
TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.1

 Distributed System
 Architectures – II,
 Middleware Organization

 Wes J. Lloyd

 School of Engineering 
 & Technology (SET)
 University of Washington - Tacoma

TCSS 558: 

APPLIED DISTRIBUTED COMPUTING

 Quest ions f rom 1/16

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (23 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.04 ( - previous 5.63)  

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 6.09 ( - previous 5.00)
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MATERIAL / PACE

 As someone with no networking background, I 'm a bit 

intimidated by al l the protocols and layers

 In lecture 4, we presented the Open Systems Interconnection 

(OSI) model , a conceptual model created by the International 

Organization for Standardization (ISO).

 The OSI model provides a common model that enables diverse 

communication systems to communicate using standard 

protocols. 

 The OSI model provides an excellent example of a layered 

architecture with 7 layers.
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FEEDBACK FROM 1/16

1 2

3 4

5 6
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OSI MODEL LAYERS

Image credit: https://www.imperva.com/

 What are the key defining traits of  a  Distributed Information 

System that d if ferentiates it  f rom other system types?

 Distributed Information Systems are client/server apps found 

in organizations which over time were integrated to form 

enterprise-wide information systems 

 Key features include:

▪ Multi-client/server

▪ Use of atomic transactions

▪ Separation into components

▪ Remote integration

▪ RPC, RMI, Message queues

 Some common SaaS apps 

are managed Dist Info Sys
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FEEDBACK - 2
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Sensor
Network
Example

Purple Air is a sensor network of low-cost air quality sensors

 that collects data from ‘citizen’ scientists regarding particulate 

matter pollution to augment that available from the 
Environmental Protection Agency.

 Quest ions from 1/16

 Assignment 1:  C loud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

 Preparing for  Assignment 1:

Intro to Cloud Computing Infrastructure and Load Balancing

▪ Establish AWS Account - Standard account

 Coming Soon - - PREVIEW:

▪ Task 0 - Establish local Linux/Ubuntu environment

▪ Task 1 –AWS account setup, obtain user credentials

▪ Task 2 – Intro to: Amazon EC2 & Docker: create Dockerfile

for Apache Tomcat

▪ Task 3 – Create Dockerfile for haproxy (software load balancer)

▪ Task 4 – Working with Docker-Machine

▪ Task 5 – Submit Results of testing alternate server configs
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ASSIGNMENT 1

 Quest ions from 1/16

 Assignment 1:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

7 8

9 10

11 12



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

January 18, 2024

Slides by Wes J. Lloyd L5.3

 Layered 

Object-based

▪ Service oriented architecture (SOA)

Resource-centered architectures

▪ Representational state transfer (REST)

Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)
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CH 2.1 - ARCHITECTURAL STYLES

Lecture 4
 Enables loose and flexible component organization 

 Objects == components

 Enable distributed node interaction via function calls over the 
network

 Began with C - Remote Procedure Calls (RPC)

▪ Straightforward: package up function inputs, send over 
network, transfer results back

▪ Language dependent 

▪ In contrast to web services, RPC calls originally were more 
intimate in nature

▪ Procedures more “coupled”, not as independent

▪ The goal was not to decouple and widgetize everything
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OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

▪ Adds object orientation concepts to remote function calls

▪ Clients bind to proxy objects

▪ Proxy provide an object interface which transfers method 

invocation over the network to the remote host

 How do we replicate objects?

▪ Object marshalling – serialize data, stream it over network

▪ Unmarshalling- create an object from the stream

▪ Unmarshall local object copies on the remote host

▪ JSON, XML are some possible data formats
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OBJECT-BASED 

ARCHITECTURES - 2
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DISTRIBUTED OBJECTS

 A counterintuitive feature is that state is not 

distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node 

to node

▪ Common for data objects

 For distributed (remote) objects consider

▪ Pass by value

▪ Pass by reference  …. (does this make sense?)
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DISTRIBUTED OBJECTS - 2

 Layered 

Object-based

▪ Service oriented architecture (SOA)

Resource-centered architectures

▪ Representational state transfer (REST)

Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)
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CH 2.1 - ARCHITECTURAL STYLES
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 Services provide always-on encapsulated functions over 

the internet/web 

 Leverage redundant cloud computing infrastructure

 Services may:

▪ Aggregate multiple languages, libraries, operating 

systems

▪ Include (wrap) legacy code

 Many software components may be involved in the 

implementation

▪ Application server(s), relational database(s), key -value 

stores, in memory-cache, queue/messaging services
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SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independently and shared 

vs. systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the 

system

 An error calling a service (e.g. mismatching the inter face) 

generally does not result in a system crash
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SERVICE ORIENTED ARCHITECTURE - 2

 Quest ions from 1/16

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational s tate transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

 Motivation:

▪ Increasing number of services available online

▪ Each with specific protocol(s), methods of interfacing

▪ Connecting services w/ different TCP/IP protocols 
→ integration nightmare

▪ Need for specialized client for each service that speaks the 
application protocol “language”…

 Need standardization of inter faces

▪ Make services/components more pluggable

▪ Easier to adopt and
integrate 

▪ Common 
architecture
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RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP 

 Four key characteristics:

1. Resources identified through single naming scheme

2. Services offer the same interface

▪ Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client

▪ Stateless execution
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REST SERVICES

 An ASCII-based request/reply protocol for transferring 

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body
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HYPERTEXT TRANSPORT PROTOCOL (HTTP)
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REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST inter faces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing 

authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards

deprecation

 Python boto ~50 operations 

(SDK for Python)

 SDKs for other languages
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EXAMPLE: AMAZON S3

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

▪ SOAP – application protocol specific to web services

 Access and manipulate web resources with a predefined 
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text, 
XML, no real limits as long as text -based

 curl – generic command-line REST client:
https://curl.haxx.se/
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REST - 2
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// SOAP REQUEST – Book Store – Query Price

POST /InStock HTTP/1.1 

Host: www.bookshop.org 

Content-Type: application/soap+xml; charset=utf-8 

Content-Length: nnn 

<?xml version="1.0"?> 

<soap:Envelope 

xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding"> 

<soap:Body xmlns:m="http://www.bookshop.org/prices"> 

  <m:GetBookPrice> 

    <m:BookName>The Fleamarket</m:BookName> 

  </m:GetBookPrice> 

</soap:Body> 

</soap:Envelope>
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// SOAP RESPONSE – Book Store – Query Price

POST /InStock HTTP/1.1 

Host: www.bookshop.org 

Content-Type: application/soap+xml; charset=utf-8 

Content-Length: nnn 

<?xml version="1.0"?> 

<soap:Envelope 

xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding"> 

<soap:Body xmlns:m="http://www.bookshop.org/prices"> 

  <m:GetBookPriceResponse> 

    <m: Price>10.95</m: Price> 

  </m:GetBookPriceResponse> 

</soap:Body> 

</soap:Envelope>

L5.30

// Web Service Definition Language (WSDL)

// Service Definition – Day of Week Service

<?xml version="1.0" encoding="UTF-8"?> 

<definitions  name ="DayOfWeek"  

  targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 

  xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 

  xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"  

  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

  xmlns="http://schemas.xmlsoap.org/wsdl/">  

  <message name="DayOfWeekInput"> 

    <part name="date" type="xsd:date"/> 

  </message> 

  <message name="DayOfWeekResponse"> 

    <part name="dayOfWeek" type="xsd:string"/> 

  </message> 

  <portType name="DayOfWeekPortType"> 

    <operation name="GetDayOfWeek"> 

      <input message="tns:DayOfWeekInput"/> 

      <output message="tns:DayOfWeekResponse"/> 

    </operation> 

  </portType> 

  <binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType"> 

    <soap:binding style="document"  

      transport="http://schemas.xmlsoap.org/soap/http"/> 

    <operation name="GetDayOfWeek"> 

      <soap:operation soapAction="getdayofweek"/> 

      <input> 

        <soap:body use="encoded"  

          namespace="http://www.roguewave.com/soapworx/examples"  

          encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

      </input> 

      <output> 

        <soap:body use="encoded"  

   namespace="http://www.roguewave.com/soapworx/examples"   

   encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

      </output> 

    </operation> 

  </binding> 

  <service name="DayOfWeekService" > 

    <documentation> 

      Returns the day-of-week name for a given date 

    </documentation> 

    <port name="DayOfWeekPort" binding="tns:DayOfWeekBinding"> 

      <soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/> 

    </port> 

   </service> 

</definitions> 

25 26
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USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long
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REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

 "parameter": [

  {

    "name": "latitude",

    "value":47.2529

  },

  {

    "name": "longitude",

    "value":-122.4443

  }

  ]

}

WE WILL RETURN AT 

4:50PM

 Quest ions from 1/16

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

 Enables separation between processing and coordination

 Types of coordination:
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PUBLISH-SUBSCRIBE ARCHITECTURES:

EVENT-BASED

Temporally coupled

(at the same time)

Temporally decoupled

(at different times)

Referentially coupled 

(dependent on name)

Direct

Explicit synchronous 

service call

Mailbox

Asynchronous by 

name (address)

Referentially 

decoupled

(name not required)

Event-based

Event notices 

published to shared 

bus, w/o addressing

Shared data space

Processes write tuples 

to a shared data 

space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know 

about each other explicitly

 Processes:

▪Publish: a notification 

describing an event

▪Subscribe: to receive 

notification of specific kinds of events

 Assumes subscriber is presently up ( temporally coupled)

 Subscribers must actively MONITOR event bus

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.35

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Enables separation between processing and coordination

 Types of coordination:
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PUBLISH-SUBSCRIBE ARCHITECTURES:

SHARED DATA SPACE

Temporally coupled

(at the same time)

Temporally decoupled

(at different times)

Referentially coupled 

(dependent on name)

Direct

Explicit synchronous 

service call

Mailbox

Asynchronous by 

name (address)

Referentially 

decoupled

(name not required)

Event-based

Event notices 

published to shared 

bus, w/o addressing

Shared data space

Processes write tuples 

to a shared data 

space

Publish and subscribe architectures

31 32
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 Shared data space

 Full decoupling (name and time)

 Processes publish “tuples” to shared dataspace (publish)

 Processes provide search pattern to find tuples 
(subscribe)

 Subscribers are notified of 
matches (both existing and
newly published tuples)

 Key characteristic: 
Processes have no explicit 
reference to each other
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PUBLISH SUBSCRIBE ARCHITECTURES - 3

Tuple space

 Subscriber describes events interested in

 Complex descriptions are intensive to evaluate and fulfil  

 Middleware will:

 Publish matching notification and data to subscribers

▪ Common if middleware lacks storage

 Publish only matching notification

▪ Common if middleware provides storage facility

▪ Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish -and-
subscribe system?
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PUBLISH SUBSCRIBE ARCHITECTURES - 4

 Quest ions from 1/16

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural S tyles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

IN-CLASS ACTIVITY:

ARCHITECTURAL 

STYLES

L5.40

 We will form groups of ~2-3 

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to the Doc as they appear in Canvas

 Once completed, one person submits a PDF to Canvas

 Instructor will score all group members based on the 
uploaded PDF file

 To get started – link is under Class Activity 2 in Canvas:

▪ Log into your *** UW NET ID ***

▪ Link to shared doc file on Canvas

▪ Follow link:

https://canvas.uw.edu/files/114972397/
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CLASS ACTIVITY 2

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 

TO CONSIDER

37 38
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CH 2.2: MIDDLEWARE

ORGANIZATION
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 Quest ions from 1/16

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

Relies on two important design patterns:

▪Wrappers

▪ Interceptors

Both help achieve the goal of openness
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MIDDLEWARE ORGANIZATION

 Wrappers (also called adapters)

▪ WHY?: Interfaces available from legacy software may not be 
sufficient for all new applications to use

▪ WHAT: Special “frontend” components that provide interfaces for 
clients

▪ Interface wrappers transform client requests to “implementation”
(i.e. legacy software) at the component-level

▪ Can then provide modern service interfaces for legacy code/systems

▪ Components encapsulate (i.e. abstract) dependencies to meet all 
preconditions to operate and host legacy code

▪ Interfaces parameterize legacy functions, abstract environment 
configuration (i.e. make into black box)

 Contributes towards system OPENNESS

 Example: Amazon S3: S3 HTTP REST inter face

 GET/PUT/DELETE/POST: requests handed off for fulfillment
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MIDDLEWARE: WRAPPERS

 Inter-application communication

▪ Applications may provide unique interface for

every client application

 Scalability suffers

▪ N applications → O(N2) wrappers

 ALTERNATE: Use a Broker

▪ Provide a common intermediary

▪ Broker knows how to communicate with

every application

▪ Applications only know how to communicate 

with the broker
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MIDDLEWARE: WRAPPERS - 2

clients

 Interceptor

Software construct, breaks flow of control, allows 

other application code to be executed

 Interceptors send calls to other servers, or to ALL 

servers that replicate an object while abstracting 

the distribution and/or replication

▪ Used to enable remote procedure calls (RPC), remote 

method invocation (RMI)

Object A calls method belonging to object B

▪ Interceptors route calls to object B regardless of location
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MIDDLEWARE: INTERCEPTORS
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Request-level 
interceptor 
transforms: 
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level 
interceptor in 
middleware 
sends message 
through OS 
(TCP/IP socket) 
to transfer data: 
send(B,”doit”,val)

Non-intercepted:
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MIDDLEWARE: INTERCEPTORS - 2

If object is local

 MIDDLEWARE: Provides local inter face matching Object B to 
Object A

 Object A calls Object B’s method provided by local inter face

 A’s call is transformed into a “generic object invocation” by 
request-level interceptor

 “Generic object invocation” is transformed into a message by 
message-level interceptor and sent over Object A’s network to 
Object B

 Interception automatically routes calls to all object replicas
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MIDDLEWARE INTERCEPTION - METHOD

 GOAL: It should be possible to modify middleware without loss 

of availability

▪ Software components can be replaced at runtime

 Component-based design

▪ Modifiability through composition

▪ Systems may have static or dynamic configuration of components

▪ Dynamic configuration requires late binding

▪ Components can be changed at runtime

 Component based software supports modifiability at runtime 

by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support 

modifiability at  runtime ?
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MODIFIABLE MIDDLEWARE

CH 2.3: SYSTEM 

ARCHITECTURES
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 Quest ions from 1/16

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring 

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their 

interactions, and placement is a “realization” of an 

architectural style

 System architectures represent designs used in 

practice
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SYSTEM ARCHITECTURES
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 Quest ions from 1/16

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message 
arrival without errors, duplication, delays, or in sequence. 
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request 
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?
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CENTRALIZED: 

SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples: 

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections
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CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new 

requests to other DB nodes for replication, synchronization, etc.
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CLIENT-SERVER PROTOCOLS - 2
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TCP/UDP
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Connectionless (UDP) 

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages
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CONNECTIONLESS VS 

CONNECTION ORIENTED

Connectionless (UDP) 

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no 

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent 

- if client (or network) is 

temporarily unavailable

• Message sequences 

guaranteed

Disadvantages • Cannot tell difference of 

request vs. response failure

• Requires idempotence

• Clients must be online and 

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required 

(protocol, retries, multinode-

communication)
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CONNECTIONLESS VS 

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server? 

 Why should we consider component composition?
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MULTITIERED ARCHITECTURES
SC2

M D
F 

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM 
• Each VM launched to separate physical machine

M: Tomcat Application Server
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways 
 n components can be 
 distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10
SC9

SC8
SC7

SC6
SC5
SC4

SC3
SC2

SC1

CPU time          disk reads        disk writes  network reads     network writes

∆  Resource Utilization Change
     Min to Max Utilization

              m-bound     d-bound       

 CPU time:      6.5%   5.5%

 Disk sector reads:   14.8%  819.6%
 Disk sector writes:   21.8%  111.1%
 Network bytes received: 144.9%  145%

 Network bytes sent:  143.7%  143.9%

Resource utilization profile changes 

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

66

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆  Performance Change:
Min to max performance

M-bound:   14%

D-bound:  25.7%
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 M D F L architecture

 M – is the application server

 M – is also a client to the database (D), 

f ileserver (F), and logging server (L)
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MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

 Vertical d istribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing
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MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers
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MULTITIERED RESOURCE SCALING - 2

 Quest ions from 1/16

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?
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DECENTRALIZED PEER-TO-PEER 

ARCHITECTURES
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 Nodes organized using specific topology 

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys
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STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data
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DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number 

of varying bits between neighboring nodes and destination
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FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?
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FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it  matter which node is  selected for the f irst hop?
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WHICH CONNECTOR LEADS TO THE 

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent–  bad path)

0101 (3 bits dif ferent–  bad path)

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes
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DYNAMIC TOPOLOGY
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 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value 

lookup to any node

 Node forwards cl ient 

request to node with 

m-bit ID closest to, but 

not greater than key k 

 Nodes must continual ly 

refresh finger tables by 

communicating with 

adjacent nodes to 

incorporate node 

joins/depar tures
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CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered
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UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until 

data is found

January 18, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.81

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If  [node v] does not have data, forwards request to a 
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to 
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search 
time  (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide 
walk when data is found…
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SEARCHING FOR DATA - 2

 Policy -based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of 

queries

 Nodes maintain lists of preferred neighbors which often 

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops
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SEARCHING FOR DATA - 3

 Problem:

Adhoc system search performance does not scale well as 

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs)   (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage 

nodes

▪ Weak peer – Store data
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HIERARCHICAL

PEER-TO-PEER NETWORKS
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 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements 
must be met to become 
a super peer?
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HIERARCHICAL 

PEER-TO-PEER NETWORKS - 2

 Quest ions from 1/16

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2:  Distributed System Architectures:  

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Act ivity:  Architectural Styles

 Chapter 2.2:  Middleware Organizat ion

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/18

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an 
edge server (origin server) 

 Edge servers (provided by an ISP) can optimize content and 
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to 
execute “at the edge” harnessing existing CloudFront Content 
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge
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HYBRID 

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the 
cloud to leverage compute and storage capacity of 
end-user devices  

 End-user devices become part of the overall system 

 Middleware extended to incorporate managing edge 
devices as participants in the distributed system  

 Cloud → in the sky   

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground   

▪ compute/resource capacity is constrained and local…
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HYBRID 

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to 

be eligible to download file resources 

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well 

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then 

participates to reserve downloaded content or  network 

bandwidth is  reduced!!

 Chunks can be downloaded in parallel from distributed nodes
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COLLABORATIVE DISTRIBUTED 

SYSTEM EXAMPLE
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QUESTIONS
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