
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.1

 Introduction to
 Distributed Systems - II

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)
 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/4

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

OBJECTIVES – 1/9

 23 of 32 survey responses so far

 Please complete the demographics survey to help set

Winter 2024 office hours:

 LINK:

https://forms.gle/7Vctn8QLrY4kLZvz5

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

TCSS 558 OFFICE HOURS – WINTER 2024

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

ONLINE DAILY FEEDBACK SURVEY

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.5

 Please classify your perspective on material covered in today’s

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.85 (2023 Lecture 1 , 6.65)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.50 (2023 Lecture 1 , 5.91) evious 5.55)

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

MATERIAL / PACE

1 2

3 4

5 6

https://forms.gle/7Vctn8QLrY4kLZvz5

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.2

 What is openness as a design characteristic of a d istributed

system?

▪ We will cover this today…

 Is there an example of something that is l ike a distributed

system, but does not meet the requirements /

characterizations ?

▪ A single central server with a hot/warm replica server

▪ System provides higher availability than a single server

▪ System consists of multiple servers, but only one operates at a time

▪ ISSUE: system lacks scalability beyond a single server

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

FEEDBACK FROM 1/4

 I would l ike to learn more aboue state/membership
tracking.

 For a distributed system consisting of multiple nodes
often there is a need to have the capability to track:
global system state

 EXAMPLE: Apache ZooKeeper:

▪ ZooKeeper provides a reusable implementation for key
features required by distributed applications/systems

▪ Saves developers from having to ‘reinvent the wheel’ each
time, by offering a common reusable implementation for
commonly required distributed systems functions

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

FEEDBACK - 2

 Apache ZooKeeper

 Reusable replicated key -value store that supports mult iple common
distributed system requirements:

▪ Configuration management

▪ Naming service

▪ Data synchronization

▪ Leader election

▪ Message queue

▪ Notification system

 Key attr ibutes:

▪ Scalable – can run on a single server or across multiple nodes

▪ Reliable – can suffer the loss of a node

▪ Fast – best for read dominant workloads with few writes

 Alternat ives: Etcd, Consul

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

FEEDBACK - 3

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.10

 Consider the System Archicture:

 Consider a node with data token

 How many messages are required to share the data

with all nodes in the distributed system?

SURVEY

LINKS

AT:

http://faculty.washington.edu/wlloyd

/courses/tcss558/announcements.html

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.11

 Questions from 1/4

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

OBJECTIVES – 1/9

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.3

 Definition:

 A collection of autonomous computing elements that

appears to users as a single coherent system.

 How nodes collaborate / communicate is key

 Nodes

▪ Autonomous computing elements

▪ Implemented as hardware or software processes

 Single coherent system

▪ Users and applications perceive a single system

▪ Nodes collaborate, and provide “abstraction”

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

WHAT IS A DISTRIBUTED SYSTEM?

#1: Collection of autonomous computing elements

▪Node synchronization

▪Node coordination

▪Overlay networks – enable node connectivity

▪OSI model

▪Peer-to-peer network

#2: Single coherent system

▪Distribution transparency

▪Middleware

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

CHARACTERISTICS OF

DISTRIBUTED SYSTEMS - 1

 Questions from 1/4

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

OBJECTIVES – 1/9

Accessibility: support for sharing resources

Distribution transparency: the idea that how a

system is distributed is hidden from users

Openness: avoid vendor lock-in

Scalability: ability to adapt and perform well with

an increased or expanding workload or scope

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

DESIGN GOALS

OF DISTRIBUTED SYSTEMS

 Questions from 1/4

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

OBJECTIVES – 1/9

 Easy for users (and applications) to *SHARE* remote resources

▪ Storage, compute, networks, services, peripherals, …

▪ Example: Field programmable arrays (FPGAs) “as a service”:

▪ https://aws.amazon.com/ec2/instance-types/f1/

▪ Make resources more *AVAILABLE* to end users

▪ Nearly any resource can be shared

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

ACCESSIBILITY: RESOURCE SHARING

13 14

15 16

17 18

https://aws.amazon.com/ec2/instance-types/f1/

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.4

 Questions from 1/4

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

OBJECTIVES – 1/9

 In distributed systems, aspects of the implementation are

hidden from users

 End users can simply use / consume the resource (or system)

without worrying about the implementation details

 Technology aspects required to implement the distribution are

abstracted from end users

 The distribution is transparent to end users.

 End users are not aware of certain mechanisms that do not

appear in the distributed system because transparency

confines details into layer(s) below the one users interact

with. (abstraction through layered architectures)

 Users perceive the system as a single entity even though it’s

implementation is spread across a collection of devices.

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

DISTRIBUTION TRANSPARENCY

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

DISTRIBUTION TRANSPARENCY - 2

 Types of distribution transparency

 Object is a resource or a process

Transparency Description

Access Hide differences in data representation and how an object is

accessed.

Location Hide where an object is located

Migration Hide that an object may move to another location

Relocation Hide that an object may be moved to another location while in use

Replication Hide that an object is replicated

Concurrency Hide than an object may be shared by several independent users

Failure Hide the failure and recovery of an object

 Access t ransparency:

 System should work the same regardless of the kind of machine

(cl ient) it ’s used (accessed) from.

 The world-wide-web provides good access transparency.

 Web content is accessed the same regardless of the type of cl ient

computer (i .e . operat ing system, Windows, Mac, Linux) and even

the size/type of cl ient device (laptop, tablet , smartphone)

 A disadvantage is the added development and test ing ef for t

required to ensure web content renders well regardless of the size

(form-factor) of the device (desktop, tablet , phone)

▪ Have you seen a mobile web page on a desktop? It can look somewhat

crude with a big and limited displays…

▪ Access transparency may be ‘broken’ when some content fails to render,

or some functionality is not supported on some devices

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

DISTRIBUTION TRANSPARENCY - 3

 Location t ransparency :

 Example: locat ion transparency via Uniform resource locator (URLs)

 Location is abstract : no cl ient reconfigurat ion needed for relocat ion

 Users can’t tell where an object physically is

 Example: during covid-19 students have locat ion transparency f rom

instructor enabled by Zoom

 Migrat ion t ransparency:

 Hide that a resource may move to another locat ion

 Clients accessing resource use same name to access resource

 Users are unaware if a resource possesses the abil ity to move to a
dif ferent locat ion, they just use the same name

 Example: Student watches Zoom lecture from cell phone. Phone
renegotiates network changes to maintain act ive session. Student
is always available. Instructor does not not ice student may be in a
car or bus.

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

DISTRIBUTION TRANSPARENCY - 4

 Relocation transparency:

 Resource(s) can migrate from one server to another

 Initiated by the distributed system, possibly for maintenance

 Must address that the resource temporarily be unavailable

 Need fast way to inform users about new location or use a

temporary scheme to hide lack of availability

 More dif ficult to implement

 Example: Student changes Zoom client from laptop to cell

phone - instructor may notice temporary loss of availability

(how can student switch devices without losing connection?)

▪ Special support (features) needed to ‘hide’ relocation

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

DISTRIBUTION TRANSPARENCY - 5

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.5

 Replication transparency:

 Hide the fact that several copies of a resource exist

 What if a user is aware of, or has to interact with the copies?

 Reasons for replication:

 Increase availability

 Improve performance

 Fault tolerance: a replica can take over when another fails

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

DISTRIBUTION TRANSPARENCY - 6

 Concurrency transparency:

 Concurrent use of resources requires synchronization w/ locks

 Transactions are often used

 Having concurrency transparency implies the client is unaware

of locking mechanisms, etc.

 No special knowledge is needed

 Failure transparency:

 Masking failures is one of the hardest issues in dist. systems

 How do we tell the dif ference between a failed process and a

very slow one?

 When do we need to “fail over” to a replica?

 Subject of chapter 8…

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

DISTRIBUTION TRANSPARENCY - 7

 Questions from 1/4

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

OBJECTIVES – 1/9

 Capability of a system consisting of components that are

easily used by, or integrated into other systems

 Key aspects of openness:

 Interoperability, portability, extensibility

 Interoperability: ability for components from separate

systems to work together (different vendors?)

 Though implementation of a common interface

 How could we measure interoperability of components?

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

OPENNESS

 Portability: degree that an application developed for

distributed system A can be executed without

modification on distributed system B

 How could we evaluate portability of a component?

 What percentage of portability is expected?

 The degree of portability will also reflect the

reusability of the software

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

OPENNESS - 2

 Extensibility: easy to reconfigure, add, remove, replace

components from dif ferent developers

 Example: replace the underlying file system of a distributed

system

 To be open, we would like to separate policy f rom mechanism

 Policy may change

 Mechanism is the technological implementation

 Avoid coupling policy and mechanism

 Enables flexibility

 Similar to separation of concerns, modular/OO design principle

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

OPENNESS - 3

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.6

 Interfaces: provide general syntax and semantics to

interact with distributed components

 Services expose interfaces: functions, parameters, return

values

 Semantics: describe what the services do

▪ Often informally specified (via documentation)

 General interfaces enable alternate component

implementations

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

ENABLING OPENNESS

 Example: web browser caching

 Mechanism: browser provides facility for storing documents

 Policy: Users decide which documents, for how long, …

 Goal: Enable users to set policies dynamically

 For example: browser may allow separate component plugin
to specify policies

 Tradeoff: management complexity vs. policy flexibility

 Static policies are inflexible, but are easy to manage as
features are barely revealed.

 AWS Lambda (Function-as-a-Service) abstracts configuration
polices from the user resulting in management simplicity

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

SEPARATING POLICY FROM MECHANISM

Which of the following designs is more open?

 Acme software corporation hosts a set of public weather web

services (e.g. web service API… weatherbit ?)

 DESIGN A: API is implemented using MS .NET Remoting

 .NET Remoting is a mechanism for communicating between

objects which are not in the same process. It is a generic

system for dif ferent applications to communicate with one

another. .NET objects are exposed to remote processes, thus

allowing inter process communication. The applications can

be located on the same computer, dif ferent computers on the

same network, or on computers across separate networks.

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

OPENNESS EXAMPLE

 DESIGN B: API is implemented using Java RMI

 The Java Remote Method Invocation (RMI) is a Java API that

performs remote method invocation to allow Java objects to

be distributed across dif ferent Java program instances on the

same or dif ferent computers. RMI is the Java equivalent of C

remote procedure calls, which includes support for transfer of

serialized Java classes and distributed garbage -collection.

 DESIGN C: API is implemented as HTTP/RESTful web inter face

 A RESTful API is an API that uses HTTP requests to GET, PUT,

POST and DELETE data. RESTful APIs are referred to as a

RESTful web services

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

OPENNESS EXAMPLE - 2

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L10.35

 Questions from 1/4

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

OBJECTIVES – 1/9

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.7

 The capability of a system to handle a growing amount of work

by adding resources to the system

 Scalability is measured over multiple dimensions

 Two types: horizontal (scale out by adding more nodes)

and vertical (scale up by adding resource to a single node)

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

SCALABILITY

 SIZE scalability : distributed system can grow easily without

impacting performance

▪ Supports adding new users, processes, resources

 GEOGRAPHICAL scalability : users and resources may be

dispersed, but communication delays are negligible

 ADMINISTRATIVE scalability: Policies are scalable as the

distributed system grows to support more users… (security,

configuration management policies are agile enough to deal

with growth) Goal: have administratively scalable systems !

 Most systems only account for SIZE scalability

 One solution is to operate multiple parallel independent nodes

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

SCALABILITY DIMENSIONS

Centralized architectures have limitations

At some point a single central

coordinator/arbitrator node can’t keep up

▪Centralized server: limited CPU, disk, network capacity

Scaling requires surmounting bottlenecks

L l oyd W, Pal l i ckar a S , Davi d O, Lyo n J, Ar ab i M , Roj as K. Migr ati o n of m ul ti - t ier appl ic atio ns

to i nf rastr uc ture -as - a-ser vi ce c lo uds : An inves tig ati o n us ing ker nel - base d vir tual mac hi nes .

I nGr i d Com put i ng (GRID), 201 1 1 2 th IEEE/AC M I nter nati onal C o nfer ence o n 201 1 Sep 21 (pp.

1 37 - 1 44) . I EEE .

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

SIZE SCALABILITY

 Nodes dispersed by great distances

▪ Communication is slower, less reliable

▪ Bandwidth may be constrained

 How do you support synchronous communication?

▪ Latencies may be higher

▪ Synchronous communication may be too slow and timeout

▪WAN links can be unreliable

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

GEOGRAPHIC SCALABILITY

 Conflicting policies regarding usage (payment),

management, and security

 How do you manage security for multiple, discrete data

centers?

 Grid computing: how can resources be shared across

disparate systems at different domains, etc. ?

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

ADMINISTRATIVE SCALABILITY

WE WILL RETURN AT

4:50PM

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.8

 Hide communication latencies

▪ Use asynchronous communication to do other work and hide latency

▪ Remote server runs in parallel in the background – client not locked

▪ Separate event handler captures return response from server

 Hide latency by moving key press validation to client:

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

APPROACHES TO SCALING

 Partitioning data and computations across machines

 Just one copy

▪ Where is the copy?

 Move computations to the client

▪ Thin client → thick client

▪ Edge, fog, cloud….

 Decentralized naming services (DNS)

 Decentralized information services (WWW)

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.44

APPROACHES TO SCALING - 2

Replication and caching – make copies of data
available at different machines

Replicated file servers and databases

Mirrored web sites

Web caches (in browsers and proxies)

 File caches (at server and client)

 LOAD BALANCER (or proxy server)

▪Commonly used to distribute user requests to nodes of
a distributed system

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

APPROACHES TO SCALING - 3

 Having multiple copies of data leads to inconsistency

(cached or replicated copies)

 Modifying one copy invalidates all of the others

 Keeping copies consistent requires global synchronization

 Global-synchronization prohibits large-scale up

▪ Best to synchronize just a few copies or synchronization

latency becomes too long, entire system slows down!

▪ Consider how synchronization time increases with system

size and distance between nodes

 To address synchronization time, distributed systems

designers will relax data consistency guarantees…

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

PROBLEMS WITH REPLICATION

 Consistency Models: Contract between the programmer and a
system, where the system guarantees if the programmer
follows rules for operations on (distributed/replicated) data,
data will be consistent and the results of reading, writing, or
updating memory will be predictable

 Strict Consistency – a write to a variable by any node needs to
be seen instantaneously by all nodes

 Non-strict model, for P2: x can be 0 or 1

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

TYPES OF CONSISTENCY

 Strong consistency – data is locked during writes and

replication across nodes. No other nodes can access data

for read/write when locked

 Sacrifices availability and performance for consistency

 Amazon Simple Storage Service (S3) now offers strong

consistency

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

TYPES OF CONSISTENCY - 2

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.9

 Eventual consistency – a consistency model used in

distributed systems where data consistency is relaxed in order

to improve availability and performance

 If a distributed system has many nodes distributed by great

distances, strong consistency will hurt performance

 Idea: relax consistency requirements

 Eventual consistency provides an informal guarantee that, if

no new updates (writes) are made to a given data item,

eventually all accesses to that item (from any node) will return

the last updated (written) value

 Does not guarantee safety (correctness) of data

 Only guarantees liveness (access/response) to a data query

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

TYPES OF CONSISTENCY - 3

 Consider the implicat ions for a serverless applicat ion consist ing of

mult iple AWS Lambda serverless funct ions

 Serverless funct ions, l ike web services, don’t s tore local s tate data

 To address the lack of state data in serverless funct ions, of ten

external data storage services are used

▪ AWS Lambda commonly uses the Simple Storage Service (S3) object store

to persist state data

 CONSIDER if S3 is used to track state data for a set of AWS Lambda

serverless funct ions, and consider if S3 were only

eventually consistent

 For the use case, several serverless funct ions rely on S3 for

exchanging state data

 What would the implications be fo r the application?

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.50

EVENTUAL CONSISTENCY - EXAMPLE

 Can these inconsistencies be tolerated?

1. Consistent view of the number of likes for a message in

twitter?

2. Consistency of where a TinyURL navigates?

3. Consistency of files in Dropbox read from multiple devices?

4. An inventory count for an ecommerce website selling books?

5. Current temperature and wind speed from weather.com

6. Bank account balance – for a read only statement

7. Bank account balance – for a transfer/withdrawal

transaction

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

PROBLEMS WITH REPLICATION - 2

Developing a distributed system is a formidable

task

Many issues to consider:

Reliable networks do not exist

Networked communication is inherently insecure

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

DEVELOPING DISTRIBUTED SYSTEMS

 The network is reliable

 The network is secure

 The network is homogeneous

 The topology does not change

 Latency is zero

Bandwidth is infinite

 Transport cost is zero

 There is one administrator

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

FALSE ASSUMPTIONS ABOUT

DISTRIBUTED SYSTEMS

 Questions from 1/4

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

OBJECTIVES – 1/9

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

January 9, 2024

Slides by Wes J. Lloyd L2.10

 We will form groups of ~2-3

▪ Remote students will use Canvas breakout rooms

 Each group will complete a MS Word Doc worksheet

 Add names to top of worksheet as they appear in Canvas

 Once completed, one person submits a PDF of the Word

Doc to Canvas

 Grader will score all group members based on the

uploaded PDF file

 To get started:

▪ Log into Canvas, TCSS 558 A

▪ Find worksheet under Class Activity 1

October 7, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

CLASS ACTIVITY 1 QUESTIONS

January 9, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.56

55 56

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/9
	Slide 3: Tcss 558 office hours – Winter 2024
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 1/4
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10
	Slide 11: Survey LINKS AT: http://faculty.washington.edu/wlloyd /courses/tcss558/announcements.html
	Slide 12: OBJECTIVES – 1/9
	Slide 13: What is a distributed system?
	Slide 14: Characteristics of distributed Systems - 1
	Slide 15: OBJECTIVES – 1/9
	Slide 16: Design goals of distributed systems
	Slide 17: OBJECTIVES – 1/9
	Slide 18: Accessibility: resource sharing
	Slide 19: OBJECTIVES – 1/9
	Slide 20: Distribution transparency
	Slide 21: Distribution transparency - 2
	Slide 22: Distribution transparency - 3
	Slide 23: Distribution transparency - 4
	Slide 24: Distribution transparency - 5
	Slide 25: Distribution transparency - 6
	Slide 26: Distribution transparency - 7
	Slide 27: OBJECTIVES – 1/9
	Slide 28: openness
	Slide 29: Openness - 2
	Slide 30: Openness - 3
	Slide 31: Enabling openness
	Slide 32: Separating policy from mechanism
	Slide 33: Openness example
	Slide 34: Openness example - 2
	Slide 35
	Slide 36: OBJECTIVES – 1/9
	Slide 37: scalability
	Slide 38: Scalability dimensions
	Slide 39: Size scalability
	Slide 40: Geographic scalability
	Slide 41: Administrative scalability
	Slide 42: We will return at 4:50pm
	Slide 43: Approaches to scaling
	Slide 44: Approaches to scaling - 2
	Slide 45: Approaches to scaling - 3
	Slide 46: Problems with replication
	Slide 47: Types of consistency
	Slide 48: Types of consistency - 2
	Slide 49: Types of consistency - 3
	Slide 50: Eventual consistency - example
	Slide 51: Problems with replication - 2
	Slide 52: Developing distributed systems
	Slide 53: False assumptions about distributed systems
	Slide 54: OBJECTIVES – 1/9
	Slide 55: Class activity 1
	Slide 56: Questions

