
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.1

 Distributed System
 Architectures – II,
 Middleware Organization

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)
 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Quest ions f rom 1/16

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.2

OBJECTIVES – 1/18

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.3

ONLINE DAILY FEEDBACK SURVEY

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L5.4

 Please classify your perspective on material covered in today’s

class (23 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.04 ( - previous 5.63)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 6.09 ( - previous 5.00)

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.5

MATERIAL / PACE

 As someone with no networking background, I 'm a bit

intimidated by al l the protocols and layers

 In lecture 4, we presented the Open Systems Interconnection

(OSI) model , a conceptual model created by the International

Organization for Standardization (ISO).

 The OSI model provides a common model that enables diverse

communication systems to communicate using standard

protocols.

 The OSI model provides an excellent example of a layered

architecture with 7 layers.

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.6

FEEDBACK FROM 1/16

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.2

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma
L5.7

OSI MODEL LAYERS

Image credit: https://www.imperva.com/

 What are the key defining traits of a Distributed Information

System that d if ferentiates it f rom other system types?

 Distributed Information Systems are client/server apps found

in organizations which over time were integrated to form

enterprise-wide information systems

 Key features include:

▪ Multi-client/server

▪ Use of atomic transactions

▪ Separation into components

▪ Remote integration

▪ RPC, RMI, Message queues

 Some common SaaS apps

are managed Dist Info Sys

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

FEEDBACK - 2

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.9

Sensor
Network
Example

Purple Air is a sensor network of low-cost air quality sensors

 that collects data from ‘citizen’ scientists regarding particulate

matter pollution to augment that available from the
Environmental Protection Agency.

 Quest ions from 1/16

 Assignment 1: C loud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.10

OBJECTIVES – 1/18

 Preparing for Assignment 1:

Intro to Cloud Computing Infrastructure and Load Balancing

▪ Establish AWS Account - Standard account

 Coming Soon - - PREVIEW:

▪ Task 0 - Establish local Linux/Ubuntu environment

▪ Task 1 –AWS account setup, obtain user credentials

▪ Task 2 – Intro to: Amazon EC2 & Docker: create Dockerfile

for Apache Tomcat

▪ Task 3 – Create Dockerfile for haproxy (software load balancer)

▪ Task 4 – Working with Docker-Machine

▪ Task 5 – Submit Results of testing alternate server configs

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

ASSIGNMENT 1

 Quest ions from 1/16

 Assignment 1: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.12

OBJECTIVES – 1/18

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.3

 Layered

Object-based

▪ Service oriented architecture (SOA)

Resource-centered architectures

▪ Representational state transfer (REST)

Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.13

CH 2.1 - ARCHITECTURAL STYLES

Lecture 4
 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)

▪ Straightforward: package up function inputs, send over
network, transfer results back

▪ Language dependent

▪ In contrast to web services, RPC calls originally were more
intimate in nature

▪ Procedures more “coupled”, not as independent

▪ The goal was not to decouple and widgetize everything

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.14

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

▪ Adds object orientation concepts to remote function calls

▪ Clients bind to proxy objects

▪ Proxy provide an object interface which transfers method

invocation over the network to the remote host

 How do we replicate objects?

▪ Object marshalling – serialize data, stream it over network

▪ Unmarshalling- create an object from the stream

▪ Unmarshall local object copies on the remote host

▪ JSON, XML are some possible data formats

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.15

OBJECT-BASED

ARCHITECTURES - 2

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.16

DISTRIBUTED OBJECTS

 A counterintuitive feature is that state is not

distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node

to node

▪ Common for data objects

 For distributed (remote) objects consider

▪ Pass by value

▪ Pass by reference …. (does this make sense?)

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.17

DISTRIBUTED OBJECTS - 2

 Layered

Object-based

▪ Service oriented architecture (SOA)

Resource-centered architectures

▪ Representational state transfer (REST)

Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.18

CH 2.1 - ARCHITECTURAL STYLES

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.4

 Services provide always-on encapsulated functions over

the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

▪ Aggregate multiple languages, libraries, operating

systems

▪ Include (wrap) legacy code

 Many software components may be involved in the

implementation

▪ Application server(s), relational database(s), key -value

stores, in memory-cache, queue/messaging services

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independently and shared

vs. systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the

system

 An error calling a service (e.g. mismatching the inter face)

generally does not result in a system crash

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.20

SERVICE ORIENTED ARCHITECTURE - 2

 Quest ions from 1/16

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational s tate transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.21

OBJECTIVES – 1/18

 Motivation:

▪ Increasing number of services available online

▪ Each with specific protocol(s), methods of interfacing

▪ Connecting services w/ different TCP/IP protocols
→ integration nightmare

▪ Need for specialized client for each service that speaks the
application protocol “language”…

 Need standardization of inter faces

▪ Make services/components more pluggable

▪ Easier to adopt and
integrate

▪ Common
architecture

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.22

RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP

 Four key characteristics:

1. Resources identified through single naming scheme

2. Services offer the same interface

▪ Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client

▪ Stateless execution

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.23

REST SERVICES

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.24

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.5

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.25

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST inter faces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing

authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards

deprecation

 Python boto ~50 operations

(SDK for Python)

 SDKs for other languages

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.26

EXAMPLE: AMAZON S3

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

▪ SOAP – application protocol specific to web services

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text -based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.27

REST - 2

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L11.28

// SOAP REQUEST – Book Store – Query Price

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

 <m:GetBookPrice>

 <m:BookName>The Fleamarket</m:BookName>

 </m:GetBookPrice>

</soap:Body>

</soap:Envelope>

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L11.29

// SOAP RESPONSE – Book Store – Query Price

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

 <m:GetBookPriceResponse>

 <m: Price>10.95</m: Price>

 </m:GetBookPriceResponse>

</soap:Body>

</soap:Envelope>

L5.30

// Web Service Definition Language (WSDL)

// Service Definition – Day of Week Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

 targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

 xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="DayOfWeekInput">

 <part name="date" type="xsd:date"/>

 </message>

 <message name="DayOfWeekResponse">

 <part name="dayOfWeek" type="xsd:string"/>

 </message>

 <portType name="DayOfWeekPortType">

 <operation name="GetDayOfWeek">

 <input message="tns:DayOfWeekInput"/>

 <output message="tns:DayOfWeekResponse"/>

 </operation>

 </portType>

 <binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetDayOfWeek">

 <soap:operation soapAction="getdayofweek"/>

 <input>

 <soap:body use="encoded"

 namespace="http://www.roguewave.com/soapworx/examples"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:body use="encoded"

 namespace="http://www.roguewave.com/soapworx/examples"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 </operation>

 </binding>

 <service name="DayOfWeekService" >

 <documentation>

 Returns the day-of-week name for a given date

 </documentation>

 <port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

 <soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

 </port>

 </service>

</definitions>

25 26

27 28

29 30

https://curl.haxx.se/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.6

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.31

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

 "parameter": [

 {

 "name": "latitude",

 "value":47.2529

 },

 {

 "name": "longitude",

 "value":-122.4443

 }

]

}

WE WILL RETURN AT

4:50PM

 Quest ions from 1/16

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.33

OBJECTIVES – 1/18

 Enables separation between processing and coordination

 Types of coordination:

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.34

PUBLISH-SUBSCRIBE ARCHITECTURES:

EVENT-BASED

Temporally coupled

(at the same time)

Temporally decoupled

(at different times)

Referentially coupled

(dependent on name)

Direct

Explicit synchronous

service call

Mailbox

Asynchronous by

name (address)

Referentially

decoupled

(name not required)

Event-based

Event notices

published to shared

bus, w/o addressing

Shared data space

Processes write tuples

to a shared data

space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know

about each other explicitly

 Processes:

▪Publish: a notification

describing an event

▪Subscribe: to receive

notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

 Subscribers must actively MONITOR event bus

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.35

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Enables separation between processing and coordination

 Types of coordination:

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.36

PUBLISH-SUBSCRIBE ARCHITECTURES:

SHARED DATA SPACE

Temporally coupled

(at the same time)

Temporally decoupled

(at different times)

Referentially coupled

(dependent on name)

Direct

Explicit synchronous

service call

Mailbox

Asynchronous by

name (address)

Referentially

decoupled

(name not required)

Event-based

Event notices

published to shared

bus, w/o addressing

Shared data space

Processes write tuples

to a shared data

space

Publish and subscribe architectures

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.7

 Shared data space

 Full decoupling (name and time)

 Processes publish “tuples” to shared dataspace (publish)

 Processes provide search pattern to find tuples
(subscribe)

 Subscribers are notified of
matches (both existing and
newly published tuples)

 Key characteristic:
Processes have no explicit
reference to each other

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.37

PUBLISH SUBSCRIBE ARCHITECTURES - 3

Tuple space

 Subscriber describes events interested in

 Complex descriptions are intensive to evaluate and fulfil

 Middleware will:

 Publish matching notification and data to subscribers

▪ Common if middleware lacks storage

 Publish only matching notification

▪ Common if middleware provides storage facility

▪ Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish -and-
subscribe system?

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.38

PUBLISH SUBSCRIBE ARCHITECTURES - 4

 Quest ions from 1/16

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural S tyles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.39

OBJECTIVES – 1/18

IN-CLASS ACTIVITY:

ARCHITECTURAL

STYLES

L5.40

 We will form groups of ~2-3

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to the Doc as they appear in Canvas

 Once completed, one person submits a PDF to Canvas

 Instructor will score all group members based on the
uploaded PDF file

 To get started – link is under Class Activity 2 in Canvas:

▪ Log into your *** UW NET ID ***

▪ Link to shared doc file on Canvas

▪ Follow link:

https://canvas.uw.edu/files/114972397/

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.41

CLASS ACTIVITY 2

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.42

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

37 38

39 40

41 42

https://canvas.uw.edu/files/114972397/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.8

CH 2.2: MIDDLEWARE

ORGANIZATION

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L5.43

 Quest ions from 1/16

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.44

OBJECTIVES – 1/18

Relies on two important design patterns:

▪Wrappers

▪ Interceptors

Both help achieve the goal of openness

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.45

MIDDLEWARE ORGANIZATION

 Wrappers (also called adapters)

▪ WHY?: Interfaces available from legacy software may not be
sufficient for all new applications to use

▪ WHAT: Special “frontend” components that provide interfaces for
clients

▪ Interface wrappers transform client requests to “implementation”
(i.e. legacy software) at the component-level

▪ Can then provide modern service interfaces for legacy code/systems

▪ Components encapsulate (i.e. abstract) dependencies to meet all
preconditions to operate and host legacy code

▪ Interfaces parameterize legacy functions, abstract environment
configuration (i.e. make into black box)

 Contributes towards system OPENNESS

 Example: Amazon S3: S3 HTTP REST inter face

 GET/PUT/DELETE/POST: requests handed off for fulfillment

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.46

MIDDLEWARE: WRAPPERS

 Inter-application communication

▪ Applications may provide unique interface for

every client application

 Scalability suffers

▪ N applications → O(N2) wrappers

 ALTERNATE: Use a Broker

▪ Provide a common intermediary

▪ Broker knows how to communicate with

every application

▪ Applications only know how to communicate

with the broker

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.47

MIDDLEWARE: WRAPPERS - 2

clients

 Interceptor

Software construct, breaks flow of control, allows

other application code to be executed

 Interceptors send calls to other servers, or to ALL

servers that replicate an object while abstracting

the distribution and/or replication

▪ Used to enable remote procedure calls (RPC), remote

method invocation (RMI)

Object A calls method belonging to object B

▪ Interceptors route calls to object B regardless of location

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.48

MIDDLEWARE: INTERCEPTORS

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.9

Request-level
interceptor
transforms:
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level
interceptor in
middleware
sends message
through OS
(TCP/IP socket)
to transfer data:
send(B,”doit”,val)

Non-intercepted:

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.49

MIDDLEWARE: INTERCEPTORS - 2

If object is local

 MIDDLEWARE: Provides local inter face matching Object B to
Object A

 Object A calls Object B’s method provided by local inter face

 A’s call is transformed into a “generic object invocation” by
request-level interceptor

 “Generic object invocation” is transformed into a message by
message-level interceptor and sent over Object A’s network to
Object B

 Interception automatically routes calls to all object replicas

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.50

MIDDLEWARE INTERCEPTION - METHOD

 GOAL: It should be possible to modify middleware without loss

of availability

▪ Software components can be replaced at runtime

 Component-based design

▪ Modifiability through composition

▪ Systems may have static or dynamic configuration of components

▪ Dynamic configuration requires late binding

▪ Components can be changed at runtime

 Component based software supports modifiability at runtime

by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support

modifiability at runtime ?

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.51

MODIFIABLE MIDDLEWARE

CH 2.3: SYSTEM

ARCHITECTURES

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L5.52

 Quest ions from 1/16

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.53

OBJECTIVES – 1/18

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their

interactions, and placement is a “realization” of an

architectural style

 System architectures represent designs used in

practice

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

SYSTEM ARCHITECTURES

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.10

 Quest ions from 1/16

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.55

OBJECTIVES – 1/18

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.56

TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.57

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.58

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new

requests to other DB nodes for replication, synchronization, etc.

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.59

CLIENT-SERVER PROTOCOLS - 2

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.60

TCP/UDP

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.11

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.61

CONNECTIONLESS VS

CONNECTION ORIENTED

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent

- if client (or network) is

temporarily unavailable

• Message sequences

guaranteed

Disadvantages • Cannot tell difference of

request vs. response failure

• Requires idempotence

• Clients must be online and

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required

(protocol, retries, multinode-

communication)

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.62

CONNECTIONLESS VS

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server?

 Why should we consider component composition?

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.63

MULTITIERED ARCHITECTURES
SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat Application Server
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
 n components can be
 distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10
SC9

SC8
SC7

SC6
SC5
SC4

SC3
SC2

SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
 Min to Max Utilization

 m-bound d-bound

 CPU time: 6.5% 5.5%

 Disk sector reads: 14.8% 819.6%
 Disk sector writes: 21.8% 111.1%
 Network bytes received: 144.9% 145%

 Network bytes sent: 143.7% 143.9%

Resource utilization profile changes

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

66

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

61 62

63 64

65 66

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.12

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),

f ileserver (F), and logging server (L)

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.67

MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

 Vertical d istribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.68

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.69

MULTITIERED RESOURCE SCALING - 2

 Quest ions from 1/16

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.70

OBJECTIVES – 1/18

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.71

TYPES OF SYSTEM ARCHITECTURES

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.72

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

67 68

69 70

71 72

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.13

 Nodes organized using specific topology

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.73

STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.74

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number

of varying bits between neighboring nodes and destination

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.75

FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.76

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the f irst hop?

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.77

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.78

DYNAMIC TOPOLOGY

73 74

75 76

77 78

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.14

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value

lookup to any node

 Node forwards cl ient

request to node with

m-bit ID closest to, but

not greater than key k

 Nodes must continual ly

refresh finger tables by

communicating with

adjacent nodes to

incorporate node

joins/depar tures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.79

CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.80

UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.81

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide
walk when data is found…

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.82

SEARCHING FOR DATA - 2

 Policy -based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of

queries

 Nodes maintain lists of preferred neighbors which often

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.83

SEARCHING FOR DATA - 3

 Problem:

Adhoc system search performance does not scale well as

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage

nodes

▪ Weak peer – Store data

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.84

HIERARCHICAL

PEER-TO-PEER NETWORKS

79 80

81 82

83 84

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.15

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements
must be met to become
a super peer?

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.85

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

 Quest ions from 1/16

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity: Architectural Styles

 Chapter 2.2: Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.86

OBJECTIVES – 1/18

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.87

TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.88

HYBRID

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud → in the sky

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground

▪ compute/resource capacity is constrained and local…

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.89

HYBRID

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to

be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then

participates to reserve downloaded content or network

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.90

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

85 86

87 88

89 90

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.16

QUESTIONS

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L5.91

91

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/18
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/16
	Slide 7: Osi model layers
	Slide 8: Feedback - 2
	Slide 9
	Slide 10: OBJECTIVES – 1/18
	Slide 11: Assignment 1
	Slide 12: OBJECTIVES – 1/18
	Slide 13: Ch 2.1 - Architectural styles
	Slide 14: Object-based architectures
	Slide 15: Object-based architectures - 2
	Slide 16: Distributed objects
	Slide 17: Distributed objects - 2
	Slide 18: Ch 2.1 - Architectural styles
	Slide 19: Service oriented architecture
	Slide 20: Service oriented architecture - 2
	Slide 21: OBJECTIVES – 1/18
	Slide 22: Resource based architectures
	Slide 23: Rest services
	Slide 24: Hypertext transport protocol (http)
	Slide 25: REST-ful operations
	Slide 26: Example: Amazon s3
	Slide 27: Rest - 2
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Rest climate services example
	Slide 32: We will return at 4:50pm
	Slide 33: OBJECTIVES – 1/18
	Slide 34: Publish-subscribe architectures: event-based
	Slide 35: Publish-subscribe architectures - 2
	Slide 36: Publish-subscribe architectures: shared data space
	Slide 37: Publish subscribe architectures - 3
	Slide 38: Publish subscribe architectures - 4
	Slide 39: OBJECTIVES – 1/18
	Slide 40: In-class activity: architectural styles
	Slide 41: Class activity 2
	Slide 42: Distributed system goals to consider
	Slide 43: Ch 2.2: Middleware organization
	Slide 44: OBJECTIVES – 1/18
	Slide 45: Middleware organization
	Slide 46: Middleware: Wrappers
	Slide 47: Middleware: wrappers - 2
	Slide 48: Middleware: interceptors
	Slide 49: Middleware: interceptors - 2
	Slide 50: Middleware interception - method
	Slide 51: Modifiable middleware
	Slide 52: Ch 2.3: System architectures
	Slide 53: OBJECTIVES – 1/18
	Slide 54: System architectures
	Slide 55: OBJECTIVES – 1/18
	Slide 56: Types of System architectures
	Slide 57: Centralized: simple client-server architecture
	Slide 58: Client-server protocols
	Slide 59: Client-server protocols - 2
	Slide 60: Tcp/udp
	Slide 61: Connectionless vs connection oriented
	Slide 62: Connectionless vs connection oriented
	Slide 63: Multitiered architectures
	Slide 64
	Slide 65
	Slide 66: Performance implications of component deployments
	Slide 67: Multitiered architectures - 2
	Slide 68: Multitiered resource scaling
	Slide 69: Multitiered resource scaling - 2
	Slide 70: OBJECTIVES – 1/18
	Slide 71: Types of System architectures
	Slide 72: Decentralized Peer-to-peer architectures
	Slide 73: Structured peer-to-peer
	Slide 74: Distributed hash table (DHT)
	Slide 75: Fixed hypercube example
	Slide 76: Fixed Hypercube example - 2
	Slide 77: Which connector leads to the shortest path?
	Slide 78: Dynamic topology
	Slide 79: Chord system
	Slide 80: unstructured peer-to-peer
	Slide 81: Searching for data: unstructured peer-to-peer systems
	Slide 82: Searching for data - 2
	Slide 83: Searching for data - 3
	Slide 84: Hierarchical peer-to-peer networks
	Slide 85: Hierarchical peer-to-peer networks - 2
	Slide 86: OBJECTIVES – 1/18
	Slide 87: Types of System architectures
	Slide 88: Hybrid architectures
	Slide 89: Hybrid architectures - 2
	Slide 90: Collaborative distributed system example
	Slide 91: Questions

