TCSS 558: Applied Distributed Computing January 16, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

(D) Latency & ZERO (3) Bondwidtn s inote TCSS 558:

- 4 5 APPLIED DISTRIBUTED COMPUTING
alz, : u
z gﬁ! % S 2 _

® e rerioe s (IS oo @-ru etk 5
h“jm:wus EB r’d]ﬂﬂ@@ﬂtﬁﬁ Seevre Distributed Systems:

. M égﬂ Types and Architectures - 1
@/ﬁ e st s

v- mq sa e 1 oy Tomes GO

doesnt
@Tﬂmspori’ costs 40 (&) There is only (S)Tu\w\ng‘::m:'.
ore ndmm«mh,r

Y= -
et \ = ‘P n‘ ien
il =

TCSS558: Applied Distributed Computing [Winter 2024]
Jenua/ic 2024 School of Engineering and Technology, University of Washington - Tacoma 28]

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

AWS CLOUD CREDITS UPDATE ASSIGNMENT 1
= We are awaiting approval to receive AWS CLOUD CREDITS = Preparing for Assignment 1:
FOR TCSS 558 Intro to Cloud Computing Infrastructure and Load Balancin
= Credits will be provided on email request when available = Establish AWS Account - Standard account
= Credit codes must be securely exchanged = Coming Soon - - PREVIEW:

= Request codes by sending an email with the subject
“AWS CREDIT REQUEST” to wlloyd@uw.edu

= Codes can also be obtained in person (or zoom), in the class,

= Task O - Establish local Linux/Ubuntu environment
=Task 1 -AWS account setup, obtain user credentials

during the breaks, after class, during office hours, by appt =Task 2 - Intro to: Amazon EC2 & Docker: create Dockerfile
= To track credit code distribution, codes not shared via IM for Apache Tomcat
= For students unable to create a standard AWS account: =Task 3 - Create Dockerfile for haproxy (software load balancer)
Please contact instructor by email - =Task 4 - Working with Docker-Machine

Instructor will work to create hosted IAM user account = Task 5 - Submit Results of testing alternate server configs

TCs5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2024]
‘ January16;2024 13 ‘ January16;2024 School of Engineering and Technology, University of Washington - Tacoma s

OBJECTIVES - 1/16 ONLINE DAILY FEEDBACK SURVEY

I' Questions from 1/11 I = Daily Feedback Quiz in Canvas - Available After Each Class

* Distributed information systems = Extra credit available for completing surveys ON TIME

Transactions
Application Integration: Shared files, DBs, RPC, RMI, Message- " Tuesday surveys: due by Wed @ 10p

oriented middleware = Thursday surveys: due Mon @ 10p
= Chapter 1.3 - Types of distributed systems
= Pervasive Systems: Ubiquitous, Mobile, Sensor networks

== TCSS558A » Assignments

= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Layered Hame
= Object-based
Service oriented architecture (SOA)
= Resource-centered architectures
Representational state transfer (REST) “ :E-’:S“f“jﬁ WOIII\“lnt Dﬂ“? ‘Fl‘tdub:lfk. ?UTVEYI s |
= Event-based Chat - -

* Upcoming Assignments

TCs5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

TCsS558: Applied Distributed Computing [Winter 2024]

‘ January 16, 2024 School of Engineering and Technology, University of Washington - Tacoma

s ‘ January 16, 2024

Slides by Wes J. Lloyd L4.1

mailto:wlloyd@uw.edu

TCSS 558:

Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan & at 10pm Points 1 Questions 4

Available Jan 5 at 1:30pm - Jan & at 11:59pm 1 day Time Limit None

Question 1 aspts
Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 a 4 s 3 7 8 s 10

[ety

Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past

TCSS558: Applied Distributed Computing [Winter 2024]

January 16, 2024 School of Engineering and Technology, University of Washington - Tacoma L7

January 16, 2024

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (27 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.63 ({ - previous 6.60)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.00 ({ - previous 5.16)

TCsS558: Applied Distributed Computing [Winter 2024]
e School of Engineering and Technology, University of Washington - Tacoma s

FEEDBACK FROM 1/11

= Accessibility as a distributed system design goal refers to process
of making “resources easily accessible”.
= While a resource can be made easily accessible, there are limits to the
number of users that can be supported
= Scalability is not *required* for accessibility, but it is not a bad idea !

= How do w fine the differen tween the r nin, tween
what features make It lable or what makes It Ible?
= Accesslblllty - make it easy for users (and applications) to access and
share remote resources
= Scalable - adapt to demand, adjust size of infrastructure to ensure
accessibility to support a changing number of users

FEEDBACK - 2

.
convenlently?
= YES - accessibility refers to how easy it is for users to access and
use a shared resource
= Think of what interfaces (i.e. programming APIs, GUls, etc.)
must be leveraged to access the resource

= 0rl. Ibllity th llity for th rvice t nsistentl)
and accessible?
= “C i ly up” refers to ilabili

= How available a resource is, refers to how much time per day, week,
month, or year the resource is available
= Availability is defined using percentages with 9’s:
99% availability - 3.65 days per year of allowable downtime
99.9% availability - 8.76 hours per year of allowable downtime
99.99% availability - 52.56 minutes per year of allowable downtime

TCSS558: Applied Distributed Computing [Winter 2024]
January16;2024 School of Engineering and Technology, University of Washington - Tacoma ta10

10

TCSS558: Applied Distributed Computing [Winter 2024]
‘ January16;2024 School of Engineering and Technology, University of Washington - Tacoma L9
. . -
how nn Impact the en r?

= The result of openness for the end user should be that the system
is easier to maintain and potentially more reliable
* As a result of practicing good software englneering design principles

= Openness as a distributed systems design goal implies that the
distributed system consists of components that can be (re)used by
or integrated into other systems

= The components are Interoperable

= They can be composed (used in other systems)

= Openness also implies that the system is extenslble
= It should be easy to add new components or replace existing ones

without affecting other components
= Openness is achieved by separating policy from mechanism

= Systems should consist of relatively small and easily replaceable

adaptable
TCss558: Applied Distributed Computing [Winter 2024]
(VAR School of Engineering and Technology, University of Washington - Tacoma L

PAAS SERVICES IMPLEMENTATION

= PaaS services often built atop of laaS
= Amazon RDS, Heroku, Amazon Elasticache

= Scalability
=VM resources can support fluctuations in demand

= Dependability.
=Paas$ services built on highly available laaS
resources

7SS 558: Applied Distributed Computing [Winter 2024]
CLEIERAR School of Engineering and Technology, University of Washington - Tacoma s

11

Slides by Wes J. Lloyd

12

L4.2

TCSS 558: Applied Distributed Computing

January 16, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/16

DISTRIBUTED INFORMATION SYSTEMS

" Questions from 1/11
I = Distributed Informatlon systems |

Transactions

= Enterprise-wlde integrated applications (example: UW Workday)

= Organizations confronted with too many applications
Application Integration: Shared files, DBs, RPC, RMI, Message-

= Interoperability among applications was difficult
oriented middleware = Led to many middleware-based solutions
= Chapter 1.3 - Types of distributed systems .
Key concepts
= Pervasive Systems: Ubiquitous, Mobile, Sensor networks v o .
= Ci based s - e comp p
= Chapter 2: Distributed System Architectures: components
* Chapter 2.1 - Architectural Styles = Distrlbuted transactlon - Client wraps requests together, sends as
= Layered
= Object-based

single aggregated request
Service oriented architecture (SOA)

= Resource-centered architectures
Representational state transfer (REST)
= Event-based

= Atomic: all or none of the individual requests should be executed

= Different systems define different actlon primitives
= Components of the atomic transaction

) = Examples: send, receive, forward, READ, WRITE, etc.
January 16, 2024 TCSS558: Applied Distributed Computing:

TCs5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma ‘ TR

School of Engineering and Technology, University of Washington - Tacoma 1318

DISTRIBUTED INFORMATION SYSTEMS - 2

OBJECTIVES - 1/16
= Transaction primitives = Questions from 1/11

= Distributed information systems
Primitve ______| Desaription []

Transactlons
BEGIN_TRANSACTION Mark the start of a transaction

Application Integration: Shared files, DBs, RPC, RMI, Message-
END_TRANSACTION

oriented middleware
Terminate the transaction and try to commit = Chapter 1.3 - Types of distributed systems
ABORT_TRANSACTION Kill the transaction and restore the old values = Pervasive Systems: Ubiquitous, Mobile, Sensor networks
READ Read data from a file, a table, or otherwise = Chapter 2: Distributed System Architectures:
WRITE Write data to a file, a table, or otherwise

= Chapter 2.1 - Architectural Styles
= Layered
= Object-based

Service oriented architecture (SOA)
= Resource-centered architectures

Representational state transfer (REST)
= Event-based

= Transactions are all-or-nothing
= All operations are executed
= None are executed

School of Engineering and Technology, University of Washington - Tacoma

‘] TCSS558: Applied Distributed Computing [Winter 2024] s

istributed Computi
ing and Technology,

Tesssss: Appl
January16;2024 School of Engineeri

ersity of Washington - Tacoma

15

16

TRANSACTIONS: ACID PROPERTIES

TRANSACTION PROCESSING MONITOR

= Atomic: The transaction occurs indivisibly = Allow an application to access multiple DBs via a

q q i transactional programming model
= Consistent: Transaction does not create variant states across prog g

nodes during slow updates (e.g. system variants) = TP monltor: coordinates commitment of sub-transactions
= Replicas remain constant until all updated

using a distributed commit protocol (Ch. 8)
= Two phase commit: data pushed first, then the commit

= Saves application complexity from having to coordinate distributed
) .) transactions T —
= |solated: Transactions do not interfere with each other o Server E—_J
= Durable: Once a transaction commits, change are permanent =
Transaction / Request
Mested {ransaction Requests /
Request —
= Nested transactlon: transaction constructed Subtmnsacion Sublrensackion Client
with many sub-transactions

Reply \
e —- \\Raqueal
. " . sifin datatiose | { Hotel datab: .
= Must support “rollback” of sub-transactions " fembes

Two different {independent] dstabases —
TCSS558: Applied Distributed Computing [Winter 2024]
‘ (VAR School of Engineering and Technology, University of Washington - Tacoma oy

January 11, 2024 TCSS558: Applied Distributed Computing [Winter 2024] s

sen [l | TP maitor | Server -
application
P— —— — | _rJ Reply R
= Follows a logical division of work] l,_,] \

School of Engineering and Technology, University of Washington - Tacoma

18

Slides by Wes J. Lloyd L4.3

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

OBJECTIVES - 1/16

= Questions from 1/11
= Distributed information systems
Transactions
Ap| ntegr:
rien middlewar
= Chapter 1.3 - Types of distributed systems
= Pervasive Systems: Ubiquitous, Mobile, Sensor networks

ion: Shared files, DBs, RPC, RMI, Message-

= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Layered
= Object-based
Service oriented architecture (SOA)
= Resource-centered architectures
Representational state transfer (REST)

stributed Compt

ppl 024]
School of Engineering and Technology, ity of Washington - Tacoma

ENTERPRISE APPLICATION INTEGRATION

= Dist. Info systems support application components direct
communication with each other, not via databases

= Communlication mechanisms:

= Remote procedure call (RPC)
= Local procedure call packaged as a message and sent to server
= Supports distribution of function call processing

= Remote method Invocations (RMI)
= Operates on objects instead of functions

= RPC and RMI - led to tight coupling

= Client and server endpoints must be up and running

= Interfaces coupled to specific languages and not Interoperable
= This led to evolution of: Message-oriented middleware (MOM)

‘ Tanoary2a) 2020 TCsS558: Applied Distributed Computing [Winter 2024] 520

School of Engineering and Technology, University of Washington - Tacoma

19

20

MESSAGE-ORIENTED MIDDLEWARE

= Publish and subscribe systems:
= Rabbit MQ, Apache Kafka, AWS SQS

= Reduces tight coupling of RPC/RMI

= Applications indicate interest for specific type(s)
of messages by sending requests to logical
contact points

= Communication middleware delivers messages to
subscribing applications

TCsS558: Applied Distributed Computing [Winter 2024] .
School of Engineering and Technology, University of Washington - Tacoma

‘ January 16, 2024

CHALLENGES WITH VARIOUS
APPLICATION INTEGRATION METHODS

= Integration via shared data files and transfers
= Shared data files (e.g. XML)
= Leads to file management challenges (concurrent updates, etc.)

= Shared database
= Centralized DB, transactions to coordinate changes among users
= Common data schema required - can be challenging to derive
= For many reads and updates, shared DB becomes bottleneck
(limited scalability)

= Remote procedure call - app A executes on and against app B
data. App A lacks direct access to app B data.

= Messaging middleware - ensures nodes temporarily offline
later on, can receive messages

‘ T TCSS558: Applied Distributed Computing [Winter 2024] oz

School of Engineering and Technology, University of Washington - Tacoma

21

OBJECTIVES - 1/16

= Questions from 1/11
= Distributed information systems
Transactions
Application Integration: Shared files, DBs, RPC, RMI, Message-
oriented middleware
= Chapter 1.3 - Types of distributed systems

|_= Pervasive Systems: Ublquitous, Moblle, Sensor networks |

= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Layered
= Object-based
Service oriented architecture (SOA)
= Resource-centered architectures
Representational state transfer (REST)
= Event-based

and

b h Site
January 16, 2024 TCSs558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma

23

Slides by Wes J. Lloyd

22

PERVASIVE SYSTEMS

= Existing everywhere, widely adopted...

= Combine current network technologies, wireless
computing, voice recognition, internet capabilities and Al
to create an environment where connectivity of devices is
embedded, unobtrusive, and always available

= Many sensors infer various aspects of a user’s behavior
= Myriad of actuators to collect information, provide feedback

= TYPES OF PERVASIVE SYSTEMS:
= Ubiquitous computing systems
= Mobile systems
= Sensor networks

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEIALRR School of Engineering and Technology, University of Washington - Tacoma Lz

24

L4.4

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/16

= Questions from 1/11
= Distributed information systems
Transactions
Application Integration: Shared files, DBs, RPC, RMI, Message-
oriented middleware
= Chapter 1.3 - Types of distributed systems
|_= Pervasive Systems: Ublqultous] Moblle, Sensor networks
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Layered
= Object-based
Service oriented architecture (SOA)
= Resource-centered architectures
Representational state transfer (REST)
= Event-based

58: Applied Distributed Comp! 2024
UL School of Engineering and Technolog f Washington - Tacoma

25

UBIQUITOUS COMPUTING DEVICES

EXAMPLES

= Apple Watch

= Amazon Echo Speaker

= Amazon EchoDot (single speaker design)
= Fitbit

= Electronic Toll Systems

=Smart Traffic Lights

=Self Driving Cars

="Home Automation

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January16;2024 School of Engineering and Technology, University of Washington - Tacoma

w27

27

OBJECTIVES - 1/16

= Questions from 1/11
= Distributed information systems
Transactions
Application Integration: Shared files, DBs, RPC, RMI, Message-
oriented middleware
= Chapter 1.3 - Types of distributed systems
= Pervaslve Systems: Ublqultous Sensor networks
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Layered
= Object-based
Service oriented architecture (SOA)
= Resource-centered architectures
Representational state transfer (REST)
= Event-based

TCs5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2024

January 16, 2024

PERVASIVE SYSTEM TYPE:
UBIQUITOUS COMPUTING SYSTEMS

= Pervasive and continuously present

= Goal: embed processors everywhere (day-to-day objects)
enabling them to communicate information

= Requirements for a ubiquitous computing system:

= Distribution - devices are networked, distributed, and
accessible transparently

= |nteraction - unobtrusive (low-key) between users and devices
= Context awareness - optimizes interaction
= Autonomy - devices operate autonomously, self-managed

= Intelligence - system can handle wide range of dynamic
actions and interactions

TCSS558: Applied Distributed Computing [Winter 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

26

UBIQUITOUS COMPUTING
SYSTEM EXAMPLE

= Domestic ublquitous computing environment example:

= Interconnect lighting and environmental controls with
personal biometric monitors woven into clothing so that
illumination and heating/cooling control for a room might
be modulated, continuously and imperceptibly

= |oT technology helps enable ubiquitous computing

‘ January 16, 2024

TCs5558: Applied Distributed Computing [Winter 2024] .
School of Engineering and Technology, University of Washington - Tacoma

28

PERVASIVE SYSTEM TYPE:

MOBILE SYSTEMS

= Emphasis on mobile devices, e.g. smartphones, tablet
computers

= Devices: remote controls, pagers, active badges, car
equipment, various GPS-enabled devices,

= Devices move: where is the device?
= Changing location: leverage mobile adhoc network (MANET)

= MANET is an ad hoc network consisting of mobile devices.
The network is continuously self-configuring. Devices use
wireless connections to constitute the network.
= Key points: self configurating, no permanent infrastructure

= VANET (Vehicular Ad Hoc Network), is a type of MANET that

allows vehicles to communicate with roadside equipment.

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

‘ January 16, 2024 1830

29

Slides by Wes J. Lloyd

30

L4.5

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

OTHER MANETS

= SPAN - Smart phone ad-hoc network

points, or traditional network infrastructure
= iIMANET - Internet based mobile ad-hoc network

hence span beyond a local ad hoc network

= Peer-to-peer networks leveraging bluetooth and wifi available from
smart phones without relying on cellular networks, wireless access

= Ad hoc networks that consists of both mobile devices and Internet-
gateway nodes which allows the network to access the Internet and

TCSS558: Applied Distributed Computing [Winter 2024]

‘ UL School of Engineering and Technology, University of Washington - Tacoma

31

January 16, 2024

OBJECTIVES - 1/16

= Questions from 1/11
= Distributed information systems
Transactions
Application Integration: Shared files, DBs, RPC, RMI, Message-
oriented middleware
= Chapter 1.3 - Types of distributed systems

= Pervaslve Systems: Ublquitous, Moblle

= Chapter 2: Distributed System Architectures:

= Chapter 2.1 - Architectural Styles

= Layered

= Object-based
Service oriented architecture (SOA)

= Resource-centered architectures
Representational state transfer (REST)

= Event-based

31

PERVASIVE SYSTEM TYPE:
SENSOR NETWORKS

= Tens, to hundreds, to thousands of small nodes

= Wireless, battery powered (or battery-less)

= Equipped with sensing devices
= Some can act as actuators (control systems)
= Example: enable sprinklers upon fire detection

= Sensor nodes organized in neighborhoods
= Scope of communication:
= Node - neighborhood - system-wide

= Simple: small memory/compute/communication capacity

= Limited: restricted communication, constrained power

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January16;2024 School of Engineering and Technology, University of Washington - Tacoma

133

32

PERVASIVE SYSTEM TYPE:
SENSOR NETWORKS - 2

= Collaborate to process sensor data in app-specific manner
= Provide mix of data collection and processing

= Nodes may Implement a distributed database
= Database organization: centralized to decentralized

= In network processing: forward query to all sensor nodes
along a tree to aggregate results and propagate to root

= |s aggregation simply data collection?
= Are all nodes homogeneous?
= Are all network links homogeneous?

= How do we setup a tree when nodes have heterogeneous
power and network connection quality?

TCSS558: Applied Distributed Computing [Winter 2024]
January16;2024 School of Engineering and Technology, University of Washington - Tacoma L

33

DATA STORAGE

= Centralized:

Operator's site
Ef—‘ Sensor data *|,
is sonl drectly “—__ @ .
0 operator ~2 T

= Decentralized:

Each sensar
can process and Sansor network

store data \
Operator's site g
pe =N
auery
>

CENTRALIZED VS. DECENTRALIZED

TCs5558: Applied Distributed Computing [Winter 2024]

‘ (VAR School of Engineering and Technology, University of Washington - Tacoma

L35

34

WHO AGGREGATES AND STORES DATA?

= Consider the tradeoff space for:
= sensor network data storage and processing

an:rgliz.e_g D

Dggsngrgl'zg_d

o Single point-of-failure e Nodes require high compute
e No node coordination power

e No node processing or storage e “Smart” nodes

e “Dumb” nodes e Expensive nodes

e Less expensive node ® network traffic is distributed

e Central server can experience
intense network traffic

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEIALRR School of Engineering and Technology, University of Washington - Tacoma 1430

35

Slides by Wes J. Lloyd

36

L4.6

TCSS 558: Applied Distributed Computing January 16, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

SENSOR NETWORKS - 3 TYPES OF DISTRIBUTED SYSTEMS
= What are some unique requirements for sensor networks = HPC, Cluster, Grid, Cloud
middleware?
= Sensor networks may consist of different types of nodes = Distributed information systems
with different functions = Transactions

= Application Integration: Shared files, DBs, RPC, RMI,

= Nodes may often be in suspended state to save power Message-oriented middleware

= Duty cycles (1 to 30%), strict energy budgets
= Synchronize communication with duty cycles = Pervasive Systems

= How do we manage membership when devices are offline? * Ubiquitous computing systems
= Mobile systems
= Sensor networks

TCSS558: Applied Distributed Computing [Winter 2024] TCsS558: Applied Distributed Computing [Winter 2024]
l UL School of Engineering and Technology, University of Washington - Tacoma L7 e School of Engineering and Technology, University of Washington - Tacoma

37 38

Identify the type of distributed system: E-commerce website (e.g. eBay, @ Identify the type of distributed system: Assisted living home monitoring @19
Amazon) system for elderly
HPC, Cluster, Grid, Cloud HPC, Cluster, Grid, Cloud
57% A
@ Distributed information system Distributed information system
38% I
Pervasive System: ubiguitous computing system & Pervasive system: ubiguitous computing system
T 0% h 32%
Pervasive System: mobile system Pervasive system: mobile system
0% i e
Pervasive System: sensor network Pervasive system: sensor network
5% Y 68%s
.l For el l- .l For el l-

" "

Identify the type of distributed system: Seismic monitoring network - @
‘warning system for earthquakes

HPC, Cluster, Grid, Cloud
0%
Distributed information system

0%

o WE WILL RETURN AT
0% 4:50PM

86%

Pervasive system: ubiquitous computing system

Pervasive system: mobile system

@ Pervasive system: sensor nstwork

41 42

Slides by Wes J. Lloyd L4.7

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

CLASSIFY THE FOLLOWING TYPES OF

DISTRIBUTED SYSTEMS:

= TYPES: HPC/Cluster/Grid/Cloud,
Distributed Info Sys, Pervaslve (Ublqultous, Moblle, Sensor)
= Web search engine
= Assisted living home monitoring system for elderly
= Ecommerce websites: e.g. eBay, Amazon
= Wikipedia: online encyclopedia
= Amazon Elastic Compute Cloud (EC2)
= Massively multiplayer online games (MMO)
= Seismic monitoring network: warning system for earthquakes
= Worldwide Large Hadron Collider (LHC) Computing Grid
= Hospital health informatics and records system
= Canvas: web-based learning environment
= Modern automobile with self-driving features

School of Engineering and Technology, University of Washington - Tacoma

‘ Tamuary 26, 202 TCSS558: Applied Distributed Computing [Winter 2024] e

43

OBJECTIVES - 1/16

= Questions from 1/11

Message Oriented Middleware

Chapter 1.3 - Types of distributed systems
= Pervasive Systems: Ubiquitous, Mobile, Sensor networks

Chapter 2: Distributed System Architectures: |
= Chapter 2.1 - Architectural Styles
= Layered
= Object-based
Service oriented architecture (SOA)
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)

School of Engineering and Technology, University of Washington - Tacoma.

‘] TCSS558: Applied Distributed Computing [Winter 2024] s

45

CENTRALIZED VS. DECENTRALIZED

DISTRIBUTED SYSTEM ARCHITECTURE

S

CENTRALIZED DECENTRALIZED
Credit:
hitps://en.wikipedia.org/wikilD ised_system
TCSS558: Applied Distributed Computing [Winter 2024]
‘ (VAR School of Engineering and Technology, University of Washington - Tacoma e

47

Slides by Wes J. Lloyd

DECENTRALIZED DATA STORAGE?
EXAMPLE: SENSOR NETWORKS

= Centralized:

Operator's site S e

)

Sensor data "\,

is senl dicectly “—_ @
1o operator RN
= Decentralized:
Each sensor
can process and Sensor network
store data - A
Operatar's site Py
Query /
>

WHAT ARE SOME TRADEOFFS FOR CENTRALIZED VS.

TCs5558: Applied Distributed Computing [Winter 2024]
‘ e School of Engineering and Technology, University of Washington - Tacoma

44

DISTRIBUTED SYSTEM ARCHITECTURES

= Provides logical organization of a distributed system into
software components

= Logical: How system is perceived, modeled (think diagram)
= The 00/component abstractions
= The “idealists” view of the system

= Physlcal - how it really exists
= The “realist” view of the system

= Middleware
= Helps separate application from platforms
= Helps organize and assemble distributed components
= Helps components communicate
= Enables system to be extended
= Supports replication within the distributed system
= Provides “realization” of the architecture

TCSS558: Applied Distributed Computing [Winter 2024]
‘ January16;2024 School of Engineering and Technology, University of Washington - Tacoma

46

CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

= Tradeoff space: degree of distribution of the system

hybrid

Fully Centrallzed n‘/ Decentrallzed
< 1 >

Single point-of-failure
No nodes: vertical scaling

Multiple failure points
Nodes: horizontal scaling
Always consistent

Less available (fewer 9s)
Immediate updates

Eventually consistent

More available (more 9s)
Rolling updates

Data partitioned or replicated

No data partitions

TCSS558: Applied Distributed Computing [Winter 2024]
‘ CLEIALRR School of Engineering and Technology, University of Washington - Tacoma

48

L4.8

TCSS 558:

Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

ARCHITECTURAL BUILDING BLOCKS

= COMPONENT: modular unit with well-defined, required,
and provided interfaces that is replaceable within its
environment

= Components can be replaced while system is running
= [nterfaces must remain the same
= Preserving interfaces enables interoperability

= CONNECTOR: enables flow of control and data between
components

= Distributed system architectures are conceived using
components and connectors

TCSS558: Applied Distributed Computing [Winter 2024]
UL School of Engineering and Technology, University of Washington - Tacoma L

OBJECTIVES - 1/16

= Questions from 1/11
= Message Oriented Middleware

= Chapter 1.3 - Types of distributed systems
= Pervasive Systems: Ubiquitous, Mobile, Sensor networks

= Chapter 2: Distributed System Architectures:

| = Chapter 2.1 - Architectural Styles

= Layered
= Object-based
Service oriented architecture (SOA)
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)

TCSS558: Applied Distributed Computing [Winter 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

49

ARCHITECTURAL STYLES

= Layered

= Object-based
= Service oriented architecture (SOA)

= Resource-centered architectures
= Representational state transfer (REST)

= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)

TCSS558: Applied Distributed Computing [Winter 2024]
January16;2024 School of Engineering and Technology, University of Washington - Tacoma tast

50

OBJECTIVES - 1/16

= Questions from 1/11
= Message Oriented Middleware

= Chapter 1.3 - Types of distributed systems

= Pervasive Systems: Ubiquitous, Mobile, Sensor networks
= Chapter 2: Distributed System Architectures:

= Chapter 2.1 - Architectural Styles

| = Layered

= Object-based
Service oriented architecture (SOA)
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January16;2024 School of Engineering and Technology, University of Washington - Tacoma

s

51

DISTRIBUTED SYSTEM
DESIGN GOALS TO CONSIDER

= Consider how architectural style may impact:
= Availability

= Accessibility

= Responsiveness

= Scalability

= Openness

= Distribution transparency

mSupporting resource sharing

= Other factors...

January 16, 2024

TCS5558: Applied Distributed Computing [Winter 2024] s
School of Engineering and Technology, University of Washington - Tacoma

52

LAYERED ARCHITECTURES

= Components organized in layers

= Component at layer L; downcalls to lower-level
components at layer L; (where i < j)

= Calls go down

= Exceptional cases may produce upcalls

TCSS558: Applied Distributed Computing [Winter 2024]

‘ CLEIALRR School of Engineering and Technology, University of Washington - Tacoma

Lasa

53

Slides by Wes J. Lloyd

54

January 16, 2024

L4.9

TCSS 558: Applied Distributed Computing January 16, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

LAYERED ARCHITECTURES - 2 LAYERED ARCHITECTURES - 3

Pure-layered Mixed-layered Layered w/ upcalls = Consider an architecture with 5 layers
Organization organization organization
R"emll_grkiﬂg specialized libraries OS signals/events = Does a client interacting with “Layer 5” of the RequestiRespanse
asUResponse . o . c
doneal One-way call distributed system need to be concerned with dovneal
— -—
—

Layer N
Layer N-1

details regarding the implementation of lower
[=]
Upcall

layers (layers 1, 2, 3, 4) ? Layer N
LaychN-‘
| Layer N-2 Layer N-2 |
Layer N-3 v

TCsS558: Applied Distributed Computing [Winter 2024] Lass January16, 2024 TCS5558: Applied Distributed Computing [Winter 2024] Lass
School of Engineering and Technology, University of Washington - Tacoma L7t School of Engineering and Technology, University of Washington - Tacoma

January 16, 2024

55 56

COMMUNICATION-PROTOCOL STACKS HOW A NETWORK PACKET IS BUILT

= Example: pure-layered organization R ; D

= Each layer offers an interface specifying functions of the layer s-6-7-appucarion [l

= Communication protocol: rules used for nodes to communicate Susaras b .

= Layer provides a service 4~ Transport

= Interface makes service available Temnepor Prvocol Mesages e, [r——

= Protocol implements communication for a layer I— 1CP Soqmnt

e R A

=New services can be bullt atop of exIsting 2-Dutink Dty
layers to reuse lower level implementation(s) seapere Jonen] " | omnons | [fozre

= Abstractions make it easier to reuse existing layers which F— U o "
already implement communication basics I !

[somario [T dted ot oo 20 o [omuarytoan [T et ot o 20t s

57 58

= Source / Destination IP Addr
Transmission Control Protocol (TCP) Header = |[Pv4: 32bits / 4 bytes
20-60 bytes .
ve = IPv6: 128bits / 16 bytes
source port number destination port number
2 bytes.
0 4 8 16 19 31
sequence number
A bytes Version| He2% gervice Type Total Length
acknowledgement number —— N 8
i Identification Flags | Fragment Offset
dota offyat | reserved control lags window size
abis 3bhs atits 2 bytes TTL Protocol Header Checksum
ch;e;lr:‘s:m urge?m:in " Source IP Addr
optional data Destination 1P Addr
0-40 bytes
Options Padding
TCSS558: Applied Distributed C ing [Wi 2024] TCSS558: Applied Distributed C ing [Wi 2024]
‘ (IR School of E:;;en:g‘!n:‘:ech::;:;‘:ngn[welr'::vr of Wishmgton ~Tacoma s ‘ FHILE G 2P School of E:g.,:em.ng.,:‘:ech:m::j"ﬁn[m‘,?:; of Wa]shmgton -Tacoma e

59 60

Slides by Wes J. Lloyd L4.10

TCSS 558: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,

UW-Tacoma

January 16, 2024

= TCP (layer 4) provides easy to use API
= APl supports:
= setup, tear down of connection(s)
= sending and receiving of messages
= TCP preserves ordering of transferred data
= TCP detects and corrects lost data

= But TCP is “protocol” agnostic

= A protocol is a of r
communication

= Application layer

d to enable

ion is prog

“language” of a custom protocol known as an
APPLICATION PROTOCOL

= What should the application protocol say?

TRANSMISSION CONTROL PROTOCOL (TCP)

agnostic
= Code can be written in many programming languages to “speak” the

TCSS558: Applied Distributed Computing [Winter 2024]

‘ UL School of Engineering and Technology, University of Washington - Tacoma

re)

COMMON APPLICATION LAYER

PROTOCOL

uTelnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP,
RTP, SMTP, Telnet, RPC, LDAP

TCP /IP model

TCP /IP protocol suite

Application
layer

Transport
layer

Internet
layer

Frame
relay 1, AT

TCSS558: Applied Distributed Computing [Winter 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

61

APPLICATION LAYERING

= Distributed application example: Internet search engine

| Userinterface
[lavel

| 8
. Processing
Ranked list [level
of page titles ‘

<eyword expression

Query
generator

Database

) g
Database hi { Data level
with Web pages J

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January16;2024 School of Engineering and Technology, University of Washington - Tacoma

163

63

APPLICATION LAYERING

= Three logical layers of distributed applications

=The data level (M)
= Application interface level V)
= The processing level (C)

= Model - database - handles data persistence
=View - user interface - also includes APIs
= Controller - middleware / business logic

= Model view controller architecture - distributed systems

TCs5558: Applied Distributed Computing [Winter 2024]

‘ (VAR School of Engineering and Technology, University of Washington - Tacoma

L5

65

Slides by Wes J. Lloyd

62

APPLICATION LAYERING

= Three logical layers of distributed applications
=The data level
= Application interface level
=The processing level

TCSS558: Applied Distributed Computing [Winter 2024]

‘ January16;2024 School of Engineering and Technology, University of Washington - Tacoma

64

OBJECTIVES - 1/16

= Questions from 1/11

Message Oriented Middleware

Chapter 1.3 - Types of distributed systems
= Pervasive Systems: Ubiquitous, Mobile, Sensor networks

Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Layered
= ObJect-based
| Service oriented architecture (SOA) |
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)

TCSS558: Applied Distributed Computing [Winter 2024]

‘ CLEIALRR School of Engineering and Technology, University of Washington - Tacoma

66

L4.11

TCSS 558

: Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OBJECT-BASED ARCHITECTURES

= Enables loose and flexible component organization
= Objects == components

= Enable distributed node interaction via function calls over the
network

= Began with C - Remote Procedure Calls (RPC)

= Straightforward: package up function inputs, send over
network, transfer results back

= Language dependent

= In contrast to web services, RPC calls originally were more
intimate in nature

= Procedures more “coupled”, not as independent
= The goal was not to decouple and widgetize everything

TCSS558: Applied Distributed Computing [Winter 2024]
UL School of Engineering and Technology, University of Washington - Tacoma e

67

Client machine Server machine
Object
Glient Server 1
’—‘ s |- State
ame
Client T inkariace L 1 Method
invokes as object i\
meth |—|.,_,_1
amethod Yy Skeleton 7* T Intert
invekes —1 1 [. nieriace
Proxy same method Skeleton
at object A
Client OS Server OS
[|
Network
Marshalled invocation
is passed across network
TCs5558: Applied Distributed Computing [Winter 2024]
‘ January16;2024 School of E:;n:ermsg and Zmﬁ?.ﬁﬁvf"ﬁmv;'!zfy' of Washington - Tacoma Lasa

69

SERVICE ORIENTED ARCHITECTURE

= Services provide always-on encapsulated functions over
the internet/web

= Leverage redundant cloud computing infrastructure
= Services may:

= Aggregate multiple languages, libraries, operating
systems

= Include (wrap) legacy code
= Many software components may be involved in the
implementation
= Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

TCSS558: Applied Distributed Computing [Winter 2024]
(VAR School of Engineering and Technology, University of Washington - Tacoma L

January 16, 2024

Method call

OBJECT-BASED
ARCHITECTURES - 2

Object

Y
Object |
Object &~

T <
Object

= Distributed objects Java- Remote Method Invocation (RMI)
= Adds object orientation concepts to remote function calls
= Clients bind to proxy objects

= Proxy provide an object interface which transfers method
invocation over the network to the remote host

= How do we replicate objects?
= Object marshalling - serialize data, stream it over network
= Unmarshalling- create an object from the stream
= Unmarshall local object copies on the remote host
= JSON, XML are some possible data formats

‘ January 16, 2024

TCS5558: Applied Distributed Computing [Winter 2024] Lass
School of Engineering and Technology, University of Washington - Tacoma

68

DISTRIBUTED OBJECTS - 2

= A counterintuitive feature is that state is not
distributed

= Each “remote object” maintains its own state
= Remote objects may not be replicated

= Objects may be “mobile” and move around from node
to node

=Common for data objects

= For distributed (remote) objects consider
= Pass by value
= Pass by reference (does this make sense?)

TCs5558: Applied Distributed Computing [Winter 2024] w70
School of Engineering and Technology, University of Washington - Tacoma

‘ January 16, 2024

70

SERVICE ORIENTED ARCHITECTURE - 2

= Are more easily developed independently and shared
vs. systems with distributed object architectures

= Less coupling

= An error while invoking a distributed object may crash the
system

= An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

TCSS558: Applied Distributed Computing [Winter 2024]

‘ CLEIALRR School of Engineering and Technology, University of Washington - Tacoma

e

71

Slides by Wes J. Lloyd

72

L4.12

TCSS 558: Applied Distributed Computing

January 16, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/16

RESOURCE BASED ARCHITECTURES

= Questions from 1/11

= Motivation:
= Message Oriented Middleware

= Increasing number of services available online
. = Each with specific protocol(s), methods of interfacing

= Connecting services w/ different TCP/IP protocols

Chapter 1.3 - Types of distributed systems
= Pervasive Systems: Ubiquitous, Mobile, Sensor networks

-> integration nightmare
= Chapter 2: Distributed System Architectures: Need for specialized client for each service that speaks the
= Chapter 2.1 - Architectural Styles application protocol “language”...
* Layered = Need standardization of interfaces
= Object-based = Make services/components more pluggable
Service oriented architecture (SOA) = Easier to adopt and
| = R hitectures | integrate
P state (REST) = Common
= Event-based architecture @ @ @
Publish and subscribe (Rich Site Summary RSS feeds)
[manvis s [T et s W) g - un Il e . u

73

74

REST SERVICES

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

= Representational State Transfer (REST) = An ASCll-based request/reply protocol for transferring
= Built on HTTP information on the web
= HTTP request includes:

= request method (GET, POST, etc.)

= Uniform Resource Identifier (URI)

= Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface

= HTTP protocol version understood by the client
Four operations: GET PUT POST DELETE

= headers—extra info regarding transfer request

M to/f i fully described = HTTP response from server HTTP status codes:
essages to/from a service are fu escribe . 3 X
g v = Protocol version & status code > s —all is well
4. After execution server forgets about client = Response headers 3xx — resource moved
. 4xx — aceess problem
Stateless execution = Response body Sex server eror

‘ January 16, 2024

TCsS558: Applied Distributed Computing [Winter 2024] s
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2024]
January16;2024 School of Engineering and Technology, University of Washington - Tacoma 1476

75

76

REST-FUL OPERATIONS

EXAMPLE: AMAZON S3

Operation Description - = Amazon S3 offers a REST-based interface

PUT Create a new resource (C)reate = Requires signing HTTP authorization header or passing
GET Retrieve state of a resource in some format (R)ead authentication parameters in the URL query string
POST

2 AWS S d I
Modify a resource by transferring a new state (U)pdate IS SO and Bxplorers

= REST: GET/PUT/POST/DELETE 0 set Up the AWS CLI
DELETE Delete a resource (D)elete = SOAP: 16 operations, moving toward O Using the AWs SOk for Java
= Resources often implemented as objects in 00 languages deprecation

O Using the AWS SDK for .NET
= REST is weak for tracking state

= Python boto ~50 operations

O Using the AWS SDK for PHP
d Running PHP Examples
A ; - . O SDK for Python o & '
= Generic REST interfaces enable ubiquitous “so many” clients (y) O Using the AWS SDK for Ruby
- O using 55 -
SDKs for other languages Version 3
0 Using the AWS SDK for Python
(Boto)
TCSS558: Applied Distributed Computing [Winter 2024] TCss558: Applied Distributed Computing [Winter 2024]
‘ (VAR School of Engineering and Technology, University of Washington - Tacoma e ‘ CLEIALRR School of Engineering and Technology, University of Washington - Tacoma e

78

Slides by Wes J. Lloyd L4.13

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

XML, no real

https:

REST - 2

= Defacto web services protocol

= Requests made to a URI - uniform resource identifier

= Supersedes SOAP - Simple Object Access Protocol
= SOAP - application protocol specific to web services

= Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

= Responses most often in JSON, also HTML, ASCII text,

limits as long as text-based

= curl - generic command-line REST client:
curl.haxx.se

‘ January 16, 2024

TCsS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

w7

79

= USDA
Lat/Long
Climate
Service
Demo

= Just provide
a Lat/Long

REST CLIMATE SERVICES EXAMPLE

// REST/JSON
// Request climate data for Washington

{

"parameter": [

"name": "latitude",
"value":47.2529
I

"name": "longitude",
"value":-122.4443

}

1

‘ January 16, 2024

TCsS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

ey

81

Referentially coupled
(dependent on name)

Referentially
decoupled
(name not required)

PUBLISH-SUBSCRIBE ARCHITECTURES

= Enables separation between processing and coordination
= Types of coordination: temporal and referential coupling:

Temporally coupled | Temporally decoupled
(at the same time) (at different times)

Direct Mallbox
Explicit synchronous Asynchronous by
service call name (address)
Event-based Shared data space
Event notices Processes write tuples
published to shared to a shared data
bus, w/o addressing space

Publish and subscribe architectures

‘ January 16, 2024

TCs5558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

1583

83

Slides by Wes J. Lloyd

January 16, 2024

// WSDL Service Definition
on="1.0" encoding="UTF-8"7>
<definitions name ="DayOfWeek”
tp://

+tns="http: //s a1
mlns: soap="http: //schemas .xmlsoap.org/wsdl/soap/"
mlns: to: //ww w3 07g/2001/XMLSChena”
hemas xnilsoap.org/wsdl/">
ook Input "

50"
date’ type='xsd:date" />

<message name="DayOfWeekResponse">
<part name="dayOfWeck” type="xsd:string"/>

</port1ype>

nding name=" pe="
<soap:binding style="document"
://sch 1

port="
<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofwesk/>

</input>

output>
<soap:body use="encodsd"
p:

p:
"nttp: //sch 1 e
</output>
</operation>
</bindi:
<service name="DayOfWeskService” >
<documentation>

Returns the day-of-week name for a given date
</documentation>
<port name="

=
ation="

</service>
</dsfinitions>

L4.80

80

OBJECTIVES - 1/16

= Questions from 1/11
= Message Oriented Middleware

= Chapter 1.3 - Types of distributed systems
= Pervasive Systems: Ubiquitous, Mobile, Sensor networks
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Layered
= Object-based
Service oriented architecture (SOA)
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
| Publish and subscribe (Rich Site Summary RSS feeds) |

‘ January 16, 2024 TCss558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma

e

82

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

= Event-based coordination
= Processes do not know Subscrioe|
about each other explicitly re

delivery

= Processes:
= Publish: a notification
describing an event
= Subscribe: to receive
notification of specific kinds of events

= Assumes subscriber is presently up (temporally coupled)
= Subscribers must actively MONITOR event bus

Naotification

TCSS558: Applied Distributed Computing [Winter 2024]

‘ CLEIALRR School of Engineering and Technology, University of Washington - Tacoma e

84

https://curl.haxx.se/

TCSS 558:

Applied Distributed Computing

[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 16, 2024

PUBLISH SUBSCRIBE ARCHITECTURES - 3

= Shared data space
= Full decoupling (name and time)
= Processes publish “tuples” to shared dataspace (publish)

= Processes provide search pattern to find tuples
(subscribe)

| Component | | Component ‘
= When tuples are added,
subscribers are notified of Publish Subscribe Data
matches Y y | deliver

= Key characteristic:
Processes have no explicit
reference to each other

Shared (persistent) data space

TCs5558: Applied Distributed Computing [Winter 2024] 1585
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2024

PUBLISH SUBSCRIBE ARCHITECTURES - 4

= Subscriber describes events interested in
= Complex descriptions are intensive to evaluate and fulfil
= Middleware will:
= Publish matching notification and data to subscribers
= Common if middleware lacks storage
= Publish only matching notification
= Common if middleware provides storage facility
= Client must explicitly fetch data on their own

= Publish and subscribe systems are generally scalable

= What would reduce the scalabllity of a publish-and-
subscribe system?

TCS5558: Applied Distributed Computing [Winter 2024] 156
School of Engineering and Technology, University of Washington - Tacoma

l January 16, 2024

85

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington -

January 16, 2024

87

Slides by Wes J. Lloyd

86

L4.15

	Slide 1
	Slide 2: TCSS 558: applied distributed computing
	Slide 3: AWS Cloud Credits update
	Slide 4: Assignment 1
	Slide 5: OBJECTIVES – 1/16
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 1/11
	Slide 10: Feedback - 2
	Slide 11: Feedback - 3
	Slide 12: Paas services implementation
	Slide 13: OBJECTIVES – 1/16
	Slide 14: Distributed information systems
	Slide 15: Distributed information systems - 2
	Slide 16: OBJECTIVES – 1/16
	Slide 17: Transactions: ACID properties
	Slide 18: Transaction processing monitor
	Slide 19: OBJECTIVES – 1/16
	Slide 20: Enterprise application integration
	Slide 21: Message-oriented middleware
	Slide 22: Challenges with various Application integration methods
	Slide 23: OBJECTIVES – 1/16
	Slide 24: Pervasive systems
	Slide 25: OBJECTIVES – 1/16
	Slide 26: Pervasive system type: Ubiquitous computing systems
	Slide 27: Ubiquitous computing devices examples
	Slide 28: Ubiquitous computing system example
	Slide 29: OBJECTIVES – 1/16
	Slide 30: Pervasive system type: Mobile systems
	Slide 31: Other MANETs
	Slide 32: OBJECTIVES – 1/16
	Slide 33: Pervasive system type: Sensor networks
	Slide 34: Pervasive system type: Sensor networks - 2
	Slide 35: Centralized vs. decentralized data storage
	Slide 36: Who aggregates and stores data?
	Slide 37: Sensor networks - 3
	Slide 38: Types of distributed systems
	Slide 39
	Slide 40
	Slide 41
	Slide 42: We will return at 4:50pm
	Slide 43: Classify the following types of distributed systems:
	Slide 44: What are some tradeoffs for Centralized vs. decentralized data storage? example: sensor networks
	Slide 45: OBJECTIVES – 1/16
	Slide 46: Distributed system architectures
	Slide 47: Centralized vs. decentralized distributed system architecture
	Slide 48: Centralized vs. decentralized distributed system architecture
	Slide 49: Architectural building blocks
	Slide 50: OBJECTIVES – 1/16
	Slide 51: Architectural styles
	Slide 52: OBJECTIVES – 1/16
	Slide 53: Distributed system DESIGN goals to consider
	Slide 54: Layered architectures
	Slide 55: Layered architectures - 2
	Slide 56: Layered architectures - 3
	Slide 57: Communication-protocol stacks
	Slide 58: how a Network packet is built
	Slide 59: Tcp header
	Slide 60: Ip header
	Slide 61: Transmission control protocol (TCP)
	Slide 62: Common Application layer protocols
	Slide 63: Application layering
	Slide 64: Application layering
	Slide 65: Application layering
	Slide 66: OBJECTIVES – 1/16
	Slide 67: Object-based architectures
	Slide 68: Object-based architectures - 2
	Slide 69: Distributed objects
	Slide 70: Distributed objects - 2
	Slide 71: Service oriented architecture
	Slide 72: Service oriented architecture - 2
	Slide 73: OBJECTIVES – 1/16
	Slide 74: Resource based architectures
	Slide 75: Rest services
	Slide 76: Hypertext transport protocol (http)
	Slide 77: REST-ful operations
	Slide 78: Example: Amazon s3
	Slide 79: Rest - 2
	Slide 80
	Slide 81: Rest climate services example
	Slide 82: OBJECTIVES – 1/16
	Slide 83: Publish-subscribe architectures
	Slide 84: Publish-subscribe architectures - 2
	Slide 85: Publish subscribe architectures - 3
	Slide 86: Publish subscribe architectures - 4
	Slide 87: Questions

