chunks can be downloaded in parallel from distributed nodes
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COLLABORATIVE DISTRIBUTED 

SYSTEM EXAMPLE QUESTIONS
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https://www.infoq.com/news/2017/07/aws-lambda-at-edge
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