TCSS 558: Applied Distributed Computing January 18, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING OBJECTIVES - 1/18
| |

| * Questlons from 1/16]

= Assignment O: Cloud Computing Infrastructure Tutorial

Distributed System . = = Chapter 2: Distributed System Architectures:
Architectures - ||, - = Chapter 2.1 - Architectural Styles
Middleware Organization : = Resource-centered architectures

8 Representational state transfer (REST)
= Event-based
Wes J. Lloyd Publish and subscribe (Rich Site Summary RSS feeds)
School of Engineering = Class Activity: Architectural Styles
& Technology (SET) = Chapter 2.2: Middleware Organization
University of Washington - Tacoma = Chapter 2.3: System Architectures
. = Centralized system architectures
= Decentralized peer-to-peer architectures

= Hybrid architectures

TCS5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

January 18, 2024

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan & at 10pm Points 1 Questions 4

ONLINE DAILY FEEDBACK SURVEY Available Jn 5 5t 1:30pm - Jon 6 at 1:59pm 1y Tiwe Liit None

Question 1 05 pts

= Daily Feedback Quiz in Canvas - Available After Each Class

Ona scale of 1 to 10, please classify your perspective on material covered in today's

= Extra credit available for completing surveys ON TIME class
= Tuesday surveys: due by Wed @ 10p 1 2 3 4 & & 7 @ ’ e
= Thursday surveys: due Mon @ 10p i To 1 o B Py

== TCSS558A » Assignments

Home

Question 2 a5 pis

* Upcoming Assignments Please rate the pace of today's class:

ot avalsbie undil Jan 5 ot 1:30pm | Bue Jan 6 at 10pm

o TCSS 558 - Online Daily Feedback Survey - 1/5 | 1 z 3 4 s L} 7 8] 10

P et might Past

TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]

January 18, 2024 dess . 53 24 .
‘ i School of Engineering and Technology, University of Washington - Tacoma L School of Engineering and Technology, University of Washington - Tacoma Ls4

MATERIAL / PACE FEEDBACK FROM 1/16

= Please classify your perspective on material covered in today’s = As someone with no networking background, I'm a bit
class (23 respondents): intimidated by all the protocols and layers

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 7.04 (T - previous 5.63) = In lecture 4, we presented the Open Systems Interconnection
(0SI) model, a conceptual model created by the International

= Please rate the pace of today’s class: Organization for Standardization (1SO).

= 1-slow, 5-just right, 10-fast = The 0S|I model provides a common model that enables diverse

= Average - 6.09 (1 - previous 5.00) commur:ication systems to communicate using standard
protocols.

= The OSI model provides an excellent example of a layered
architecture with 7 layers.

TCs5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

TCsS558: Applied Distributed Computing [Winter 2024]

‘ January 18, 2024 School of Engineering and Technology, University of Washington - Tacoma

155 ‘ January 18, 2024

Slides by Wes J. Lloyd L5.1

TCSS 558: Applied Distributed Computing January 18, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OSI MODEL LAYERS FEEDBACK - 2

- ikt e A = What are the key deflning traits of a Distributed Information
applcations can access the nerwork services . " .
System that differentiates it from other system types?

. EXIAeA ther Sl 111 b adapic fonmir and = Distributed Information Systems are client/server apps found

where data encryprion occurs . N N . N .

in organizations which over time were integrated to form

- Mainrains connecrions and is responsible far enterprise-wide information systems

controlling ports and sessions

Clint
applcation

= Key features include: oot
e
. Transmirs data using transmission protocols i-cli
. Transporr Layer including TCP and UDP = Multi-client/server ‘application
= Use of atomic transactions

. Communication middleware |
n Decides which physical path the data will take = Separation into p S I I T

= Remote integration Server-side Server-se Server-side

application appii jeaton

2 DaraLink Layer Defines the format of data on the network RPC, RMI, M queues spploation e apploation

== J—— ——

= Some common Saa$S apps @ @ Ej

[::;\Ishl:\v:lsrawblrsruamouu the physical are managed Dist Info Sys
Image credit htps:/wwi.imperva.com/

‘ D T e o 57 ‘ Tanoary 28, 2020 TCs5558: Applied Distributed Computing [Winter 2024] s

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 1/18

@ 9 B
B e s e S i
oo

Y

Herogpn = Questions from 1/16

| = Asslgnment 1: Cloud Computing Infrastructure Tutorlal |

= Chapter 2: Distributed System Architectures:
is a sensor network of low-cost air quality sensors - = Chapter 2.1 - Architectural Styles
that collects data from ‘citizen’ scientists regarding particulate § * Resource-centered architectures
matter pollution to augment that available from the Representational state transfer (REST)
Environmental Protection Agency. = Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles

Sensor g & o = Chapter 2.2: Middleware Organization
g:::’no'i: o AL [‘@‘"‘:35 2 = Chapter 2.3: System Architectures
P! o 2 = Centralized system architectures
i @ [cL g = Decentralized peer-to-peer architectures
= Ko o 2 & A 5 = Hybrid architectures
[| vt [i o e e Fgon - s on

ASSIGNMENT 1 OBJECTIVES - 1/18

= Preparing for Asslgnment 1; - (QUEIEmS e &/4E
Intro to Clou mputing Infrastructure and L Balancin, = Assignment 1: Cloud Computing Infrastructure Tutorial
= Establish AWS Account - Standard account | Chapter 2: Distributed System Archltectures: |
= Ch: r2 Archi ral 1
= Coming Soon - - PREVIEW: = Resource-centered architectures
= Task O - Establish local Linux/Ubuntu environment Representational state transfer (REST)
=Task 1 -AWS account setup, obtain user credentials 7 [Eem H |

Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures

=Task 2 - Intro to: Amazon EC2 & Docker: create Dockerfile
for Apache Tomcat

=Task 3 - Create Dockerfile for haproxy (software load balancer)

=Task 4 - Working with Docker-Machine = Centralized system architectures
f : . = Decentralized peer-to-peer architectures
=Task 5 - Submit Results of testing alternate server configs i N B ®
= Hybrid architectures
TCSS558: Applied Distributed Computing [Winter 2024] TCss558: Applied Distributed Computing [Winter 2024]
‘ (VAR School of Engineering and Technology, University of Washington -Tacoma . ‘ CLEIFERR School of Engineering and Technology, University of Washington - Tacoma L1

11 12

Slides by Wes J. Lloyd L5.2

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

CH 2.1 - ARCHITECTURAL STYLES

=Layered — — Lecture 4
= Object-based

= Service oriented architecture (SOA)

= Resource-centered architectures
= Representational state transfer (REST)

= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)

School of Engineering and Technology, University of Washington - Tacoma

‘ Tamuary28) 2024 TCSS558: Applied Distributed Computing [Winter 2024] 513

13

Method call

OBJECT-BASED
ARCHITECTURES - 2

Object

Y
Object |
Object &

T <
Object

= Distributed objects Java- Remote Method Invocation (RMI)
= Adds object orientation concepts to remote function calls
= Clients bind to proxy objects

= Proxy provide an object interface which transfers method
invocation over the network to the remote host

= How do we replicate objects?
= Object marshalling - serialize data, stream it over network
= Unmarshalling- create an object from the stream
= Unmarshall local object copies on the remote host
= JSON, XML are some possible data formats

TCSS558: Applied Distributed Computing [Winter 2024]
‘ January1s; 2024 School of Engineering and Technology, University of Washington - Tacoma 1515

15

DISTRIBUTED OBJECTS - 2

= A counterintuitive feature is that state is not
distributed

= Each “remote object” maintains its own state
= Remote objects may not be replicated

= Objects may be “mobile” and move around from node
to node

= Common for data objects

= For distributed (remote) objects consider
= Pass by value
= Pass by reference (does this make sense?)

TCS5558: Applied Distributed Computing [Winter 2024] s
School of Engineering and Technology, University of Washington - Tacoma

‘ January 18, 2024

OBJECT-BASED ARCHITECTURES

Enables loose and flexible component organization

Objects == components

Enable distributed node interaction via function calls over the
network

Began with C - Remote Procedure Calls (RPC)

= Straightforward: package up function inputs, send over
network, transfer results back

= Language dependent

= In contrast to web services, RPC calls originally were more
intimate in nature

= Procedures more “coupled”, not as independent
= The goal was not to decouple and widgetize everything

TCsS558: Applied Distributed Computing [Winter 2024]
‘ e School of Engineering and Technology, University of Washington - Tacoma b

14

Client machine Server machine
Object
Client Server A
s |- State
ame
Client T inkariace L 1 Method
invokes as object i\
meth |—|.,_,_1
& method y Skeleton _7* T Intert
invokes — 11 [nieriace
Proxy same method Skeleton
at object A
Client OS Server OS
[|
Network
Marshalled invocation
is passed across network
TCS5558: Applied Distributed Computing [Winter 2024]
‘ January18;2023 School of Engineering and Technology, Universiy of Washington - Tacoma 1516

16

CH 2.1 - ARCHITECTURAL STYLES

= Layered

= Object-based
| = Service oriented architecture (SOA) |

= Resource-centered architectures
= Representational state transfer (REST)

= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEIFERR School of Engineering and Technology, University of Washington - Tacoma 18

17

Slides by Wes J. Lloyd

18

L5.3

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

SERVICE ORIENTED ARCHITECTURE

= Services provide always-on encapsulated functions over
the internet/web

= Leverage redundant cloud computing infrastructure
= Services may:

= Aggregate multiple languages, libraries, operating
systems

= Include (wrap) legacy code
= Many software components may be involved in the
implementation
= Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

‘ January 18, 2024

TCsS558: Applied Distributed Computing [Winter 2024] 51
School of Engineering and Technology, University of Washington - Tacoma

19

OBJECTIVES - 1/18

= Questions from 1/16
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:

apter 2 Archit: Styles

ures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
* Hybrid architectures

TCsS558: Applied Distributed Computing [Winter 2024] 521
School of Engineering and Technology, University of Washington - Tacoma.

‘ January 18, 2024

21

REST SERVICES

= Representational State Transfer (REST)
= Built on HTTP
= Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
Four operations: GET PUT POST DELETE

Messages to/from a service are fully described

After execution server forgets about client
Stateless execution

‘ January 18, 2024

TCS5558: Applied Distributed Computing [Winter 2024] s
School of Engineering and Technology, University of Washington - Tacoma

23

Slides by Wes J. Lloyd

SERVICE ORIENTED ARCHITECTURE - 2

= Are more easily developed independently and shared
vs. systems with distributed object architectures

= Less coupling

= An error while invoking a distributed object may crash the
system

= An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

‘ January 18, 2024

TCS5558: Applied Distributed Computing [Winter 2024] 1520
School of Engineering and Technology, University of Washington - Tacoma

20

RESOURCE BASED ARCHITECTURES

= Motivation:
= Increasing number of services available online
= Each with specific protocol(s), methods of interfacing

= Connecting services w/ different TCP/IP protocols
- integration nightmare

Need for specialized client for each service that speaks the
application protocol “language”...

= Need standardization of interfaces

= Make services/components more pluggable
= Easier to adopt and

integrate 4
= Common
architecture

TCs5558: Applied Distributed Computing [Winter 2024] 1522
School of Engineering and Technology, University of Washington - Tacoma

‘ January 18, 2024

22

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

= An ASCll-based request/reply protocol for transferring
information on the web

= HTTP request includes:
= request method (GET, POST, etc.)
= Uniform Resource Identifier (URI)
= HTTP protocol version understood by the client
= headers—extra info regarding transfer request
= HTTP response from server
= Protocol version & status code >
= Response headers
= Response body

HTTP status codes:
Zxx — all is well

3xx — resowrce moved
4o aovess problem
Sxx - server eror

‘ January 18, 2024

TCSS558: Applied Distributed Computing [Winter 2024] 1526
School of Engineering and Technology, University of Washington - Tacoma

24

L5.4

TCSS 558: Applied Distributed Computing January 18, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

REST-FUL OPERATIONS EXAMPLE: AMAZON S3
Operation| _________Desoription | | * Amazon S3 offers a REST-based interface
PUT Create a new resource (C)reate = Requires signing HTTP authorization header or passing
GET Retrieve state of a resource in some format (R)ead authentication parameters in the URL query string
. . & AWS SDKs and Explorers
POST Modify a resource by transferring a new state (U)pdate = REST: GET/PUT/POST/DELETE O Set Up the AWS cLI
DELETE Delete a resource (D)elete = SOAP: 16 operations, moving toward O Using the W5 SDK for ava
= Resources often implemented as objects in 00 languages epleceton D Using the AWS SDK for .NET
= REST is weak for tracking state = Python boto ~50 operations 0 Hs;wgthe;\v‘viSDKﬁarPFP
) . o - (SDK for Python) and Running PHP Examples
= Generic REST interfaces enable ubiquitous “so many” clients . e
= SDKs for other languages D Using the AWS SDK for Ruby -
Version 3
0 Using the AWS SDK for Python
(Boto)
[ein e | e et vt e W o [i T e e M b rears s

25 26

REST - 2 // SOAP REQUEST - Book Store — Query Price
POST /InStock HTTP/1.1
O . Host: www.bookshop.org
Defacto web services protocol Content-Type: application/soap+xml; charset=utf-8
B . . Content-Length: nnn
= Requests made to a URI - uniform resource identifier &
. . <?xml version="1.0"?>
= Supersedes SOAP - Simple Object Access Protocol

<soap:Envelope

= SOAP - application protocol specific to web services xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.0rg/2001/12/soap-

= Access and manipulate web resources with a predefined encoding">

set of stateless operations (known as web services) <soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPrice>

= Responses most often in JSON, also HTML, ASCII text, <m: >The F1 ket</m:Book

XML, no real limits as long as text-based </m:GetBookPrice>

</soap:Body>

= curl - generic command-line REST client: </soap:Envelope>

https://curl.haxx.se

‘] TCSS558: Applied Distributed Computing [Winter 2024] 52

TCSS558: Applied Distributed Computing [Winter 20:
School of Engineering and Technology, University of Washington - Tacoma January 18, 2024 g

24]
School of Engineering and Tachnology, University of Washington - Tacoma L1128

27 28

// Web Service Definition Language (WSDL)
// Service Definition - Day of Week Service
<o version="1. 0" enceding=rure 82>
// SOAP RESPONSE - Book Store - Query Price Setinition e ,"‘7, e
el
et org/wad/soap/
POST /InStock HTTP/1.1 e g:z;’zgmi,i
Host: www.bookshop.org "’?"""" TN
Content-Type: application/soap+xml; charset=utf-8 RS
Content-Length: nnn yOfWook" type='xsd:string"/>
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap- />
encoding"> “':::: :L??:;nﬁ::mm.f " getdayotwack”/>
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse> 1 ">
<m: Price>10.95</m: Price>
</m:GetBookPriceResponse> = Redvivseriencodedy
</soap:Body> ety Fhtep//sch 1 />
</soap:Envelope> </oparation>
</binding>
<eervice name="DayOfWieekservice >
<documentation
Retuzns tha day-of-week name for a given date
</documentation
T eoap aairass Locationsrhitp. /) ocainoets 8090/ dayoback /Dayoriesk’ />
TCSS558: Applied Distributed Computing [Winter 2024 orty e tocatientihEtp:/ffocathest: e =
SEIETh Z0E School u!Enpgwpn‘:ermgQn;%ch:g\‘:;yml?n[we‘r:i\;DIW]asmnglnnrTacuma L1129 == 1530
</datinitions>

29 30

Slides by Wes J. Lloyd L5.5

https://curl.haxx.se/

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

"value":47.2529
I
{
0 "name": "longitude",
= Just provide "value":-122.4443

a Lat/Long i

REST CLIMATE SERVICES EXAMPLE

=USDA // REST/JSON
Lat/Long // Request climate data for Washington
Climate {
Service "parameter": [
{
Demo "name": "latitude",

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

1531

31

OBJECTIVES - 1/18

= Questions from 1/16
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:

= Chapter 2.1 - Architectural Styles

= Resource-centered architectures
Representational state transfer (REST)

= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)

= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
* Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2024]

January18, 2024 School of Engineering and Technology, University of Washington - Tacoma.

1533

33

Component

Subscribe i

= Event-based coordination
= Processes do not know
about each other explicitly <

Event bus

= Processes:
= Publish: a notification
describing an event
=Subscribe: to receive
notification of specific kinds of events

= Subscribers must actively MONITOR event bus

Publish

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

Natificatio
delivery

= Assumes subscriber is presently up (temporally coupled)

TCs5558: Applied Distributed Computing [Winter 2024]

‘ (VAR School of Engineering and Technology, University of Washington - Tacoma

1535

35

Slides by Wes J. Lloyd

January 18, 2024

WE WILL RETURN AT
4:50PM

3

2

PUBLISH-SUBSCRIBE ARCHITECTURES:

EVENT-BASED

= Enables separation between processing and coordination
= Types of coordination:

Temporally coupled | Temporally decoupled
(atthe same time) (at different times)
Direct Mailbox

EelepiElicotplen Explicit synchronous Asynchronous by

(dependent on name)

service call name (address)
Event-based Shared data space

Referentially
decoupled
(name not required)

Event notices Processes write tuples
published to shared to a shared data
bus, w/o addressing | space

Publish and subscribe architectures

TCs5558: Applied Distributed Computing [Winter 2024] 1534
School of Engineering and Technology, University of Washington - Tacoma

‘ January 18, 2024

34

PUBLISH-SUBSCRIBE ARCHITECTURES:

SHARED DATA SPACE

= Enables separation between processing and coordination
= Types of coordination:

Temporally coupled | Temporally decoupled
(at the same time) (at different times)
Direct Mallbox

Ref Bl Caed Explicit synchronous Asynchronous by

(dependent on name)

service call name (address;
Event-based Shared data space

Referentially
decoupled
(name not required)

Event notices Processes write tuples
published to shared to a shared data
bus, w/o addressing | space

Publish and subscribe architectures

TCSS558: Applied Distributed Computing [Winter 2024]
CLEIFERR School of Engineering and Technology, University of Washington - Tacoma 130

36

L5.6

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

PUBLISH SUBSCRIBE ARCHITECTURES - 3

= Shared data space
= Full decoupling (name and time)
= Processes publish “tuples” to shared dataspace (publish)

= Processes provide search pattern to find tuples
(subscribe)

| Component | | Component ‘
® Subscribers are notified of
matches (both existing and Publish Subscribe Data
newly published tuples) v y | deliver

= Key characteristic:
Processes have no explicit
reference to each other

Tuple space

Shared (persistent) data space

TCs5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

‘ January 18, 2024

37

OBJECTIVES - 1/18

= Questions from 1/16
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
| = Class Actlvity: Architectural Styles |
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
* Hybrid architectures

TCs5558: Applied Distributed Computing [Winter 2024] 1539
School of Engineering and Technology, University of Washington - Tacoma.

January 18, 2024

39

CLASS ACTIVITY 2

= We will form groups of ~2-3
= On Zoom breakout rooms will be created
= Each group will complete a MS Doc worksheet
= Add names to the Doc as they appear in Canvas
= Once completed, one person submits a PDF to Canvas
= Instructor will score all group members based on the
uploaded PDF file
= To get started - link is under Class Activity 2 in Canvas:
= Log into your *** UWNETID ***
= Link to shared doc file on Canvas
= Follow link:
https://canvas.uw.edu/files/114972397

TCSS558: Applied Distributed Computing [Winter 2024]
‘ (VAR School of Engineering and Technology, University of Washington - Tacoma o

41

Slides by Wes J. Lloyd

January 18, 2024

PUBLISH SUBSCRIBE ARCHITECTURES - 4

= Subscriber describes events interested in
= Complex descriptions are intensive to evaluate and fulfil
= Middleware will:
= Publish matching notification and data to subscribers
= Common if middleware lacks storage
= Publish only matching notification
= Common if middleware provides storage facility
= Client must explicitly fetch data on their own

= Publish and subscribe systems are generally scalable

= What would reduce the scalabllity of a publish-and-
subscribe system?

TCsS558: Applied Distributed Computing [Winter 2024]
e School of Engineering and Technology, University of Washington - Tacoma 138

38

[[F
IN-CLASS ACTIVITY:

ARCHITECTURAL
STYLES

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

=Con r how the archi ral change may im
= Availability

= Accessibility

= Responsiveness

= Scalability

= QOpenness

= Distribution transparency

ESupporting resource sharing

= Other factors...

TCSS558: Applied Distributed Computing [Winter 2024]
CLEIFERR ‘ School of Engineering and Technology, University of Washington - Tacoma e

42

L5.7

https://canvas.uw.edu/files/114972397/

TCSS 558

: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

CH 2.2: MIDDLEWARE

ORGANIZATION

TCSS558: Applied Distributed Computing [Winter 2024]

RaayE02 School of Engineering and Technology, University of Washington -

43

MIDDLEWARE ORGANIZATION

= Relies on two important design patterns:
=Wrappers
=|nterceptors

=Both help achieve the goal of openness

TCSS558: Applied Distributed Computing [Winter 2024]
January18, 2024 School of Engineering and Technology, University of Washington - Tacoma 1545

45

MIDDLEWARE: WRAPPERS - 2

Wrapper
= [nter-application communication M
= Applications may provide unique interface for clients = .
every client application N |
= Scalability suffers Application | ‘|
= N applications = O(N2) wrappers \‘,\
S0
= ALTERNATE: Use a Broker

= Provide a common intermediary —)

= Broker knows how to communicate with | /
every application N

= Applications only know how to communicate

with the broker N
ONe
TCSS558: Applied Distributed Computing [Winter 2024]
‘ (VAR School of Engineering and Technology, University of Washington - Tacoma e

47

Slides by Wes J. Lloyd

January 18, 2024

OBJECTIVES - 1/18

= Questions from 1/16
= Assignment O: Cloud Computing Infrastructure Tutorial

= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2. iddleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures

= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2024]

IR G School of Engineering and Technology, University of Washington - Tacoma

44

MIDDLEWARE: WRAPPERS

= Wrappers (also called adapters)

= WHY?: Interfaces available from legacy software may not be
sufficient for all new applications to use

= WHAT: Special “frontend” components that provide interfaces for
clients

= Interface wrappers transform client requests to “implementation”
(i.e. legacy software) at the component-level

= Can then provide modern service interfaces for legacy code/systems

= Components encapsulate (i.e. abstract) dependencies to meet all
preconditions to operate and host legacy code

= Interfaces parameterize legacy functions, abstract environment
configuration (i.e. make into black box)

= Contributes towards system OPENNESS
= Example: Amazon $3: S3 HTTP REST interface
= GET/PUT/DELETE/POST: requests handed off for fulfillment

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January18, 2024 School of Engineering and Technology, University of Washington - Tacoma

46

MIDDLEWARE: INTERCEPTORS

= Interceptor
= Software construct, breaks flow of control, allows
other application code to be executed

= Interceptors send calls to other servers, or to ALL
servers that replicate an object while abstracting
the distribution and/or replication

= Used to enable remote procedure calls (RPC), remote
method invocation (RMI)

= Object A calls method belonging to object B
= Interceptors route calls to object B regardless of location

TCSS558: Applied Distributed Computing [Winter 2024]

‘ CLEIFERR School of Engineering and Technology, University of Washington - Tacoma L8

48

L5.8

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January

Cient application

N
A‘ Application stub

+— Nonintercepted cal

Yy

L e
\ =
‘f- 1 ‘ Object middleware

Message-lovel infercapior| |lfok‘ tislacall
Local 08
To object B

MIDDLEWARE: INTERCEPTORS - 2

Request-level
interceptor
transforms:
B.doit(val)

into generic call:

invoke (B, &doit,val)

Message-level
interceptor in
middleware
sends message
through 0S
(TCP/IP socket)

to transfer data:
send (B, ”doit”,val)

Non-intercepted:

TCSS558: Applied Distributed Computing [Winter 2024]

U School of Engineering and Technology, University of Washington -

1549
Tacoma

MIDDLEWARE INTERCEPTION - METHOD

= MIDDLEWARE: Provides local interface matching Object B to
Object A

= Object A calls Object B’s method provided by local interface

= A's call is transformed into a “generic object invocation” by
request-level Interceptor

= “Generic object invocation” is transformed into a message by
message-level Interceptor and sent over Object A’s network to
Object B

= Interception automatically routes calls to all object replicas

TCsS558: Applied Distributed Computing [Winter 2024]
‘ e School of Engineering and Technology, University of Washington - Tacoma 1250

49

50

of availability
= Software ts can be replaced at runtime

= Component-based design
= Modifiability through composition
= Systems may have static or dynamic configuration
= Dynamic configuration requires late binding
= Comp s can be ch d at runtime

= Component based software supports modifiab
by enabling components to be swapped out.

modifiability at runtime ?

MODIFIABLE MIDDLEWARE

= GOAL: It should be possible to modify middleware without loss

of components

ility at runtime

= Does a microservices archltecture (e.g. AWS Lambda) support

TCSS558: Applied Distributed Computing [Winter 2024]

January18, 2024 School of Engineering and Technology, University of Washington -

1551
Tacoma

L]

CH 2.3: SYSTEM
ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2024]

Canuatyjis 2028 School of Engineering and Technology, University of Washington -

51

OBJECTIVES - 1/18

= Questions from 1/16
= Assignment 0: Cloud Computing Infrastructure Tut

= Chapter 2: Distributed System Architectures:
= Ch r 2.1 - Archi ral
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feed:
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
| = Chapter 2.3: System Archltectures |
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

orial

s)

TCSs558: Applied Distributed Computing [Winter 2024]

‘ (VAR School of Engineering and Technology, University of Washington

1553
- Tacoma

53

Slides by Wes J. Lloyd

52

SYSTEM ARCHITECTURES

= Architectural styles (or patterns)

= General, reusable solutions to commonly occurring
system design problems

= Expressed as a logical organization of components
and connectors

= Deciding on the system components, their
interactions, and placement is a “realization” of an

architectural style

= System architectures represent designs used in
practice

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEIFERR School of Engineering and Technology, University of Washington - Tacoma s

54

18, 2024

L5.9

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 18, 2024

OBJECTIVES - 1/18

= Questions from 1/16
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Archltectures
| D ized system archif |
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

1555

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured

= Unstructured
= Hierarchically organized
= Hybrid architectures

TCsS558: Applied Distributed Computing [Winter 2024]
‘ e School of Engineering and Technology, University of Washington - Tacoma 1956

55

56

CENTRALIZED:

= Cllents request services
= Servers provide services
= Request-reply behavior

= Connectlonless protocols (UDP)

Request

it
Reply

No acknowledgment of arrival or retransmission
= Problem: How to detect whether the client request

= But what is the server dolng?

Cliant Sarver

SIMPLE CLIENT-SERVER ARCHITECTURE

Provide service

= Assume stable network communication with no failures

= Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.

message is lost, or the server reply transmission has failed
= Clients can resend the request when no reply is received

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January1s; 2024 School of Engineering and Technology, University of Washington - Tacoma

1557

CLIENT-SERVER PROTOCOLS

= Connectlonless cont’d
= |s resending the client request a good idea?

= Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”

= |dempotent - repeating requests is safe

= Connection-oriented (TCP)

= Client/server communication over wide-area networks (WANs)
= When communication is inherently reliable

= Leverage “reliable” TCP/IP connections

57

CLIENT-SERVER PROTOCOLS - 2

= Connectlon-orlented cont’d

= Example: database connections often retained
= Ongoing debate:
= How do you differentiate between a client and server?

= Roles are blurred

= Blurred Roles Example: Distributed databases

= Overhead can be amortized with longer lived connections

= DB nodes both service client requests, *and* submit new
requests to other DB nodes for replication, synchronization, etc.

= Set up and tear down of connections is relatively expensive

TCs5558: Applied Distributed Computing [Winter 2024]

‘ (VAR School of Engineering and Technology, University of Washington - Tacoma

1559

59

Slides by Wes J. Lloyd

TCSS558: Applied Distributed Computing [Winter 2024]
‘ January18;2023 School of Engineering and Technology, University of Washington - Tacoma 1558
Reliable Unreliable
Sogunent retranamissio No windowing or
and flow control through e ions
windowing
No
No
TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEIFERR School of Engineering and Technology, University of Washington - Tacoma e

L5.10

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

CONNECTIONLESS VS
CONNECTION ORIENTED
Connectlonless (UDP) Connectlon-oriented (TCP)
stateless stateful
Advantages
Disadvantages
[manina [T e o o) on T
61

MULTITIERED ARCHITECTURES

= Where should functionality be distributed?
= At the client?
= At the server?

Client machine

|Userimcr(apq User interface| | User interface | | Userinterface| | User interface

i Application. J Application Application

Database

User interface B e

- Yo

| Application Application | Application

| Database Database | Database | [Datsbase | | Dmsnase‘
rver maching

= Why should we consider component composition?

TCsS558: Applied Distributed Computing [Winter 2024] 1563
School of Engineering and Technology, University of Washington - Tacoma

‘ January 18, 2024

63

Resource utilization profile changes
from component composition
M-bound RUSLE2 - Soil Erosion Model Webservice

* Box size shows absolute deviation (+/-) from mean
* Shows relative magnitude of performance variance

Two application varlants tested

E * M-bound: Standard service, M is compute bound

8 * D-bound: Modified service, D is compute bound

3 DTOTY T =TT ']

& Disk sector writes: 21.8% 111.1% &

Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

CPUtime diskreads disk writes networkreads networkwrites

January 18, 2024

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectlonless (UDP) Connectlon-orlented (TCP)
stateless stateful
Advantages *+ Fastto i (no . delivery confirmation
connection overhead) + ldempotence not required
° toan i o i resent
* Network bandwidth savings - if client (or network) is

temporarily unavailable
Message sequences

guaranteed
Disadvantages * Cannot tell difference of * Connection setup is time-
request vs. failure
* Requires idempotence * More bandwidth is required
* Clients must be online and (protocol, retries, multinode-
ready to receive icati
TCSS558: Applied Distributed Computing [Winter 2024]
‘ e School of Engineering and Technology, University of Washington - Tacoma 1262

62

Bell’'s Number:

k: number of ways
n components can be
distributed across containers

4,140
21,14

o : Tomcat Application Server

: Postgresql DB
: nginx file server
: Logging server (high O/H)

2
a
rmo=

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

15

A Performance Change:
Min to max performance

Sl

M-bound: 14%
D-bound: 25.7%

[Uo

15 N TR R — " "
scl sc2 sc3 sed seh se6 sc7 seB seO scl0sc11sc12sc13sc145015

Service Configurations

65

Slides by Wes J. Lloyd

66

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MULTITIERED ARCHITECTURES - 2

= M D FL architecture
= M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client

Client Application Databas

server
Request
operation

Request |
data !

Wit for | Wait for
reply | data

[fe
data

r Return

reply

TCsS558: Applied Distributed Computing [Winter 2024] 567
School of Engineering and Technology, University of Washington - Tacoma

‘ January 18, 2024

67

MULTITIERED RESOURCE SCALING - 2

= Horlzontal distribution cont’d
= Sharding: portions of a database map” to a specific server
= Distributed hash table
= Or replica servers

TCSS558: Applied Distributed Computing [Winter 2024]
‘ January1s; 2024 School of Engineering and Technology, University of Washington - Tacoma 1569

January 18, 2024

MULTITIERED RESOURCE SCALING

= Vertlcal distribution
® The distribution of “M D F L”
= Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server
= Vertical distribution impacts “network footprint” of application
= Service isolation: each component is isolated on its own HW
= Horizontal distribution ﬁﬁﬁﬁ
= Scaling an individual tier
= Add multiple machines and distribute load
= Load balancing

TCSS558: Applied Distributed Computing [Winter 2024]

e School of Engineering and Technology, University of Washington - Tacoma

68

OBJECTIVES - 1/18

= Questions from 1/16
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures

= Decentrallzed peer-to-peer archltectures |

= Hybrid architectures

69

January 18, 2024

TCs5558: Applied Distributed Computing [Winter 2024] 1570
School of Engineering and Technology, University of Washington - Tacoma

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured

= Unstructured
= Hierarchically organized
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2024]
‘ (VAR School of Engineering and Technology, University of Washington - Tacoma o7

70

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

= Client/server:
= Nodes have specific roles

= Peer-to-peer:
= Nodes are seen as all equal...

= How should nodes be organlzed for communication?

TCSS558: Applied Distributed Computing [Winter 2024]
CLEIFERR School of Engineering and Technology, University of Washington - Tacoma L7

71

Slides by Wes J. Lloyd

72

L5.12

TCSS 558:

Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

= Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

= Nodes store data associated with a subset of keys

TCSS558: Applied Distributed Computing [Winter 2024]
U School of Engineering and Technology, University of Washington - Tacoma 573

73

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

= Statically sized 4-D hypercube, every node has 4 connectors

= 2 x 3-D cubes, 8 vertices, 12 edges

= Node IDs represented as 4-bit code (0000 to 1111)

= Hash data items to 4-bit key (1 of 16 slots)

= Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

0010

o110 ;
_ 1110

TCSS558: Applied Distributed Computing [Winter 2024]
January1s; 2024 School of Engineering and Technology, University of Washington - Tacoma 1575

75

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

0111] Nelghbors:
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)
0110 (1 bit different than 1110) 0101 (3 bits different- bad path)

= Does It matter which node Is selected for the first hop?

0010

o110

—_ _ 1110

TCSS558: Applied Distributed Computing [Winter 2024]
(VAR School of Engineering and Technology, University of Washington - Tacoma w7

January 18, 2024

DISTRIBUTED HASH TABLE (DHT)

= Distributed hash table (DHT) (ch. 5)
® Hash function

key(data item) = hash(data item’s value)
= Hash function “generates” a unique key based on the data
= No two data elements will have the same key (hash)
= System supports data lookup via key
= Any node can receive and resolve the request
= Lookup function determines which node stores the key

existing node = lookup (key)

= Node forwards request to node with the data

TCS5558: Applied Distributed Computing [Winter 2024] s
School of Engineering and Technology, University of Washington - Tacoma

‘ January 18, 2024

74

FIXED HYPERCUBE EXAMPLE - 2

= Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

= Node 1110 is not a neighbor to 0111

= Which connector leads to the shortest path?

0.

0010

o110

‘ January 18, 2024

TCs5558: Applied Distributed Computing [Winter 2024] 1576
School of Engineering and Technology, University of Washington - Tacoma

76

DYNAMIC TOPOLOGY

= Fixed hypercube requires static topology
= Nodes cannot join or leave

= Relies on symmetry of number of nodes

= Can force the DHT to a certain size

= Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)
= Shortest path between any pair of nodes is ~ order O(log N)
= N is the total number of nodes

TCSS558: Applied Distributed Computing [Winter 2024] s
School of Engineering and Technology, University of Washington - Tacoma

‘ January 18, 2024

77

Slides by Wes J. Lloyd

78

L5.13

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

CHORD SYSTEM

= Data items have m-bit key

= Each node maintains finger table of successor nodes

= Client sends key/value
lookup to any node

= Node forwards client

. =

5 3
Rl

Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to [’ - g
incorporate node i ‘@ 6)
joins/departures

T

request to node with i . | ®
m-bit ID closest to, but - il WA

o BN L . L
not greater than key k nate 25| N A

= Data item is stored at closest “successor” node with ID 2 key k

Node respansiie for
heys (56789

TCSS558: Applied Distributed Computing [Winter 2024]

‘ U School of Engineering and Technology, University of Washington - Tacoma

1579

79

SEARCHING FOR DATA:

" FloodIing

= [Node v]
= Searches locally, responds to u (or forwarder) if having data

= Forwards request to ALL neighbors
= Ignores repeated requests
= Features
= High network traffic
= Fast search results by saturating the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified

data is found

® [Node u] sends request for data item to all neighbors

= Requests can “retry” by gradually increasing TTL/max hops until

UNSTRUCTURED PEER-TO-PEER SYSTEMS

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January1s; 2024 School of Engineering and Technology, University of Washington - Tacoma

1581

81

SEARCHING FOR DATA - 3

Policy-based search methods
Incorporate history and knowledge about the adhoc

queries

succeed at resolving queries

= Can help minimize hops

network at the node-level to enhance effectiveness of

Favor neighbors having highest number of neighbors

= Nodes maintain lists of preferred neighbors which often

TCs5558: Applied Distributed Computing [Winter 2024]

‘ (VAR School of Engineering and Technology, University of Washington - Tacoma

1583

January 18, 2024

STRUCTURED PEER-TO-PEER

= No topology: How do nodes find out about each other?
= Each node maintains adhoc list of neighbors
= Facilitates nodes frequently joining, leaving, adhoc systems

= Nelghbor: node reachable from another via a network path

= Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
= Forms a “random graph”
= Predetermining network routes not possible

= How would you calculate the route algorithmically?

= Routes must be discovered

TCSS558: Applied Distributed Computing [Winter 2024]

e School of Engineering and Technology, University of Washington - Tacoma

80

SEARCHING FOR DATA - 2

= Random walks
® [Node u] asks a randomly chosen neighbor [node v]

" |If [node v] does not have data, forwards request to a
random neighbor
= Features
= Low network traffic
= Akin to sequential search
= Longer search time
= [node u] can start “n” random walks simultaneously to
reduce search time
= As few as n=16..64 random walks sufficient to reduce search
time (LVetal. 2002)

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCSS558: Applied Distributed Computing [Winter 2024]

Sanuanvis202e School of Engineering and Technology, University of Washington - Tacoma

158

82

HIERARCHICAL
PEER-TO-PEER NETWORKS

Problem:
Adhoc system search performance does not scale well as
system grows

Allow nodes to assume ROLES to improve search

Content delivery networks (CDNs) (video streaming)

= Store (cache) data at nodes local to the requester (client)

= Broker node - tracks resource usage and node availability
Track where data is needed
Track which nodes have capacity (disk/CPU resources) to host data

= Node roles

= Super peer -Broker node, routes client requests to storage

nodes

= Weak peer - Store data

TCSS558: Applied Distributed Computing [Winter 2024]

CLEIFERR School of Engineering and Technology, University of Washington - Tacoma

83

Slides by Wes J. Lloyd

84

L5.14

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

HIERARCHICAL
PEER-TO-PEER NETWORKS - 2

= Super peers
= Head node of local centralized network
= Interconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

= Leader-election problem:
= Who can become a
super peer?
= What requirements
must be met to become
a super peer?

OBJECTIVES - 1/18

= Questions from 1/16
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures

Weak peer ¢y !
&0

= Hybrld architectures |
TCSS558: Applied Distributed Computing [Winter 2024] TCSS558: Applied Distributed Computing [Winter 2024]
‘ U School of Engineering and Technology, University of Washington - Tacoma 158 e School of Engineering and Technology, University of Washington - Tacoma 1285

85 86

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

| = Hybrid architectures |

HYBRID
ARCHITECTURES

> <& > Eneryina natvers

= Combine centralized server concepts with decentralized
peer-to-peer models

= Edge-server systems:

= Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

= Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

= Example:

= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

= https://www.Infoq.com/news/2017/07/aws-lambda-at-edge

‘ January 18, 2024

TCsS558: Applied Distributed Computing [Winter 2024] 1587
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2024]

January18;2023 School of Engineering and Technology, University of Washington - Tacoma

87 88

HYBRID
ARCHITECTURES - 2

= Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

= End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

= Cloud - in the sky
= compute/resource capacity is huge, but far away...
= Fog > (devices) on the ground
= compute/resource capacity is constrained and local...

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BltTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

= Original implementation features hybrid architecture
= Leverages idle client network capacity in the background
= User joins the system by interacting with a central server

= Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

= Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth Is reduced!!

= Chunks can be downloaded in parallel from distributed nodes

‘ January 18, 2024

TCS5558: Applied Distributed Computing [Winter 2024] 589
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2024]
CLEIFERR School of Engineering and Technology, University of Washington - Tacoma L0

89 90

Slides by Wes J. Lloyd

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS 558: Applied Distributed Computing January 18, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

QUESTIONS

January 18, 2024

91

Slides by Wes J. Lloyd L5.16

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/18
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/16
	Slide 7: Osi model layers
	Slide 8: Feedback - 2
	Slide 9
	Slide 10: OBJECTIVES – 1/18
	Slide 11: Assignment 1
	Slide 12: OBJECTIVES – 1/18
	Slide 13: Ch 2.1 - Architectural styles
	Slide 14: Object-based architectures
	Slide 15: Object-based architectures - 2
	Slide 16: Distributed objects
	Slide 17: Distributed objects - 2
	Slide 18: Ch 2.1 - Architectural styles
	Slide 19: Service oriented architecture
	Slide 20: Service oriented architecture - 2
	Slide 21: OBJECTIVES – 1/18
	Slide 22: Resource based architectures
	Slide 23: Rest services
	Slide 24: Hypertext transport protocol (http)
	Slide 25: REST-ful operations
	Slide 26: Example: Amazon s3
	Slide 27: Rest - 2
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Rest climate services example
	Slide 32: We will return at 4:50pm
	Slide 33: OBJECTIVES – 1/18
	Slide 34: Publish-subscribe architectures: event-based
	Slide 35: Publish-subscribe architectures - 2
	Slide 36: Publish-subscribe architectures: shared data space
	Slide 37: Publish subscribe architectures - 3
	Slide 38: Publish subscribe architectures - 4
	Slide 39: OBJECTIVES – 1/18
	Slide 40: In-class activity: architectural styles
	Slide 41: Class activity 2
	Slide 42: Distributed system goals to consider
	Slide 43: Ch 2.2: Middleware organization
	Slide 44: OBJECTIVES – 1/18
	Slide 45: Middleware organization
	Slide 46: Middleware: Wrappers
	Slide 47: Middleware: wrappers - 2
	Slide 48: Middleware: interceptors
	Slide 49: Middleware: interceptors - 2
	Slide 50: Middleware interception - method
	Slide 51: Modifiable middleware
	Slide 52: Ch 2.3: System architectures
	Slide 53: OBJECTIVES – 1/18
	Slide 54: System architectures
	Slide 55: OBJECTIVES – 1/18
	Slide 56: Types of System architectures
	Slide 57: Centralized: simple client-server architecture
	Slide 58: Client-server protocols
	Slide 59: Client-server protocols - 2
	Slide 60: Tcp/udp
	Slide 61: Connectionless vs connection oriented
	Slide 62: Connectionless vs connection oriented
	Slide 63: Multitiered architectures
	Slide 64
	Slide 65
	Slide 66: Performance implications of component deployments
	Slide 67: Multitiered architectures - 2
	Slide 68: Multitiered resource scaling
	Slide 69: Multitiered resource scaling - 2
	Slide 70: OBJECTIVES – 1/18
	Slide 71: Types of System architectures
	Slide 72: Decentralized Peer-to-peer architectures
	Slide 73: Structured peer-to-peer
	Slide 74: Distributed hash table (DHT)
	Slide 75: Fixed hypercube example
	Slide 76: Fixed Hypercube example - 2
	Slide 77: Which connector leads to the shortest path?
	Slide 78: Dynamic topology
	Slide 79: Chord system
	Slide 80: unstructured peer-to-peer
	Slide 81: Searching for data: unstructured peer-to-peer systems
	Slide 82: Searching for data - 2
	Slide 83: Searching for data - 3
	Slide 84: Hierarchical peer-to-peer networks
	Slide 85: Hierarchical peer-to-peer networks - 2
	Slide 86: OBJECTIVES – 1/18
	Slide 87: Types of System architectures
	Slide 88: Hybrid architectures
	Slide 89: Hybrid architectures - 2
	Slide 90: Collaborative distributed system example
	Slide 91: Questions

