
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.1

 Chapter 6 – Coordination - II

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)
 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/27

 Assignment 3: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

OBJECTIVES – 2/29

1

2

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

ONLINE DAILY FEEDBACK SURVEY

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.3

 Please classify your perspective on material covered in today’s

class (21 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.67 (- previous 6.09)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.52 (- previous 5.36)

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

MATERIAL / PACE

 Can you please explain again the graph mentioned in Rumor

Spreading which is plotted between P_stop and s ?

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

FEEDBACK FROM 2/27

5

6

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.4

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another

node

 Node P may loose interest in spreading the rumor with

probability = pstop, let’s say 20% . . . (or 0.20)

February 27, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

RUMOR SPREADING

 pstop, is the probability node will stop spreading once contacting a
node that already has the message

 Rumor spreading does not guarantee all nodes will be updated

 Fraction of nodes s, that remain susceptible grows relative to
the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 20% with high pstop

 Susceptible nodes (s) vs.
probability of stopping →

February 27, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

RUMOR SPREADING - 2

7

8

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.5

 pstop, is the probability node will stop spreading once contacting a
node that already has the message

 Rumor spreading does not guarantee all nodes will be updated

 Fraction of nodes s, that remain susceptible grows relative to
the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 20% with high pstop

 Susceptible nodes (s) vs.
probability of stopping →

February 27, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

RUMOR SPREADING - 2

• Once P finds a node Q that already has the
message X, P begins evaluating whether it should

stop spreading message X

• P decides randomly when to stop spreading the

message X
• With pstop,=.20, the odds are 1 in 5 that P will stop

• On average, after 5 attempts, P will stop trying to

spread the message X

• The number of nodes that remains susceptible is:

s=𝑒
1(

1

𝑝𝑠𝑡𝑜𝑝
+1)(1−𝑠)

 (this graphs shows this formula)

 Time server B

Client A

 Assume: Treq= Tres (request latency equals response latency)

 T1=50, T2(@A)=100, T2=200, T3=300, T3(@A)=200, T4=250

 Calculate clock offset () between A and B

 = =

 What is the propagation delay between A and B?

 What is the clock of fset between A and B?

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

REVIEW: NTP EXAMPLE

 = clock offset
 = propagation delay

9

10

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.6

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.11

 Questions from 2/27

 Assignment 3: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

OBJECTIVES – 2/29

11

12

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.7

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to

refer to central membership server

U UDP membership tracking - automatically discovers

nodes with no configuration

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

 Sunday March 10 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Build off of Assignment 2 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

 REQUIREMENT: ‘store’ command needs to output 1 key -value

pair per line using ASCII text (no binary)

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

ASSIGNMENT 3

13

14

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.8

 Questions from 2/27

 Assignment 3: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

OBJECTIVES – 2/29

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

CHAPTER 6 - COORDINATION

15

16

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.9

CH. 6.2: LOGICAL

CLOCKS

L16.17

 Three processes each with local clocks

 Lamport’s algorithm corrects process clock values

 Always propagate the most recent known value of logical time

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

LOGICAL CLOCKS - 4

17

18

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.10

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

69: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.19

LOGICAL CLOCKS

 Negative values not possible

 When a message is received, and the local clock is before the
timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: (sending-a-message,
receiving-a-message, some-other-internal-event)
Pi increments Ci: Ci Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci

3. When Pj receives msg m, Pj adjusts its local clock
Cj max{Cj, timestamp(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>
Both Lamport clocks are = 40
The winner has a higher alphanumeric Process ID
J (winner) is greater than i, alphabetically

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

LAMPORT LOGICAL CLOCKS -

IMPLEMENTATION

19

20

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.11

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Initial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.21

TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.22

TOTAL-ORDERED MULTICASTING

EXAMPLE

21

22

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.12

 Two messages (m1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

TOTAL-ORDERED MULTICASTING

EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

each process has a local queue

23

24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.13

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1

m1

M1(10) M1(10)

each process has a local queue

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1

m1

m2

m2

M1(10) M1(10)

M2(12) M2(12)

each process has a local queue

25

26

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.14

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 M1(10)

M2(12) M2(12)

m1ACK

each process has a local queue

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 M1(10)

M2(12) M2(12) 1

m1ACK

m2ACK

m2ACK

each process has a local queue

27

28

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.15

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 M1(10)

M2(12) M2(12) 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 M1(10)

M2(12) 2 M2(12) 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

29

30

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.16

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 M1(10) 2

M2(12) 2 M2(12) 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 M1(10) 2

M2(12) 2 M2(12) 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

m1ACK

m2ACK

m2ACK

m1ACK

31

32

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.17

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 M1(10) 2

M2(12) 3 2 M2(12) 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

m1ACK

m2ACK

m2ACK

m1ACK

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 M1(10) 2 3

M2(12) 3 2 M2(12) 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

m1ACK

m2ACK

m2ACK

m1ACK

33

34

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.18

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 4 M1(10) 2 3

M2(12) 3 2 M2(12) 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

m1ACK

m2ACK

m2ACK

m1ACK

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 4 M1(10) 2 3

M2(12) 3 2 M2(12) 4 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

m1ACK

m2ACK

m2ACK

m1ACK

35

36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.19

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Each message must be acknowledged by every process in the system
before operations in queue can be applied to the local DB…

m1ACK

m1

m2

m2

M1(10) 1 4 M1(10) 2 3

M2(12) 3 2 M2(12) 4 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

m1ACK

m2ACK

m2ACK

m1ACK

What is the final account balance?

TOTAL-ORDERED MULTICASTING EXAMPLE

Total Ordered Multicasting
Logical Clocks with Acknowledgements

messages:
m1 (10, P1, add $100)
m2 (12, P2, add 1% interest)

timestamps

Two processes with collocated DB replicas:

P1/DB1

P2/DB2

arriving messages
are placed in queues
ordered by timestamp

P1 queue P2 queue

P1 ack rcv’d P2 ack rcv’d P1 ack rcv’d P2 ack rcv’d

Messages are processed in timestamp order
Messages aren’t processed until all acknowledgements are received

m1ACK

m1

m2

m2

M1(10) 1 4 M1(10) 2 3

M2(12) 3 2 M2(12) 4 1

m1ACK

processing
delay

m2ACK

m2ACK

each process has a local queue

m1ACK

m2ACK

m2ACK

m1ACK

$1,000 + $100 = $1,100$1,000 + $100 = $1,100

$1,100 * 1% = $1,111 $1,100 * 1% = $1,111

37

38

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.20

 Each message timestamped with local logical clock of sender

 Multicast messages are also received by the sender (itself)

 Assumptions:

▪ Messages from same sender received in order they were sent

▪ No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes

▪ Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

TOTAL-ORDERED MULTICASTING - 2

 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement

messages, allows for events to be “totally” ordered in

replicated event queues

 Events can be applied “in order” to each (distributed)

replicated state machine (RSM)

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

TOTAL-ORDERED MULTICASTING - 3

39

40

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.21

 Questions from 2/27

 Assignment 3: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

OBJECTIVES – 2/29

 Lamport clocks don’t help to determine causal ordering of

messages

 Vector clocks capture causal histories and can be used as an

alternative

 But what is causality? …

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

VECTOR CLOCKS

41

42

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.22

 Having a causal relationship between two events (A and E)

indicates that event E results from the occurrence of event A.

 When one event results from another, there is a causal

relationship between the two events.

 This is also referred to as cause and effect.

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.43

WHAT IS CAUSALITY?

Proc 1

Proc 2

A B C

D E

m1

 Disclaimer:

 Without knowing actual information contained in messages, it

is not possible to state with certainty that there is a causal

relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

CAUSALITY - 2

43

44

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.23

 Consider the messages:

 P2 receives m1, and subsequently sends m3

 Causality: Sending m3 may depend on what’s contained in m1

 P2 receives m2, receiving m2 is not related to receiving m1

 Is sending m3 causally dependent on receiving m2?

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.45

CAUSALITY - 3

 Vector clocks help keep track of causal history

 If two local events happened at process P, then the

causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,

as a vector clock → H(q2) = (3,2)

 Each entry corresponds to the last event at the process

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.46

VECTOR CLOCKS

45

46

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.24

 Each process maintains a vector clock which

▪ Captures number of events at the local process (e.g. logical clock)

▪ Captures number of events at all other processes

 Causality is captured by:

▪ For each event at Pi, the vector clock (VCi) is incremented

▪ The msg is timestamped with VCi; and sending the msg is recorded

as a new event at P i

▪ P j adjusts its VCj choosing the max of: the message timestamp –or-

the local vector clock (VCj)

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the

received message

 Pj learns how many events have occurred at other processes

based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the

message(s) to be sent…

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

VECTOR CLOCKS - 3

47

48

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.25

 Local clock is underlined

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

 P3 can’t determine if m4 may be causally dependent on m2

 Is m4 causally dependent on m3 ?

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.50

VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

49

50

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.26

 Provide a vector clock label for unlabeled events

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

VECTOR CLOCKS EXAMPLE - 3

 TRUE/FALSE:

 The sending of message m3 is causally dependent on the
sending of message m1.

 The sending of message m2 is causally dependent on the
sending of message m1.

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

VECTOR CLOCKS EXAMPLE - 4

51

52

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.27

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

VECTOR CLOCKS EXAMPLE - 5

WE WILL RETURN AT

2:40 PM

53

54

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.28

 Questions from 2/27

 Assignment 3: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

OBJECTIVES – 2/29

 Questions from 2/27

 Assignment 3: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

OBJECTIVES – 2/29

55

56

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.29

CH. 6.3: DISTRIBUTED

MUTUAL

EXCLUSION

L16.57

 Coordinating access among distributed processes to a

shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

57

58

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.30

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

TOKEN-BASED ALGORITHMS

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated

around ring

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.60

TOKEN-RING ALGORITHM

59

60

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.31

1. If token is lost, token must be regenerated

▪ Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

▪What is the difference between token being lost and a

node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

▪Dead nodes can be detected by adding a receipt message

for when the token passes from node-to-node

▪When no receipt is received, node assumed dead

▪ Dead process can be “jumped” in the ring

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.61

TOKEN-RING CHALLENGES

Permission-based algorithms

 Processes must require permission from other processes

before first acquiring access to the resource

▪ CONTRAST: Token-ring did not ask nodes for permission

 Centralized algorithm

 Elect a single leader node to coordinate access to shared

resource(s)

 Manage mutual exclusion on a distributed system similar

to how mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

61

62

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.32

 When resource not available, coordinator can block the

requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject

otherwise can wait if simply blocked

 Requests are granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”

when resource is unavailable

▪ No difference between CRASH and BLOCK (for a long time)

 Large systems, coordinator becomes performance bottleneck

▪ Scalability: Performance does not scale

 Benefits

 Simplicity:

Easy to implement compared to distributed alternatives

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

CENTRALIZED MUTUAL EXCLUSION - 2

63

64

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.33

 Ricart and Agrawala [1981], use total ordering of all events

▪ Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:

▪ Name of resource

▪ Process number

▪ Current (logical) time

 Assume messages are sent reliably

▪ No messages are lost

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.65

DISTRIBUTED ALGORITHM

 When each node receives a request message they will:

1. Say OK (if the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. If node is also waiting to access the resource: perform a

timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership

list of the distributed system

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

DISTRIBUTED ALGORITHM - 2

65

66

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.34

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of conflict, lowest timestamp wins!

▪ Node 2 rejects its own request (12) in favor of node 0 (8)

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource,

it does not respond

▪ Lack of response can be confused with failure

▪ Possible Solution: When node receives request for

resource it is accessing, always send a reply either

granting or denying permission (ACK)

▪ Enables requester to determine when nodes have died

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

CHALLENGES WITH

DISTRIBUTED ALGORITHM

67

68

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.35

 Problem: Multicast communication required –or- each node must
maintain full group membership

▪ Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement to
grant access to a shared resource

▪ This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed when
a simple majority of nodes grant permission (>50%)

▪ Presumably any one node locking the resource prevents agreement

▪ If one node gets majority of acknowledges no other can

▪ Requires every node to know size of system (# of nodes)

 Problem: 2 concurrent transactions get 50% permission → deadlock?

 Distributed algorithm for mutual exclusion works best for:

▪ Small groups of processes

▪ When memberships rarely change

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.69

CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator …(N coordinators)

 Accessing resource requires majority vote:

total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give

permission to access a resource (because it is busy) it will

inform the requester

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.70

DECENTRALIZED ALGORITHM

69

70

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.36

 Assumption #2: When a coordinator crashes, it recovers

quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted

permission to the shared resource, and on recovery it errantly

grants permission again

 The Hope: if coordinator crashes, upon recovery , the node

granted access to the resource has already f inished before the

restored coordinator grants access again . . .

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

DECENTRALIZED ALGORITHM - 2

 With 99.167% coordinator availability (30 sec downtime/hour)

chance of violating correctness is so low it can be neglected in

comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to

access resource, which requires time

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

p=seconds per hour coordinator is offline

71

72

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.37

 Back-off Poll ing Approach for permission-denied :

 If permission to access a resource is denied via majority vote,

process can poll to gain access again with a random delay

(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource,

majority vote can lead to low resource utilization

▪ No one can achieve majority vote to obtain access to the

shared resource

▪ Mimics elections where with too many candidates, where no

one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

DECENTRALIZED ALGORITHM - 4

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.74

73

74

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.38

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.75

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.76

75

76

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.39

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.77

 Which algorithm offers the best scalability to support

distributed mutual exclusion in a large distributed

system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.78

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

77

78

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.40

 Which algorithm(s) involve blocking (no reply) when a

resource is not available?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

 Which algorithm(s) involve arriving at a consensus

(majority opinion) to determine whether a node should be

granted access to a resource?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.80

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

79

80

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 29, 2024

Slides by Wes J. Lloyd L16.41

 Which algorithm(s) have N points of failure,

where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

QUESTIONS

February 29, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.82

81

82

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/29
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 2/27
	Slide 7: Rumor spreading
	Slide 8: Rumor spreading - 2
	Slide 9: Rumor spreading - 2
	Slide 10: Review: NTP example
	Slide 11
	Slide 12: OBJECTIVES – 2/29
	Slide 13: Short-hand-codes for Membership Tracking Approaches
	Slide 14: Assignment 3
	Slide 15: OBJECTIVES – 2/29
	Slide 16: Chapter 6 - Coordination
	Slide 17: Ch. 6.2: logical clocks
	Slide 18: Logical clocks - 4
	Slide 19: Logical clocks
	Slide 20: Lamport logical clocks - implementation
	Slide 21: Total-ordered multicasting
	Slide 22: Total-ordered multicasting example
	Slide 23: Total-ordered multicasting example
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Total-ordered multicasting - 2
	Slide 40: Total-ordered multicasting - 3
	Slide 41: OBJECTIVES – 2/29
	Slide 42: Vector clocks
	Slide 43: What is causality?
	Slide 44: Causality - 2
	Slide 45: causality - 3
	Slide 46: Vector clocks
	Slide 47: Vector clocks - 2
	Slide 48: Vector clocks - 3
	Slide 49: Vector clocks example
	Slide 50: Vector clocks example - 2
	Slide 51: Vector clocks example - 3
	Slide 52: Vector clocks example - 4
	Slide 53: Vector clocks example - 5
	Slide 54: We will return at 2:40 pm
	Slide 55: OBJECTIVES – 2/29
	Slide 56: OBJECTIVES – 2/29
	Slide 57: Ch. 6.3: distributed mutual exclusion
	Slide 58: Distributed mutual exclusion algorithms
	Slide 59: token-based algorithms
	Slide 60: Token-ring algorithm
	Slide 61: Token-ring challenges
	Slide 62: Distributed mutual exclusion algorithms - 3
	Slide 63: Centralized mutual exclusion
	Slide 64: Centralized mutual exclusion - 2
	Slide 65: Distributed algorithm
	Slide 66: Distributed algorithm - 2
	Slide 67: Distributed algorithm - 3
	Slide 68: Challenges with Distributed algorithm
	Slide 69: Challenges with Distributed algorithm - 2
	Slide 70: Decentralized algorithm
	Slide 71: Decentralized algorithm - 2
	Slide 72: Decentralized algorithm - 3
	Slide 73: Decentralized algorithm - 4
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: Distributed mutual exclusion algorithms review
	Slide 79: Distributed mutual exclusion algorithms review - 2
	Slide 80: Distributed mutual exclusion algorithms review - 3
	Slide 81: Distributed mutual exclusion algorithms review - 4
	Slide 82: Questions

