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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.09 ( - previous 6.60)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.36 ( - previous 5.56)
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MATERIAL / PACE

 Week 9:

▪ Wednesday February 28 – 1:30pm – JOY 117

▪ Thursday February 29 – 1:30pm – MLG 110

▪ Friday March 1 – 1:30pm – MLG 301

 Week 10:

▪ Monday March 4 – 1:30pm - MLG 110

▪ Tuesday March 5 – 1:30pm - CP 324

▪ Wednesday March 6 – 1:30pm – BHS 106

▪ Thursday March 7 – 12:30pm – MLG 110

 Earn up to 33 buf fer points added to the Final Exam score

 Earn 3 points for each seminar attended

 Buffer points replace missed points on the Final Exam

 Once the Final Exam score = 100%, additional points do not push 
the Final Exam score above 100%

 Buffer points will not impact the course curve for the Final Exam

 Any course curve will be applied before buf fer points
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CSS TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT
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FEEDBACK FROM 2/22

 Questions from 2/22

 Assignment 3: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method 

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is 

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to 

refer to central membership server

U UDP membership tracking - automatically discovers 

nodes with no configuration
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SHORT-HAND-CODES FOR MEMBERSHIP 

TRACKING APPROACHES

 Sunday March 10 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Build off of Assignment 2 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking 

for extra credit

 REQUIREMENT: ‘store’ command needs to output 1 key -value 

pair per line using ASCII text (no binary)
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ASSIGNMENT 3
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 Questions from 2/22

 Assignment 3: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/27

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another 

node

 Node P may loose interest in spreading the rumor with 

probability = pstop, let’s say 20% . . .  (or 0.20)
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RUMOR SPREADING
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 pstop,  is the probability node will stop spreading once contacting a 
node that already has the message

 Rumor spreading does not guarantee all nodes will be updated

 Fraction of nodes s, that remain susceptible grows relative to 
the probability that node P 
stops propagating when finding 
a node already having the 
message

 Fraction of nodes not updated 
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping      →
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RUMOR SPREADING - 2

 Gossiping is good for spreading data

 But how can data be removed from the system? 

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from 

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required 

for data element to clear out of entire system

 A few nodes maintain death certificates forever
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REMOVING DATA
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 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds 

the death certificate for Item X

 Node P will recirculate the death certificate across the 

network for Item X
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DEATH CERTIFICATE EXAMPLE

 Questions from 2/22

 Assignment 3: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/27
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 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)
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CHAPTER 6 - COORDINATION

CH. 6.1: CLOCK

SYNCHRONIZATION
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 Example:

 “make” is used to compile source files into binary object and 

executable files

 As an optimization, make only compiles files when the “last 

modified time” of source files is more recent than object and 

executables

 Consider if files are on a shared disk of a distributed system 

where there is no agreement on time

 Consider if the program has 1,000 source files
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CLOCK SYNCHRONIZATION

 Updates from different machines, may have clocks set to 

dif ferent times

 Make becomes confused with which files to recompile

 Linux commands:

date +%s # seconds since Jan 1, 1970
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TIME SYNCHRONIZATION PROBLEM 

FOR DISTRIBUTED SYSTEMS
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PHYSICAL CLOCKS

 Computer timers: precisely machined
quartz crystals

 When under tension, they oscillate at 
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for 

 Today, crystals are associated with 
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one

 When counter gets to zero, an interrupt fires

 Can program timer to generate interrupt, let’s say 60 
times a second, or another frequency to track time

1960s ERA radio crystal →

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time

▪ Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly dif ferent rates

 Time differences accumulate as clocks

drift forward or backward slightly

 In an automobile, where there is no

clock synchronization, clock skew may

become noticeable over months, years
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COMPUTER CLOCKS
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 Universal Coordinated Time (UTC)

▪Worldwide standard for time keeping

▪ Equivalent to Greenwich Mean Time (United Kingdom)

▪ 40 shortwave radio stations around the world broadcast a 
short pulse at the start of each second (WWV)

▪World wide “atomic” clocks powered by constant 
transitions of the non-radioactive caesium-133 atom 

▪ 9,162,631,770 transitions per second

 Computers track time using UTC as a base

▪ Avoid thinking in local time, which can lead to 
coordination issues

▪ Operating systems may translate to show local time
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UNIVERSAL COORDINATED TIME

How do we synchronize computer clocks with 

real-world clocks?

How do we synchronize computer clocks with 

each other?
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COMPUTING: CLOCK CHALLENGES
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 UTC services: use radio and satellite signals to provide time 

accuracy to 50ns

 Time servers: Server computers with UTC receivers that 

provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock drif t : clocks on dif ferent machines gradually become 

out of sync due to crystal imperfections, temperature 

differences, etc.

 Clock drif t rate: typical is 31.5s per year

 Maximum clock drif t rate (): clock specifications include one
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CLOCK SYNCHRONIZATION

 If two clocks drift from UTC in opposite directions, 

after time t after synchronization, they may be 2 apart.

▪  - clock drift rate,  - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of 

time for servers

 Leverage distributed network 

of time servers
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CLOCK SYNCHRONIZATION - 2
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 Servers organized 
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d 
with atomic clocks

 Servers connect
with closest NTP 
server for time 
synchronization

 Servers assume 
role as NTP server
at stratum+1
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NETWORK TIME PROTOCOL

Atomic
clocks

 Must estimate network delays when synchronizing with remote UTC 
receiver clocks / time servers

Time server B

Client A

1. A sends message to B, with timestamp T1

2. B records time of receipt T2 (from local clock)

3. B returns response with send time T3, and receipt time T2 

4. A records arrival of T4

 Assuming propagation delay of A→B→A is the same

 Estimate propagation delay:

 Add delay to time
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NTP - 2
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 Cannot set clocks backwards (recall “make” file example)

 Instead, temporarily slow the progress of time to allow fast 
clock to align with actual time

 Change rate of clock interrupt routine

 Slow progress of time until synchronized

 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst

server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)

 Run ntpdate: (sudo ntpdate time.u.washington.edu)

 Startup service (sudo service ntp start)
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NTP - 3

 Amazon uses a variant of ntp called chrony “chron ”  is  t ime in  Greek

 By default “chrony” is preinstalled on standard AMIs for ec2 
instances ( i.e. Ubuntu 22.04, Amazon Linux, etc.)

 Installation instructions:

 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set -
time.html

 Once installed you can monitor clock drift with:

watch -n .2 chronyc tracking

 Can publish clock drif t using bash script as a CloudWatch metric:

 https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-
clock-accuracy -using-amazon-time-sync-service-and-amazon-
cloudwatch-part-2/

 Upgrade script to Instance Metadata Service v2:

 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance -
metadata-v2-how-it-works.html
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AWS EC2 INSTANCE –

TIME SYNCHRONIZATION
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WATCH -N .2 CHRONYC TRACKING

 Linux scheduling facility

▪ Cron: background process to run scheduled tasks at specified times

▪ Supports running maintenance jobs, scripts at regular intervals

▪ Can schedule script to run at specific time of day or interval

▪ Highest frequency: once per minute

▪ /etc/crontab file captures scheduled tasks

▪ By default, runs scripts in /etc/cron.hourly
/etc/cron.daily
/etc/cron.weekly
/etc/cron.monthly

# Example of job definition:

# .---------------- minute (0 - 59)

# |  .------------- hour (0 - 23)

# |  |  .---------- day of month (1 - 31)

# |  |  |  .------- month (1 - 12) OR jan,feb,mar,apr ...

# |  |  |  |  .---- day of week (0 - 6) (Sunday=0 or 7)

# |  |  |  |  |

# *  *  *  *  * user-name command to be executed
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LINUX CRON
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 Berkeley time daemon server actively polls network to 

determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks 

to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm
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BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronization

▪ Address resource constraints : limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides time precision 

 Where no UTC clock available

 RBS sender broadcasts a reference message to allow receivers to 

adjust clocks

 Assume: NO multi -hop routing

 Assume: Time to propagate a signal to nodes is roughly constant

 RBS: Message propagation time does not consider time spent 

waiting in NIC for message to send

▪ Wireless network resource contention may force waiting before 

message can be sent – RBS only pays attention to msg receipt time
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CLOCK SYNCHRONIZATION

IN WIRELESS NETWORKS
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 Node broadcasts reference message k

 Each node p records time Tp,k when k is received

 Tp,k is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate 

mutual relative offset

 Then calculate relative average offset for each other:

 Where M is the total number of reference messages sent

 To save battery life: nodes store offsets instead of frequently 

synchronizing clocks to save energy
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REFERENCE BROADCAST 

SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drif t apart

 Averages become less precise

 Elson et al. propose using standard linear regression to 

predict offsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear 

regression to continuously refine a formula with coefficients 

to predict time offsets:

 Models the clock drif t so time offsets can be inferred
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REFERENCE BROADCAST 

SYNCHRONIZATION (RBS) - 2
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WE WILL RETURN AT 

4:55 PM

 Questions from 2/22

 Assignment 3: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/27
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 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)
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CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL

CLOCKS

L15.40
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 In distributed systems, synchronizing to actual time may not be 

required…

 I t may be suf ficient for every node to simply agree on a current 

time  (e.g. logical)

 Logical clocks provide a mechanism for capturing chronological 

and causal relationships in a distributed system

 Think counters .  .  .  

 Leslie Lamport [1978] seminal paper showed that absolute clock 

synchronization often is not required

 Processes simply need to agree on the order in which events occur
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LOGICAL CLOCKS

 Happens-before relation

 A→B:  Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. . .  

 If event A is the event of proc P1 sending a msg to a proc P2, 

and event B is the event of proc P2 receiving the msg, then 

A→B is also true. . . 

 The assumption here is that message delivery takes time

 Happens before is a transitive relation :

 A→B, B→C, therefore A→C
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LOGICAL CLOCKS - 2
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 If two events, say event X and event Y do not exchange 

messages, not even via third parties, then the sequence of 

X→Y vs. Y→X  can not be determined!!

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events 

happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never 

backward (decreasing)

 Corrections to time can be made by adding a positive value, 

but never by subtracting one

February 27, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

LOGICAL CLOCKS – 3

 Three processes each with local clocks

 Lamport’s algorithm corrects process clock values

 Always propagate the most recent known value of logical time

February 27, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.44

LOGICAL CLOCKS - 4
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 Events: 

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

69: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70
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LOGICAL CLOCKS

 Negative values not possible

 When a message is received, and the local clock is before the 
timestamp when then message was sent, the local clock is 
updated to message_sent_time + 1

1. Clock is incremented before an event: (sending-a-message, 
receiving-a-message, some-other-internal-event ) 
Pi increments Ci: Ci  Ci + 1

2. When Pi send msg m to Pj,  m’s timestamp is set to Ci 

3. When Pj receives msg m, Pj adjusts its local clock
Cj  max{Cj, timestamp(m)}

4. Ties broken by considering Proc ID: i<j;  <40,i>  < <40,j>
Both Lamport clocks are = 40
The winner has a higher alphanumeric Process ID 
J (winner) is greater than i, alphabetically 
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LAMPORT LOGICAL CLOCKS -

IMPLEMENTATION
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 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Initial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

February 27, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m1,  m2) must be distributed,

to two processes (p1,  p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1,  add $100)

 m2(12, p2,  add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the 

Lamport clock timestamp

 In each queue, each message must be acknowledged by every 

process in the system before operations can be applied to the 

local database
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TOTAL-ORDERED MULTICASTING 

EXAMPLE
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 Two messages (m1,  m2) must be distributed,

to two processes (p1,  p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1,  add $100)

 m2(12, p2,  add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the 

Lamport clock timestamp

 In each queue, each message must be acknowledged by every 

process in the system before operations can be applied to the 

local database
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TOTAL-ORDERED MULTICASTING 

EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)
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TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10) 1

3

4

2

2

4

3

1
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TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

What is the final account balance?

(12)

(12)

(10) 1

3

4

2

2

4

3

1

 Each message timestamped with local logical clock of sender

 Multicast messages are also received by the sender ( itself)

 Assumptions:

▪ Messages from same sender received in order they were sent

▪ No messages are lost

 When messages arrive they are placed in local queue ordered 
by timestamp

 Receiver multicasts acknowledgement of message receipt to 
other processes

▪ Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when 
message at the head of the queue has been acknowledged by 
every process in the system
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TOTAL-ORDERED MULTICASTING - 2
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 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement 

messages, allows for events to be “totally” ordered in 

replicated event queues  

 Events can be applied “in order” to each (distributed) 

replicated state machine (RSM)
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TOTAL-ORDERED MULTICASTING - 3

 Questions from 2/22

 Assignment 3: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/27
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 Lamport clocks don’t help to determine causal ordering of 

messages

 Vector clocks capture causal histories and can be used as an 

alternative

 But what is causality? …

February 27, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.55

VECTOR CLOCKS

 Having a causal relationship between two events (A and E)

indicates that event E results from the occurrence of event A.

 When one event results from another, there is a causal 

relationship between the two events. 

 This is also referred to as cause and effect .
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WHAT IS CAUSALITY?

Proc 1

Proc 2

A         B        C

D                      E

m1
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 Disclaimer:

 Without knowing actual information contained in messages, it 

is not possible to state with certainty that there is a causal 

relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…
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CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3

 Causality: Sending m3 may depend on what’s contained in m1

 P2 receives m2, receiving m2 is not related to receiving m1

 Is sending m3 causally dependent on receiving m2?
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CAUSALITY - 3
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 Vector clocks help keep track of causal history

 If two local events happened at process P, then the 

causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event, 

as a vector clock → H(q2) = (3,2)

 Each entry corresponds to the last event at the process
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VECTOR CLOCKS

 Each process maintains a vector clock which

▪ Captures number of events at the local process (e.g. logical clock)

▪ Captures number of events at all other processes

 Causality is captured by:

▪ For each event at Pi, the vector clock (VCi) is incremented

▪ The msg is timestamped with VCi; and sending the msg is recorded 

as a new event at P i

▪ P j adjusts its VCj choosing the max of: the message timestamp –or-

the local vector clock (VCj)
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VECTOR CLOCKS - 2

P1

P2

(1,0)   (2,0)    (3,0)

(0,1)                    (3,2)

m1
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 Pj knows the # of events at Pi based on the timestamps of the  

received message

 Pj learns how many events have occurred at other processes 

based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the 

message(s) to be sent…
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VECTOR CLOCKS - 3

 Local clock is underlined
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VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY
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 P3 can’t determine if m4 may be causally dependent on m2

 Is m4 causally dependent on m3 ?
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VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events
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VECTOR CLOCKS EXAMPLE - 3
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 TRUE/FALSE:

 The sending of message m3 is causally dependent on the 
sending of message m1.

 The sending of message m2 is causally dependent on the 
sending of message m1.
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VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.
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VECTOR CLOCKS EXAMPLE - 5
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 Questions from 2/22

 Assignment 3: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/27

 Questions from 2/22

 Assignment 3: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/27
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 Questions from 2/22

 Assignment 3: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/27

CH. 6.3: DISTRIBUTED

MUTUAL

EXCLUSION

L15.70
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 Coordinating access among distributed processes to a 

shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid
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TOKEN-BASED ALGORITHMS

71

72



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 27, 2024

Slides by Wes J. Lloyd L15.37

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated 

around ring
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TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated

▪ Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

▪What is the difference between token being lost and a 

node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

▪Dead nodes can be detected by adding a receipt message 

for when the token passes from node-to-node

▪When no receipt is received, node assumed dead

▪ Dead process can be “jumped” in the ring
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TOKEN-RING CHALLENGES
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Permission-based algorithms

 Processes must require permission from other processes 

before first acquiring access to the resource

▪ CONTRAST: Token-ring did not ask nodes for permission 

 Centralized algorithm

 Elect a single leader node to coordinate access to shared 

resource(s)

 Manage mutual exclusion on a distributed system similar 

to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS - 3

 When resource not available, coordinator can block the 

requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject

otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)
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CENTRALIZED MUTUAL EXCLUSION

P1 executes                                    P2 blocks               P1 finishes; P2 executes

Permission granted from coordinator    \/  No response from coordinator
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 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”

when resource is unavailable

▪ No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck

▪ Scalability: Performance does not scale

 Benefits

 Simplicity:

Easy to implement compared to distributed alternatives
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CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events

▪ Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:

▪ Name of resource

▪ Process number

▪ Current (logical) time

 Assume messages are sent reliably

▪ No messages are lost
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DISTRIBUTED ALGORITHM
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 When each node receives a request message they will:

1. Say OK ( if  the node doesn’t need the resource )

2. Make no reply, queue request (node is using the resource)

3. If node is also waiting to access the resource: perform a 

timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership 

list of the distributed system
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DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of conflict, lowest timestamp wins!

▪ Node 2 rejects its own request (1@) in favor of node 0 (8)
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DISTRIBUTED ALGORITHM - 3
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 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource, 

it does not respond

▪ Lack of response can be confused with failure

▪ Possible Solution: When node receives request for 

resource it is accessing, always send a reply either 

granting or denying permission (ACK)

▪ Enables requester to determine when nodes have died
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CHALLENGES WITH 

DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node 
must maintain full group membership

▪ Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement 
to grant access to a shared resource

▪ This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed 
when a simple majority of nodes grant permission

▪ Presumably any one node locking the resource prevents agreement

▪ If one node gets majority of acknowledges no other can

▪ Requires every node to know size of system (# of nodes)

 Distributed algorithm for mutual exclusion works best for:

▪ Small groups of processes

▪ When memberships rarely change
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CHALLENGES WITH 

DISTRIBUTED ALGORITHM - 2

81

82



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 27, 2024

Slides by Wes J. Lloyd L15.42

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator      …(N coordinators)

 Accessing resource requires majority vote: 

total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give 

permission to access a resource (because it is busy) it will 

inform the requester
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DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers 

quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted 

permission to the shared resource, and on recovery it errantly 

grants permission again

 The Hope: if coordinator crashes, upon recovery ,  the node 

granted access to the resource has already f inished before the 

restored coordinator grants access again .  .  .
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DECENTRALIZED ALGORITHM - 2
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 With 99.167% coordinator availability (30 sec downtime/hour) 

chance of violating correctness is so low it can be neglected in 

comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to 

access resource, which requires time
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DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

p=seconds per hour coordinator is offline

 Back-off Poll ing Approach for permission-denied :

 If permission to access a resource is denied via majority vote, 

process can poll to gain access again with a random delay 

(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource, 

majority vote can lead to low resource utilization

▪ No one can achieve majority vote to obtain access to the 

shared resource

▪ Mimics elections where with too many candidates, where no 

one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]
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DECENTRALIZED ALGORITHM - 4
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 Which algorithm offers the best scalability to support 

distributed mutual exclusion in a large distributed 

system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW

 Which algorithm(s) involve blocking when a resource is 

not available? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW - 2
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 Which algorithm(s) involve arriving at a consensus to 

determine whether a node should be granted access to a 

resource? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW - 3

 Which algorithm(s) have N points of failure, 

where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW - 4
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QUESTIONS
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