
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.1

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.1

 Distributed Systems:
 Types and Architectures - II

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)

 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 We are awaiting approval to receive AWS CLOUD CREDITS

FOR TCSS 558

 Credits will be provided on email request when available

 Credit codes must be securely exchanged

 Request codes by sending an email with the subject

“AWS CREDIT REQUEST” to wlloyd@uw.edu

 Codes can also be obtained in person (or zoom), in the class,

during the breaks, after class, during office hours, by appt

 To track credit code distribution, codes not shared via IM

 For students unable to create a standard AWS account :

Please contact instructor by email -

Instructor will work to create hosted IAM user account

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

AWS CLOUD CREDITS UPDATE

 Preparing for Assignment 1:

Intro to Cloud Computing Infrastructure and Load Balancing

▪ Establish AWS Account - Standard account

 Coming Soon - - PREVIEW:

▪ Task 0 - Establish local Linux/Ubuntu environment

▪ Task 1 –AWS account setup, obtain user credentials

▪ Task 2 – Intro to: Amazon EC2 & Docker: create Dockerfile

for Apache Tomcat

▪ Task 3 – Create Dockerfile for haproxy (software load balancer)

▪ Task 4 – Working with Docker-Machine

▪ Task 5 – Submit Results of testing alternate server configs

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

ASSIGNMENT 1

 Questions f rom 1/11

▪ Distributed information systems

▪ Transactions

▪ Application Integration: Shared files, DBs, RPC, RMI, Message -
oriented middleware

 Chapter 1 .3 – Types of distributed systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)
January 16, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

OBJECTIVES – 1/16

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

ONLINE DAILY FEEDBACK SURVEY

1 2

3 4

5 6

mailto:wlloyd@uw.edu

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.2

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.7

 Please classify your perspective on material covered in today’s

class (27 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.63 ( - previous 6.60)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.00 ( - previous 5.16)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

MATERIAL / PACE

 The l ines between scalabil ity and accessibil ity are b lurred.

 Is accessibil ity the result o f geographical scalabil ity?

 Accessibil ity as a distr ibuted system design goal refers to process
of making “resources easily accessible”.

▪ While a resource can be made easily accessible, there are limits to the
number of users that can be supported

▪ Scalability is not *required* for accessibility, but it is not a bad idea !

 How do we def ine the d i f ference between the reasonings between
what features make i t scalable or what makes i t accessible?

▪ Accessibility – make it easy for users (and applications) to access and
share remote resources

▪ Scalable – adapt to demand, adjust size of infrastructure to ensure
accessibility to support a changing number of users

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

FEEDBACK FROM 1/11

 Is accessibil ity the ab i l ity fo r the user to access the service
conveniently?

 YES – accessibil ity refers to how easy it is for users to access and
use a shared resource

▪ Think of what interfaces (i.e. programming APIs, GUIs, etc.)
must be leveraged to access the resource

 Or is accessibil ity the ab il ity for the service to be consistently up
and accessible?

▪ “Consistently up” refers to availability

▪ How available a resource is, refers to how much time per day, week,
month, or year the resource is available

▪ Availability is defined using percentages with 9’s:

▪ 99% availability – 3.65 days per year of allowable downtime

▪ 99.9% availability – 8.76 hours per year of allowable downtime

▪ 99.99% availability – 52.56 minutes per year of allowable downtime

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

FEEDBACK - 2

 Openness seems l ike a design pr inciple for developers;
how does openness impact the end user?

 The result of openness for the end user should be that the system
is easier to maintain and potentially more reliable

▪ As a result of practicing good software engineering design principles

 Openness as a distr ibuted systems design goal implies that the
distr ibuted system consists of components that can be (re)used by
or integrated into other systems

 The components are interoperable

 They can be composed (used in other systems)

 Openness also implies that the system is extensible

▪ It should be easy to add new components or replace existing ones
without affecting other components

 Openness is achieved by separat ing po licy f rom mechanism

▪ Systems should consist of relatively small and easily replaceable
adaptable components

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

FEEDBACK - 3

PaaS services often built atop of IaaS

▪Amazon RDS, Heroku, Amazon Elasticache

Scalability

▪VM resources can support fluctuations in demand

Dependability.

▪PaaS services built on highly available IaaS

resources

January 11, 2024
TCSS 558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

PAAS SERVICES IMPLEMENTATION

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.3

 Questions f rom 1/11

▪ Distributed information systems

▪ Transactions

▪ Application Integration: Shared files, DBs, RPC, RMI, Message -
oriented middleware

 Chapter 1 .3 – Types of distributed systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

OBJECTIVES – 1/16

 Enterprise-wide integrated applicat ions (example: UW Workday)

▪ Organizations confronted with too many applications

▪ Interoperability among applications was difficult

▪ Led to many middleware-based solutions

 Key concepts

▪ Component based architectures - database components, processing

components

▪ Distributed transaction – Client wraps requests together, sends as

single aggregated request

▪ Atomic: all or none of the individual requests should be executed

 Different systems define dif ferent action primit ives

▪ Components of the atomic transaction

▪ Examples: send, receive, forward, READ, WRITE, etc.

January 11, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

DISTRIBUTED INFORMATION SYSTEMS

 Transaction primitives

 Transactions are all -or-nothing

▪ All operations are executed

▪ None are executed

January 11, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

DISTRIBUTED INFORMATION SYSTEMS - 2

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

 Questions f rom 1/11

▪ Distributed information systems

▪ Transactions

▪ Application Integration: Shared files, DBs, RPC, RMI, Message -
oriented middleware

 Chapter 1 .3 – Types of distributed systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

OBJECTIVES – 1/16

 Atomic: The transaction occurs indivisibly

 Consistent: Transaction does not create variant states across

nodes during slow updates (e.g. system variants)

▪ Replicas remain constant until all updated

▪ Two phase commit: data pushed first, then the commit

 Isolated: Transactions do not inter fere with each other

 Durable: Once a transaction commits, change are permanent

 Nested transaction: transaction constructed

with many sub-transactions

 Follows a logical division of work

 Must support “rollback” of sub -transactions

January 11, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

TRANSACTIONS: ACID PROPERTIES

 Allow an application to access multiple DBs via a

transactional programming model

 TP monitor: coordinates commitment of sub -transactions

using a distributed commit protocol (Ch. 8)

▪ Saves application complexity from having to coordinate distributed

transactions

January 11, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

TRANSACTION PROCESSING MONITOR

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.4

 Questions f rom 1/11

▪ Distributed information systems

▪ Transactions

▪ Application Integration: Shared files, DBs, RPC, RMI, Message -
oriented middleware

 Chapter 1 .3 – Types of distributed systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

OBJECTIVES – 1/16

 Dist. Info systems support application components direct

communication with each other, not via databases

 Communication mechanisms:

 Remote procedure call (RPC)

▪ Local procedure call packaged as a message and sent to server

▪ Supports distribution of function call processing

 Remote method invocations (RMI)

▪ Operates on objects instead of functions

 RPC and RMI – led to tight coupling

 Client and server endpoints must be up and running

 Inter faces coupled to specific languages and not interoperable

 This led to evolution of : Message-oriented middleware (MOM)

January 11, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

ENTERPRISE APPLICATION INTEGRATION

Publish and subscribe systems:

▪ Rabbit MQ, Apache Kafka, AWS SQS

Reduces tight coupling of RPC/RMI

Applications indicate interest for specific type(s)

of messages by sending requests to logical

contact points

Communication middleware delivers messages to

subscribing applications

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

MESSAGE-ORIENTED MIDDLEWARE

 Integration via shared data files and transfers

▪ Shared data files (e.g. XML)

▪ Leads to file management challenges (concurrent updates, etc.)

 Shared database

▪ Centralized DB, transactions to coordinate changes among users

▪ Common data schema required – can be challenging to derive

▪ For many reads and updates, shared DB becomes bottleneck

(limited scalability)

 Remote procedure call – app A executes on and against app B

data. App A lacks direct access to app B data.

 Messaging middleware - ensures nodes temporarily of fline

later on, can receive messages

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

CHALLENGES WITH VARIOUS

APPLICATION INTEGRATION METHODS

 Questions f rom 1/11

▪ Distributed information systems

▪ Transactions

▪ Application Integration: Shared files, DBs, RPC, RMI, Message -
oriented middleware

 Chapter 1 .3 – Types of distributed systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

OBJECTIVES – 1/16

 Existing everywhere, widely adopted…

 Combine current network technologies, wireless

computing, voice recognition, internet capabilities and AI

to create an environment where connectivity of devices is

embedded, unobtrusive, and always available

 Many sensors infer various aspects of a user’s behavior

▪ Myriad of actuators to collect information, provide feedback

 T YPES OF PERVASIVE SYSTEMS:

▪ Ubiquitous computing systems

▪Mobile systems

▪ Sensor networks

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

PERVASIVE SYSTEMS

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.5

 Questions f rom 1/11

▪ Distributed information systems

▪ Transactions

▪ Application Integration: Shared files, DBs, RPC, RMI, Message -
oriented middleware

 Chapter 1 .3 – Types of distributed systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

OBJECTIVES – 1/16

 Pervasive and continuously present

 Goal: embed processors everywhere (day -to-day objects)

enabling them to communicate information

 Requirements for a ubiquitous computing system:

▪ Distribution – devices are networked, distributed, and

accessible transparently

▪ Interaction – unobtrusive (low-key) between users and devices

▪ Context awareness – optimizes interaction

▪ Autonomy – devices operate autonomously, self -managed

▪ Intelligence – system can handle wide range of dynamic

actions and interactions

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

PERVASIVE SYSTEM TYPE:

UBIQUITOUS COMPUTING SYSTEMS

Apple Watch

Amazon Echo Speaker

Amazon EchoDot (single speaker design)

Fitbit

Electronic Toll Systems

Smart Traffic Lights

Self Driving Cars

Home Automation

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

UBIQUITOUS COMPUTING DEVICES

EXAMPLES

 Domestic ubiquitous computing environment example:

 Interconnect lighting and environmental controls with

personal biometric monitors woven into clothing so that

illumination and heating/cooling control for a room might

be modulated, continuously and imperceptibly

 IoT technology helps enable ubiquitous computing

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

UBIQUITOUS COMPUTING

SYSTEM EXAMPLE

 Questions f rom 1/11

▪ Distributed information systems

▪ Transactions

▪ Application Integration: Shared files, DBs, RPC, RMI, Message -
oriented middleware

 Chapter 1 .3 – Types of distributed systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

OBJECTIVES – 1/16

 Emphasis on mobile devices, e.g. smartphones, tablet

computers

 Devices: remote controls, pagers, active badges, car

equipment, various GPS-enabled devices,

 Devices move: where is the device?

 Changing location: leverage mobile adhoc network (MANET)

 MANET is an ad hoc network consisting of mobile devices.

The network is continuously self -configuring. Devices use

wireless connections to constitute the network.

▪ Key points: self configurating, no permanent infrastructure

 VANET (Vehicular Ad Hoc Network), is a type of MANET that

allows vehicles to communicate with roadside equipment.

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

PERVASIVE SYSTEM TYPE:

MOBILE SYSTEMS

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.6

 SPAN – Smart phone ad-hoc network

▪ Peer-to-peer networks leveraging bluetooth and wifi available from

smart phones without relying on cellular networks, wireless access

points, or traditional network infrastructure

 iMANET – Internet based mobile ad-hoc network

▪ Ad hoc networks that consists of both mobile devices and Internet -

gateway nodes which allows the network to access the Internet and

hence span beyond a local ad hoc network

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

OTHER MANETS

 Questions f rom 1/11

▪ Distributed information systems

▪ Transactions

▪ Application Integration: Shared files, DBs, RPC, RMI, Message -
oriented middleware

 Chapter 1 .3 – Types of distributed systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

OBJECTIVES – 1/16

 Tens, to hundreds, to thousands of small nodes

 Simple: small memory/compute/communication capacity

 Wireless, battery powered (or battery -less)

 Limited: restricted communication, constrained power

 Equipped with sensing devices

 Some can act as actuators (control systems)

▪ Example: enable sprinklers upon fire detection

 Sensor nodes organized in neighborhoods

 Scope of communication:

▪ Node – neighborhood – system-wide

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS

 Collaborate to process sensor data in app-specific manner

 Provide mix of data collection and processing

 Nodes may implement a distributed database

 Database organization: centralized to decentralized

 In network processing: forward query to all sensor nodes

along a tree to aggregate results and propagate to root

 Is aggregation simply data collection?

 Are all nodes homogeneous?

 Are all network links homogeneous?

 How do we setup a tree when nodes have heterogeneous

power and network connection quality?

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS - 2

 Centralized:

 Decentralized:

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

CENTRALIZED VS. DECENTRALIZED

DATA STORAGE

 Consider the tradeoff space for:

▪ sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute

● No node coordination power

● No node processing or storage ● “Smart” nodes

● “Dumb” nodes ● Expensive nodes

● Less expensive node ● network traf f ic is distributed

● Central server can experience
intense network traf fic

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

WHO AGGREGATES AND STORES DATA?

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.7

 What are some unique requirements for sensor networks

middleware?

▪ Sensor networks may consist of different types of nodes

with different functions

▪ Nodes may often be in suspended state to save power

▪ Duty cycles (1 to 30%), strict energy budgets

▪ Synchronize communication with duty cycles

▪ How do we manage membership when devices are offline?

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

SENSOR NETWORKS - 3

 HPC, Cluster, Grid, Cloud

 Distributed information systems

▪ Transactions

▪ Application Integration: Shared files, DBs, RPC, RMI,
Message-oriented middleware

 Pervasive Systems

▪ Ubiquitous computing systems

▪Mobile systems

▪ Sensor networks

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

TYPES OF DISTRIBUTED SYSTEMS

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L10.39 October 24, 2016

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L10.40

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L10.41

WE WILL RETURN AT

4:50PM

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.8

 T YPES: HPC/Cluster/Grid/Cloud,
Distributed Info Sys, Pervasive (Ubiquitous, Mobile, Sensor)

 Web search engine

 Assisted living home monitoring system for elderly

 Ecommerce websites: e.g. eBay, Amazon

 Wikipedia: online encyclopedia

 Amazon Elastic Compute Cloud (EC2)

 Massively multiplayer online games (MMO)

 Seismic monitoring network: warning system for earthquakes

 Worldwide Large Hadron Collider (LHC) Computing Grid

 Hospital health informatics and records system

 Canvas: web-based learning environment

 Modern automobile with self -driving features

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

CLASSIFY THE FOLLOWING TYPES OF

DISTRIBUTED SYSTEMS:

 Centralized:

 Decentralized:

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

WHAT ARE SOME TRADEOFFS FOR CENTRALIZED VS.

DECENTRALIZED DATA STORAGE?

EXAMPLE: SENSOR NETWORKS

 Quest ions from 1/11

 Message Oriented Middleware

 Chapter 1.3 – Types of distr ibuted systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

OBJECTIVES – 1/16

 Provides logical organization of a distributed system into
software components

 Logical: How system is perceived, modeled (think diagram)

▪ The OO/component abstractions

▪ The “idealists” view of the system

 Physical – how it really exists

▪ The “realist” view of the system

 Middleware

▪ Helps separate application from platforms

▪ Helps organize and assemble distributed components

▪ Helps components communicate

▪ Enables system to be extended

▪ Supports replication within the distributed system

▪ Provides “realization” of the architecture

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

DISTRIBUTED SYSTEM ARCHITECTURES

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.47

CENTRALIZED VS. DECENTRALIZED

DISTRIBUTED SYSTEM ARCHITECTURE

`

Credit:
https://en.wikipedia.org/wiki/Decentralised_system

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: ver tical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Rolling updates

● No data partitions ● Data partit ioned or replicated

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

CENTRALIZED VS. DECENTRALIZED

DISTRIBUTED SYSTEM ARCHITECTURE

hybrid

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.9

 COMPONENT: modular unit with well -defined, required,

and provided interfaces that is replaceable within its

environment

 Components can be replaced while system is running

 Interfaces must remain the same

 Preserving interfaces enables interoperability

 CONNECTOR: enables flow of control and data between

components

 Distributed system architectures are conceived using

components and connectors

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

ARCHITECTURAL BUILDING BLOCKS

 Quest ions from 1/11

 Message Oriented Middleware

 Chapter 1.3 – Types of distr ibuted systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

OBJECTIVES – 1/16

 Layered

Object-based

▪ Service oriented architecture (SOA)

Resource-centered architectures

▪ Representational state transfer (REST)

Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

ARCHITECTURAL STYLES

 Quest ions from 1/11

 Message Oriented Middleware

 Chapter 1.3 – Types of distr ibuted systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

OBJECTIVES – 1/16

 Consider how architectural style may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

DISTRIBUTED SYSTEM

DESIGN GOALS TO CONSIDER

 Components organized in layers

 Component at layer L j downcalls to lower-level

components at layer L i (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

LAYERED ARCHITECTURES

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.10

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.55

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

 Consider an architecture with 5 layers

 Does a client interacting with “Layer 5” of the

distributed system need to be concerned with

details regarding the implementation of lower

layers (layers 1, 2, 3, 4) ?

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.56

LAYERED ARCHITECTURES - 3

 Example: pure-layered organization

 Each layer offers an inter face specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

New services can be built atop of existing

layers to reuse lower level implementation(s)
 Abstractions make it easier to reuse existing layers which

already implement communication basics

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.57

COMMUNICATION-PROTOCOL STACKS

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.58

HOW A NETWORK PACKET IS BUILT

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.59

TCP HEADER

 Source / Destination IP Addr

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

IP HEADER

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.11

 TCP (layer 4) provides easy to use API

 API supports:

▪ setup, tear down of connection(s)

▪ sending and receiving of messages

 TCP preserves ordering of t ransferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnost ic

▪ A protocol is a language of messages exchanged to enable
communication

▪ Application layer communication is programming language agnostic

▪ Code can be written in many programming languages to “speak” the
“language” of a custom protocol known as an
APPLICATION PROTOCOL

 What should the applicat ion protocol say?

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.61

TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP,

RTP, SMTP, Telnet, RPC, LDAP

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.62

COMMON APPLICATION LAYER

PROTOCOLS

 Distributed application example: Internet search engine

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.63

APPLICATION LAYERING

 Three logical layers of distributed applications

▪ The data level

▪ Application interface level

▪ The processing level

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

APPLICATION LAYERING

 Three logical layers of distributed applications

▪ The data level (M)

▪ Application interface level (V)

▪ The processing level (C)

 Model view controller architecture – distributed systems

▪Model – database - handles data persistence

▪ View – user interface - also includes APIs

▪ Controller – middleware / business logic

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.65

APPLICATION LAYERING

 Questions from 1/11

 Message Oriented Middleware

 Chapter 1.3 – Types of distr ibuted systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.66

OBJECTIVES – 1/16

61 62

63 64

65 66

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.12

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)

▪ Straightforward: package up function inputs, send over
network, transfer results back

▪ Language dependent

▪ In contrast to web services, RPC calls originally were more
intimate in nature

▪ Procedures more “coupled”, not as independent

▪ The goal was not to decouple and widgetize everything

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.67

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

▪ Adds object orientation concepts to remote function calls

▪ Clients bind to proxy objects

▪ Proxy provide an object interface which transfers method

invocation over the network to the remote host

 How do we replicate objects?

▪ Object marshalling – serialize data, stream it over network

▪ Unmarshalling- create an object from the stream

▪ Unmarshall local object copies on the remote host

▪ JSON, XML are some possible data formats

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.68

OBJECT-BASED

ARCHITECTURES - 2

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.69

DISTRIBUTED OBJECTS

 A counterintuitive feature is that state is not

distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node

to node

▪ Common for data objects

 For distributed (remote) objects consider

▪ Pass by value

▪ Pass by reference …. (does this make sense?)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.70

DISTRIBUTED OBJECTS - 2

 Services provide always-on encapsulated functions over

the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

▪ Aggregate multiple languages, libraries, operating

systems

▪ Include (wrap) legacy code

 Many software components may be involved in the

implementation

▪ Application server(s), relational database(s), key -value

stores, in memory-cache, queue/messaging services

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.71

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independently and shared

vs. systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the

system

 An error calling a service (e.g. mismatching the inter face)

generally does not result in a system crash

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.72

SERVICE ORIENTED ARCHITECTURE - 2

67 68

69 70

71 72

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.13

 Quest ions from 1/11

 Message Oriented Middleware

 Chapter 1.3 – Types of distr ibuted systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational s tate transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.73

OBJECTIVES – 1/16

 Motivation:

▪ Increasing number of services available online

▪ Each with specific protocol(s), methods of interfacing

▪ Connecting services w/ different TCP/IP protocols
→ integration nightmare

▪ Need for specialized client for each service that speaks the
application protocol “language”…

 Need standardization of inter faces

▪ Make services/components more pluggable

▪ Easier to adopt and
integrate

▪ Common
architecture

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.74

RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP

 Four key characteristics:

1. Resources identified through single naming scheme

2. Services offer the same interface

▪ Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client

▪ Stateless execution

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.75

REST SERVICES

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.76

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.77

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing

authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards

deprecation

 Python boto ~50 operations

(SDK for Python)

 SDKs for other languages

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.78

EXAMPLE: AMAZON S3

73 74

75 76

77 78

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.14

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

▪ SOAP – application protocol specific to web services

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text -based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.79

REST - 2

L4.80

// WSDL Service Definition

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

 targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

 xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="DayOfWeekInput">

 <part name="date" type="xsd:date"/>

 </message>

 <message name="DayOfWeekResponse">

 <part name="dayOfWeek" type="xsd:string"/>

 </message>

 <portType name="DayOfWeekPortType">

 <operation name="GetDayOfWeek">

 <input message="tns:DayOfWeekInput"/>

 <output message="tns:DayOfWeekResponse"/>

 </operation>

 </portType>

 <binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetDayOfWeek">

 <soap:operation soapAction="getdayofweek"/>

 <input>

 <soap:body use="encoded"

 namespace="http://www.roguewave.com/soapworx/examples"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:body use="encoded"

 namespace="http://www.roguewave.com/soapworx/examples"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 </operation>

 </binding>

 <service name="DayOfWeekService" >

 <documentation>

 Returns the day-of-week name for a given date

 </documentation>

 <port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

 <soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

 </port>

 </service>

</definitions>

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.81

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

 "parameter": [

 {

 "name": "latitude",

 "value":47.2529

 },

 {

 "name": "longitude",

 "value":-122.4443

 }

]

}

 Quest ions from 1/11

 Message Oriented Middleware

 Chapter 1.3 – Types of distr ibuted systems

▪ Pervasive Systems: Ubiquitous, Mobile, Sensor networks

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Layered

▪ Object-based

▪ Service oriented architecture (SOA)

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.82

OBJECTIVES – 1/16

 Enables separation between processing and coordination

 Types of coordination: temporal and referential coupling:

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.83

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled

(at the same time)

Temporally decoupled

(at different times)

Referentially coupled

(dependent on name)

Direct

Explicit synchronous

service call

Mailbox

Asynchronous by

name (address)

Referentially

decoupled

(name not required)

Event-based

Event notices

published to shared

bus, w/o addressing

Shared data space

Processes write tuples

to a shared data

space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know

about each other explicitly

 Processes:

▪Publish: a notification

describing an event

▪Subscribe: to receive

notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

 Subscribers must actively MONITOR event bus

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.84

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

79 80

81 82

83 84

https://curl.haxx.se/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

Slides by Wes J. Lloyd L4.15

 Shared data space

 Full decoupling (name and time)

 Processes publish “tuples” to shared dataspace (publish)

 Processes provide search pattern to find tuples
(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.85

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in

 Complex descriptions are intensive to evaluate and fulfil

 Middleware will:

 Publish matching notification and data to subscribers

▪ Common if middleware lacks storage

 Publish only matching notification

▪ Common if middleware provides storage facility

▪ Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish -and-
subscribe system?

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.86

PUBLISH SUBSCRIBE ARCHITECTURES - 4

QUESTIONS

January 16, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.87

85 86

87

	Slide 1
	Slide 2: TCSS 558: applied distributed computing
	Slide 3: AWS Cloud Credits update
	Slide 4: Assignment 1
	Slide 5: OBJECTIVES – 1/16
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 1/11
	Slide 10: Feedback - 2
	Slide 11: Feedback - 3
	Slide 12: Paas services implementation
	Slide 13: OBJECTIVES – 1/16
	Slide 14: Distributed information systems
	Slide 15: Distributed information systems - 2
	Slide 16: OBJECTIVES – 1/16
	Slide 17: Transactions: ACID properties
	Slide 18: Transaction processing monitor
	Slide 19: OBJECTIVES – 1/16
	Slide 20: Enterprise application integration
	Slide 21: Message-oriented middleware
	Slide 22: Challenges with various Application integration methods
	Slide 23: OBJECTIVES – 1/16
	Slide 24: Pervasive systems
	Slide 25: OBJECTIVES – 1/16
	Slide 26: Pervasive system type: Ubiquitous computing systems
	Slide 27: Ubiquitous computing devices examples
	Slide 28: Ubiquitous computing system example
	Slide 29: OBJECTIVES – 1/16
	Slide 30: Pervasive system type: Mobile systems
	Slide 31: Other MANETs
	Slide 32: OBJECTIVES – 1/16
	Slide 33: Pervasive system type: Sensor networks
	Slide 34: Pervasive system type: Sensor networks - 2
	Slide 35: Centralized vs. decentralized data storage
	Slide 36: Who aggregates and stores data?
	Slide 37: Sensor networks - 3
	Slide 38: Types of distributed systems
	Slide 39
	Slide 40
	Slide 41
	Slide 42: We will return at 4:50pm
	Slide 43: Classify the following types of distributed systems:
	Slide 44: What are some tradeoffs for Centralized vs. decentralized data storage? example: sensor networks
	Slide 45: OBJECTIVES – 1/16
	Slide 46: Distributed system architectures
	Slide 47: Centralized vs. decentralized distributed system architecture
	Slide 48: Centralized vs. decentralized distributed system architecture
	Slide 49: Architectural building blocks
	Slide 50: OBJECTIVES – 1/16
	Slide 51: Architectural styles
	Slide 52: OBJECTIVES – 1/16
	Slide 53: Distributed system DESIGN goals to consider
	Slide 54: Layered architectures
	Slide 55: Layered architectures - 2
	Slide 56: Layered architectures - 3
	Slide 57: Communication-protocol stacks
	Slide 58: how a Network packet is built
	Slide 59: Tcp header
	Slide 60: Ip header
	Slide 61: Transmission control protocol (TCP)
	Slide 62: Common Application layer protocols
	Slide 63: Application layering
	Slide 64: Application layering
	Slide 65: Application layering
	Slide 66: OBJECTIVES – 1/16
	Slide 67: Object-based architectures
	Slide 68: Object-based architectures - 2
	Slide 69: Distributed objects
	Slide 70: Distributed objects - 2
	Slide 71: Service oriented architecture
	Slide 72: Service oriented architecture - 2
	Slide 73: OBJECTIVES – 1/16
	Slide 74: Resource based architectures
	Slide 75: Rest services
	Slide 76: Hypertext transport protocol (http)
	Slide 77: REST-ful operations
	Slide 78: Example: Amazon s3
	Slide 79: Rest - 2
	Slide 80
	Slide 81: Rest climate services example
	Slide 82: OBJECTIVES – 1/16
	Slide 83: Publish-subscribe architectures
	Slide 84: Publish-subscribe architectures - 2
	Slide 85: Publish subscribe architectures - 3
	Slide 86: Publish subscribe architectures - 4
	Slide 87: Questions

