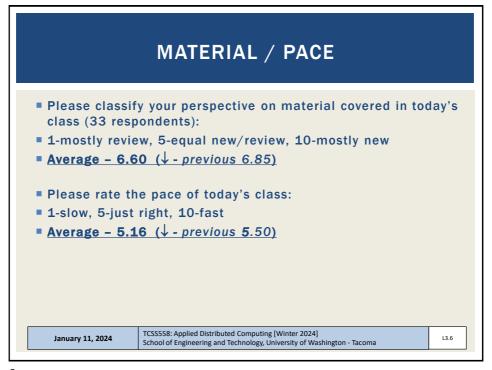
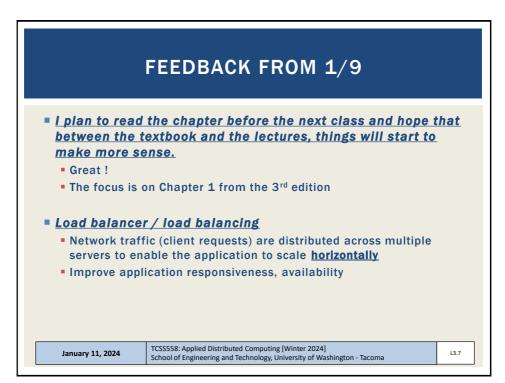
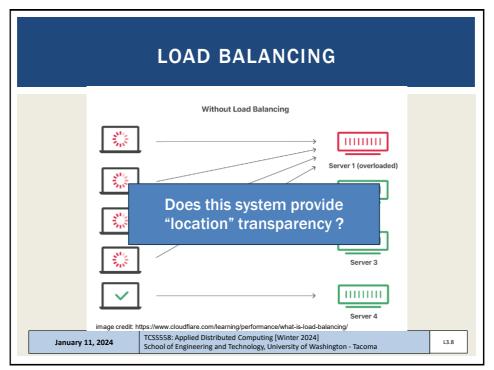


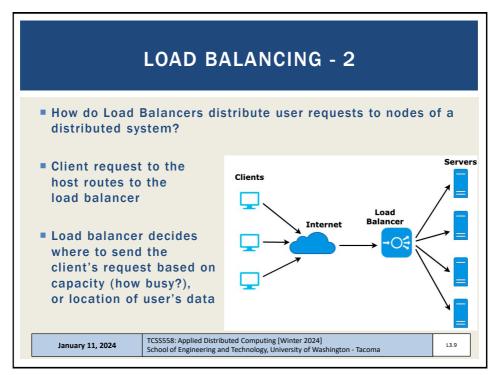
Τ

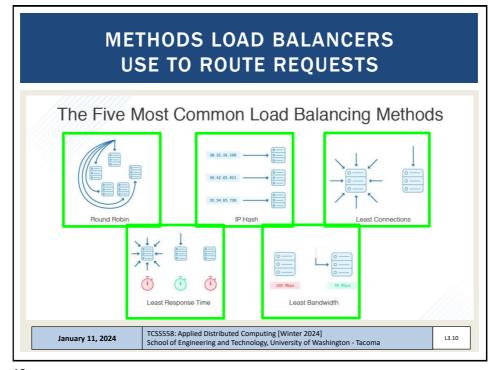

2

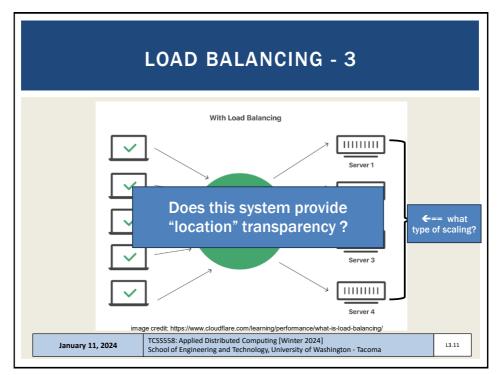


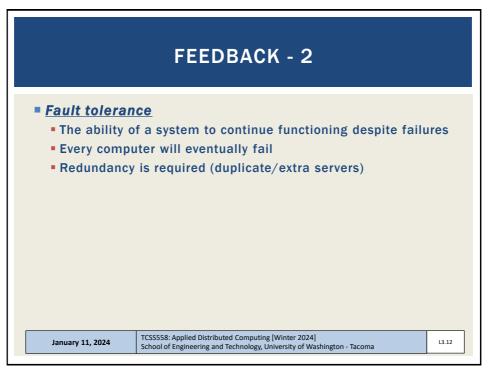

4

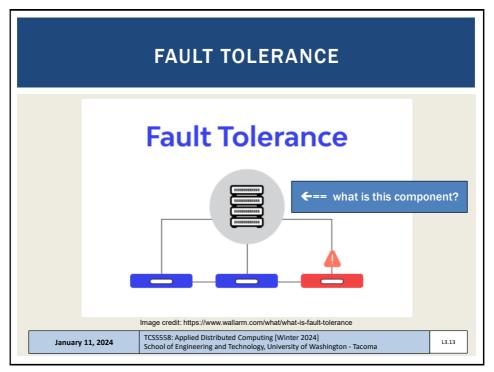
TC	SS 558	3 - Or	nline	Dai	ly Fe	edba	ack S	urve	y - 1	./5	
	e Jan 6 at 1 ailable Jan 5	•	Point pm - Jar		•	estions m 1 day		me Lim	it None	е	
	Questio	n 1								0.5 pts	
	On a sca	le of 1 to	10, plea	ase cla	ssify yo	ur persp	ective o	n mater	ial cove	red in today's	
	1	2	3	4	5	6	7	8	9	10	
	Mostly Review	To Me		New	Equal and Rev	iew				Mostly New to Me	
	Questio	- 0									_
	Questio	n Z								0.5 pts	-
	Please rate the pace of today's class:										
	1	2	3	4	5	6	7	8	9	10	
	Slow			Ju	st Right				ı	Fast	
uary 11, 20)24		558: App of Engi							gton - Tacoma	

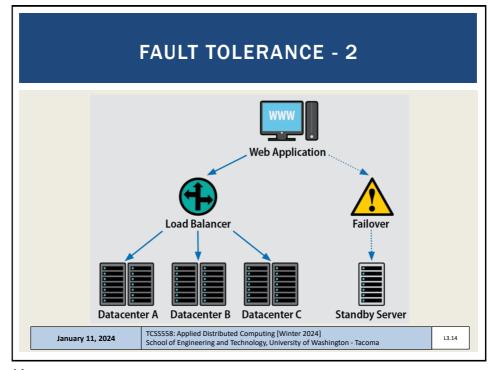


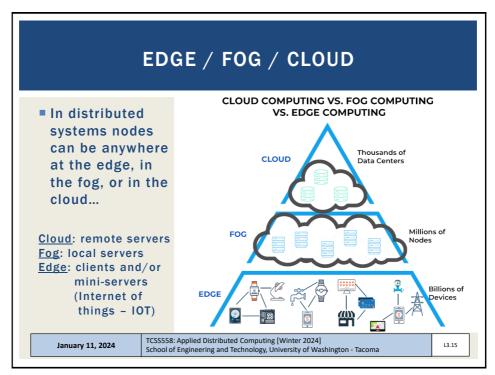

6

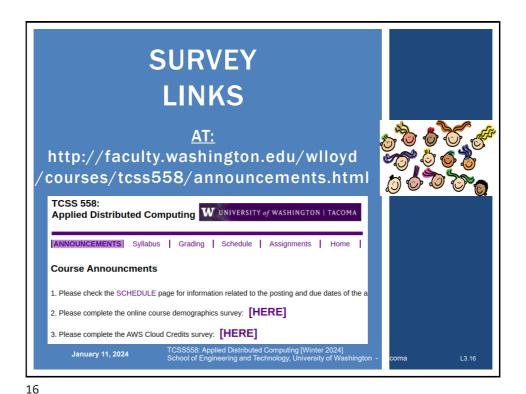



8




10




12

14

OBJECTIVES - 1/11

Questions from 1/9

Activity: Design goals of distributed systems

- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 11, 2024

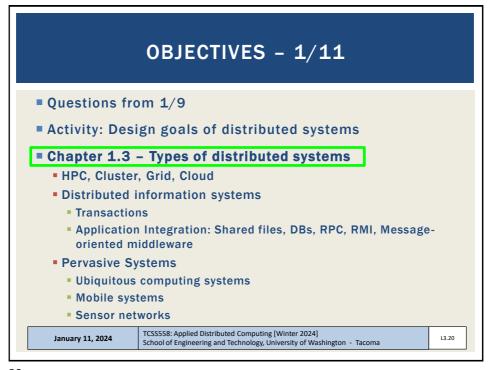
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

17

CLASS ACTIVITY 1

- We will form groups of ~2-3
 - Remote students will use Canvas breakout rooms
- Each group will complete a MS Word Doc worksheet
- Add names to top of worksheet as they appear in Canvas
- Once completed, one person submits a PDF of the Word Doc to Canvas
- Grader will score all group members based on the uploaded PDF file
- To get started:
 - Log into Canvas, TCSS 558 A
 - Find worksheet under Class Activity 1


January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

18

20

OBJECTIVES - 1/11

- Questions from 1/9
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC → Cluster → Grid → Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 11, 2024

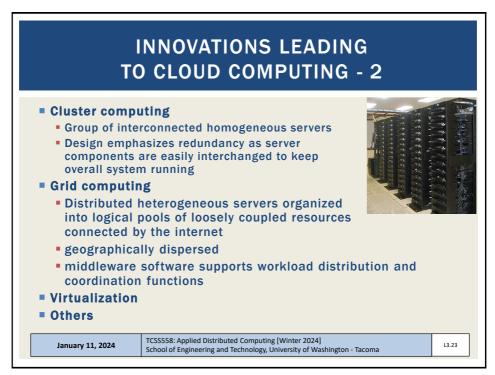
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

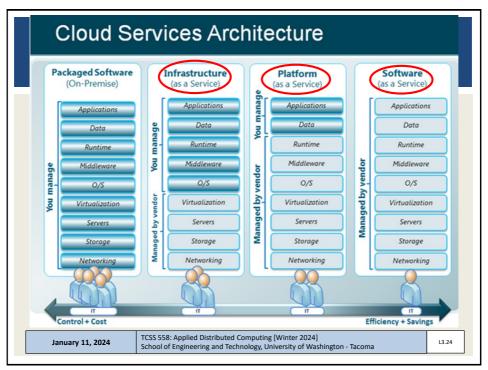
L3.21

21

TECHNOLOGY INNOVATIONS LEADING TO CLOUD COMPUTING

- Super computers
 - Huge multiprocessor systems with shared memory/RAM
 - Technically "not distributed"
 - Hardware all in one location
 - Initially expensive with proprietary designs
 - Traditionally supported HPC High Performance Computing scientific applications
 - Weather forecasting
 - Molecular dynamics simulation
 - Protein modeling
 - Cost millions of dollars
 - Large systems consume MWs of electricity


ion


January 11, 2024

TCSS 558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Washington - Tacoma

3.22

22

24

PUBLIC CLOUD COMPUTING

- Offers computing, storage, communication at ¢ per hour
- No premium to scale:

1000 computers @ 1 hour = 1 computer @ 1000 hours

- Illusion of infinite scalability to cloud user
- As many computers as you can afford
- Leading examples: Amazon Web Services, Google App Engine, Microsoft Azure
- Amazon runs its own e-commerce on AWS!
- Billing models are becoming increasingly granular
 - By the hour, minute, second, now millisecond
 - Example: AWS Lambda \$0.0000002 per request (call) \$0.000000021 to rent 128MB / 1-ms

January 11, 2024

TCSS 558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Washington - Tacoma

L3.25

25

PUBLIC CLOUD COMPUTING - 2

■ laaS vs FaaS 1-month cost comparison - 30.4167 days/month

c4.large ec2 virtual machine (Infrastructure-as-a-Service - laaS): 2 vCPU cores, 3.75 GB RAM, Intel Xeon E5-2666 v3 10¢ an hour, 24 hrs/day, billed by the second (60 sec min) Cost → \$73.00/month on-demand EC2 instance

AWS Lambda (Function-as-a-Service - FaaS serverless): 2 vCPU cores, 3GB RAM, Intel Xeon E5-2666 v3 (maybe?)

as 2,628,000 x 1-sec service calls $$0.00001667\ GB/sec$, billed by the millisecond (no min)

What is the cost ???

\$131.43 (1.8x)

January 11, 2024

TCSS 558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Washington - Tacoma

L3.26

26

PAAS SERVICES IMPLEMENTATION

- PaaS services often built atop of laaS
 - Amazon RDS, Heroku, Amazon Elasticache
- Scalability
 - VM resources can support fluctuations in demand
- Dependability.
 - PaaS services built on highly available laaS resources

January 11, 2024

TCSS 558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Washington - Tacoma

L3.27

L3.28

27

OBJECTIVES - 1/11

- Questions from 1/9
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

Schisor hetwork

January 11, 2024

28

TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma

DISTRIBUTED INFORMATION SYSTEMS

- **Enterprise-wide** integrated applications (example: UW Workday)
 - Organizations confronted with too many applications
 - Interoperability among applications was difficult
 - Led to many middleware-based solutions
- Key concepts
 - Component based architectures database components, processing components
 - <u>Distributed transaction</u> Client wraps requests together, sends as single aggregated request
 - Atomic: all or none of the individual requests should be executed
- Different systems define different action primitives
 - Components of the atomic transaction
 - Examples: send, receive, forward, READ, WRITE, etc.

January 11, 2024 TCSS558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Washington - Tacoma

L3.29

29

DISTRIBUTED INFORMATION SYSTEMS - 2

Transaction primitives

Primitive	Description					
BEGIN_TRANSACTION	Mark the start of a transaction					
END_TRANSACTION	Terminate the transaction and try to commit					
ABORT_TRANSACTION	Kill the transaction and restore the old values					
READ	Read data from a file, a table, or otherwise					
WRITE	Write data to a file, a table, or otherwise					

- Transactions are all-or-nothing
 - All operations are executed
 - None are executed

January 11, 2024 TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

30

OBJECTIVES - 1/11

- Questions from 1/9
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

Subtransaction

Airline database

Two different (independent) databases

Subtransaction

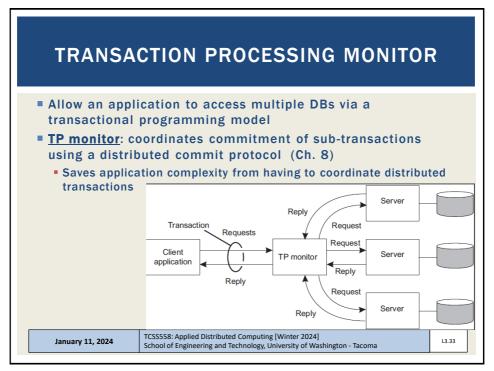
Hotel databas

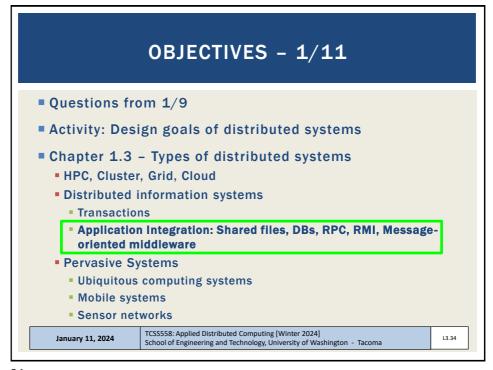
31

TRANSACTIONS: ACID PROPERTIES

- Atomic: The transaction occurs indivisibly
- <u>C</u>onsistent: Transaction does not create variant states across nodes during slow updates (e.g. system variants)
 - Replicas remain constant until all updated
 - Two phase commit: data pushed first, then the commit
- Isolated: Transactions do not interfere with each other
- Durable: Once a transaction commits, change are permanent
- Nested transaction: transaction constructed with many sub-transactions
- Follows a logical division of work
- Must support "rollback" of sub-transactions

"rollback" of sub-transactions


TCSS558: Applied Distributed Computing [Winter 2024]


School of Engineering and Technology, University of Washington - Tacoma

January 11, 2024

Slides by Wes J. Lloyd L3.16

32

34

ENTERPRISE APPLICATION INTEGRATION

- Dist. Info systems support application components direct communication with each other, not via databases
- **Communication mechanisms:**
- Remote procedure call (RPC)
 - Local procedure call packaged as a message and sent to server
 - Supports distribution of function call processing
- Remote method invocations (RMI)
 - Operates on objects instead of functions
- RPC and RMI led to tight coupling
- Client and server endpoints must be up and running
- Interfaces coupled to specific languages and not interoperable
- This led to evolution of: Message-oriented middleware (MOM)

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

35

MESSAGE-ORIENTED MIDDLEWARE

- Publish and subscribe systems:
 - Rabbit MQ, Apache Kafka, AWS SQS
- Reduces tight coupling of RPC/RMI
- Applications indicate interest for specific type(s) of messages by sending requests to logical contact points
- Communication middleware delivers messages to subscribing applications

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

36

CHALLENGES WITH VARIOUS APPLICATION INTEGRATION METHODS

- Integration via shared data files and transfers
 - Shared data files (e.g. XML)
 - Leads to file management challenges (concurrent updates, etc.)
- Shared database
 - Centralized DB, transactions to coordinate changes among users
 - Common data schema required can be challenging to derive
 - For many reads and updates, shared DB becomes bottleneck (Ilmited scalability)
- Remote procedure call app A executes on and against app B data. App A lacks direct access to app B data.
- Messaging middleware ensures nodes temporarily offline later on, can receive messages

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

37

OBJECTIVES - 1/11

- Questions from 1/9
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware

Pervasive Systems

- Ubiquitous computing systems
- Mobile systems
- Sensor networks

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

38

PERVASIVE SYSTEMS

- Existing everywhere, widely adopted...
- Combine current network technologies, wireless computing, voice recognition, internet capabilities and AI to create an environment where connectivity of devices is embedded, unobtrusive, and always available
- Many sensors infer various aspects of a user's behavior
 - Myriad of actuators to collect information, provide feedback
- **TYPES OF PERVASIVE SYSTEMS:**
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

39

OBJECTIVES - 1/11

- Questions from 1/9
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

Schisor hetworks

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

40

PERVASIVE SYSTEM TYPE: UBIQUITOUS COMPUTING SYSTEMS

- Pervasive and continuously present
- Goal: embed processors everywhere (day-to-day objects) enabling them to communicate information
- Requirements for a ubiquitous computing system:
 - <u>Distribution</u> devices are networked, distributed, and accessible transparently
 - Interaction unobtrusive (low-key) between users and devices
 - Context awareness optimizes interaction
 - Autonomy devices operate autonomously, self-managed
 - Intelligence system can handle wide range of dynamic actions and interactions

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

41

UBIQUITOUS COMPUTING DEVICES EXAMPLES

- Apple Watch
- Amazon Echo Speaker
- Amazon EchoDot (single speaker design)
- Fithit
- **■** Electronic Toll Systems
- ■Smart Traffic Lights
- Self Driving Cars
- Home Automation

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

3.42

42

UBIQUITOUS COMPUTING SYSTEM EXAMPLE

- Domestic ubiquitous computing environment example:
- Interconnect lighting and environmental controls with personal biometric monitors woven into clothing so that illumination and heating conditions in a room might be modulated, continuously and imperceptibly
- IoT technology helps enable ubiquitous computing

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

L3.44

43

OBJECTIVES - 1/11

- Questions from 1/9
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

Schisor hetwork

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

44

PERVASIVE SYSTEM TYPE: MOBILE SYSTEMS

- Emphasis on mobile devices, e.g. smartphones, tablet computers
- New devices: remote controls, pagers, active badges, car equipment, various GPS-enabled devices,
- Devices move: where is the device?
- Changing location: leverage <u>m</u>obile <u>a</u>dhoc <u>net</u>work (MANET)
- MANET is an ad hoc network that can change locations and configure itself on the fly. MANETs are mobile, they use wireless connections to connect to various networks.
- VANET (<u>Vehicular Ad Hoc Network</u>), is a type of MANET that allows vehicles to communicate with roadside equipment.

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

45

OBJECTIVES - 1/11

- Questions from 1/9
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

3.46

46

PERVASIVE SYSTEM TYPE: SENSOR NETWORKS

- Tens, to hundreds, to thousands of small nodes
- Simple: small memory/compute/communication capacity
- Wireless, battery powered (or battery-less)
- Limited: restricted communication, constrained power
- Equipped with sensing devices
- Some can act as actuators (control systems)
 - Example: enable sprinklers upon fire detection
- Sensor nodes organized in neighborhoods
- Scope of communication:
 - Node neighborhood system-wide

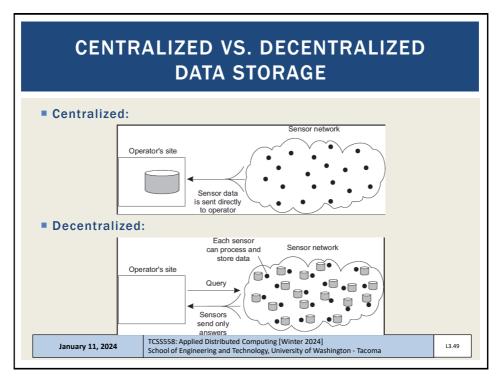
January 11, 2024

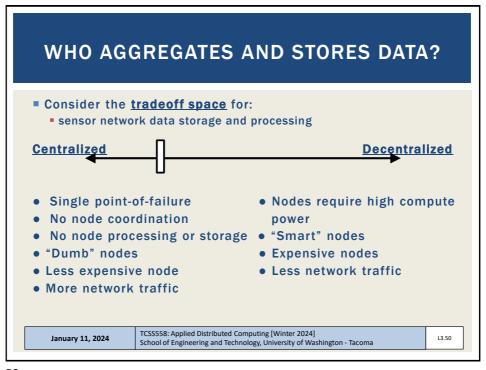
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

47

PERVASIVE SYSTEM TYPE: SENSOR NETWORKS - 2


- Collaborate to process sensor data in app-specific manner
- Provide mix of data collection and processing
- Nodes may implement a distributed database
- Database organization: centralized to decentralized
- In network processing: forward query to all sensor nodes along a tree to aggregate results and propagate to root
- Is aggregation simply data collection?
- Are all nodes homogeneous?
- Are all network links homogeneous?
- How do we setup a tree when nodes have heterogeneous power and network connection quality?


January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

48

50

SENSOR NETWORKS - 3

- What are some unique requirements for sensor networks middleware?
 - Sensor networks may consist of different types of nodes with different functions
 - Nodes may often be in suspended state to save power
 - Duty cycles (1 to 30%), strict energy budgets
 - Synchronize communication with duty cycles
 - How do we manage membership when devices are offline?

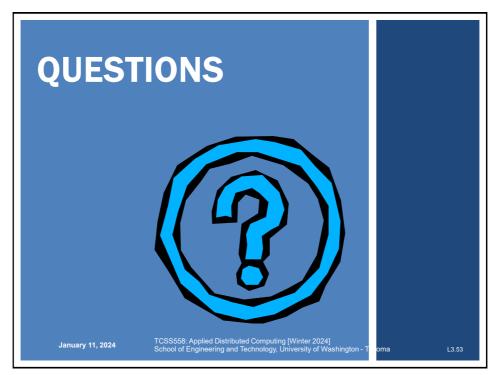
January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

51

TYPES OF DISTRIBUTED SYSTEMS


- HPC, Cluster, Grid, Cloud
- Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Message-oriented middleware
- Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 11, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

52

