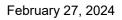
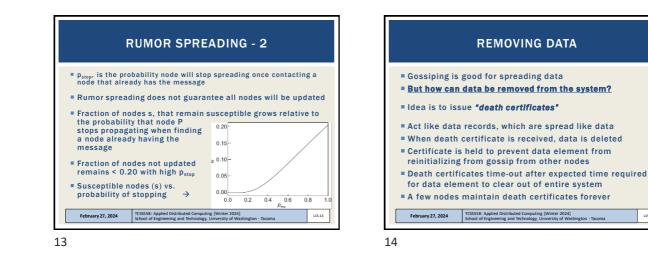

CSS TENURE TRACK FACULTY CANDIDATE **RESEARCH SEMINARS – EXTRA CREDIT** Week 9: Wednesday February 28 - 1:30pm - JOY 117 Thursday February 29 – 1:30pm - MLG 110 Friday March 1 - 1:30pm - MLG 301 • Week 10: Monday March 4 - 1:30pm - MLG 110
 Tuesday March 5 - 1:30pm - CP 324 Wednesday March 6 - 1:30pm - BHS 106
Thursday March 7 - 12:30pm - MLG 110 Earn up to <u>33 buffer points</u> added to the Final Exam score Earn 3 points for each seminar attended Buffer points replace missed points on the Final Exam Once the Final Exam score = 100%, additional points do not push the Final Exam score above 100% Buffer points will not impact the course curve for the Final Exam Any course curve will be applied before buffer points TCSS558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Washington - Tacoma February 27, 2024 L15.6

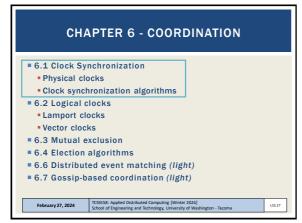
FEEDBACK FROM 2/22

SHORT-HAND-CODES FOR MEMBERSHIP TRACKING APPROACHES Include readme.txt or doc file with instructions in submission Must document membership tracking method >> please indicate which types to test << Description ID Static file membership tracking - file is not reread F FD Static file membership tracking DYNAMIC - file is periodically reread to refresh membership list т TCP membership tracking - servers are configured to refer to central membership server U. UDP membership tracking - automatically discovers nodes with no configuration TCSS558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Wasi February 27, 2024 L15.9

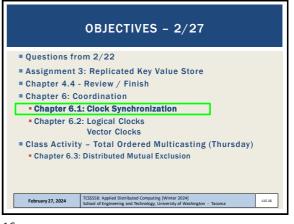
9

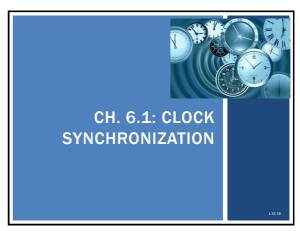


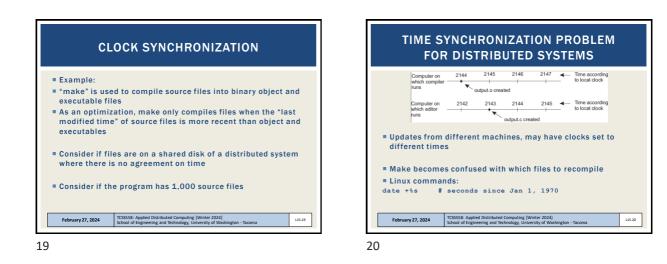

	ASSIGNMENT 3	
Sunday March :	10 th	
Goal: Replicate	ed Key Value Store	
Team signup to	be posted on Canvas under 'People'	
Build off of Ass	signment 2 GenericNode	
Focus on TCP c	lient/server w/ replication	
How to track m	embership for data replication?	
 Can implement for extra credit 	t multiple types of membership tracking	
	<pre>'store' command needs to output 1 key- ing ASCII text (no binary)</pre>	value
	ICSSS58: Applied Distributed Computing [Winter 2024] ichool of Engineering and Technology, University of Washington - Tacoma	L15.10

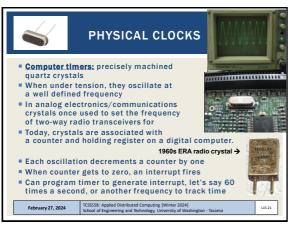


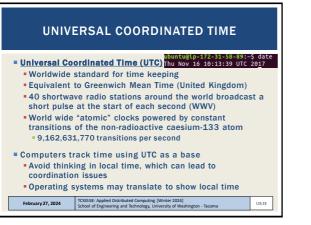
L15.14

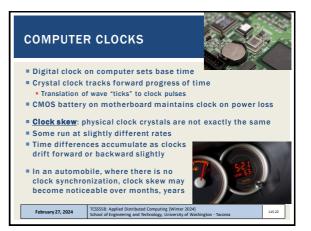


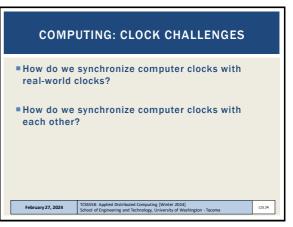



15




17



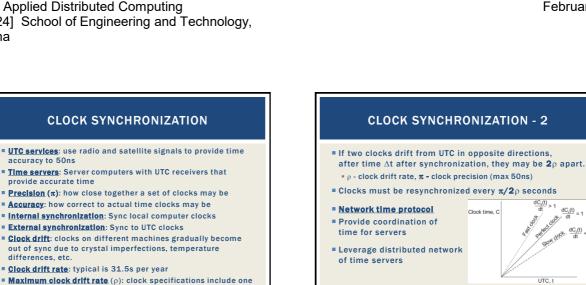


accuracy to 50ns

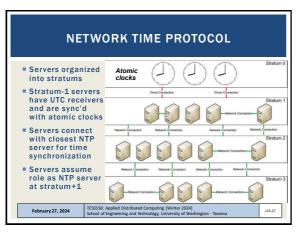
differences, etc.

February 27, 2024

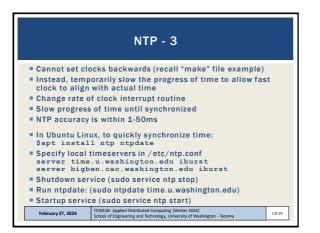
• Clock drift rate: typical is 31.5s per year


TCSS558: Applied Distributed School of Engineering and Tex

mputing [Winter 2024] ology, University of Wa

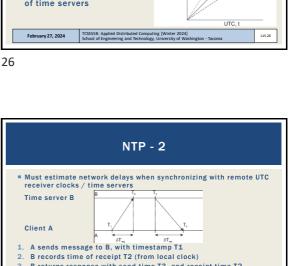

hington - Tac

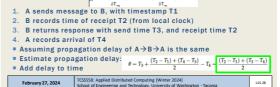
L15.25


provide accurate time

25

27




 $\frac{dC_{p}(t)}{dt} > 1$ $\frac{dC_{p}(t)}{dt} = 1$

 $\frac{dt^{w}}{dt} = \frac{dC_{s}(t)}{dt} < 1$

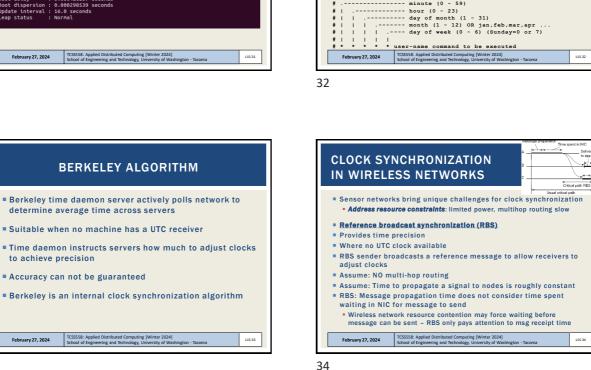
Perfect clock (

February 27, 2024

28

AWS EC2 INSTANCE -TIME SYNCHRONIZATION Amazon uses a variant of ntp called chrony "chron" is time in Greek By default "chrony" is preinstalled on standard AMIs for ec2 instances (i.e. Ubuntu 22.04, Amazon Linux, etc.) Installation instructions: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-

- time.html Once installed you can monitor clock drift with: watch -n .2 chronyc tracking Can publish clock drift using bash script as a CloudWatch metric:
- https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-
- clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-2/
- Upgrade script to Instance Metadata Service v2:
- https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-metadata-v2-how-it-works.html


February 27, 2024 TCSS558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Washington - Tacoma

-K/>

s)e

							ubuntu@)lp-172-31-4	¥7-121: ~
Every 0.2s: chr	onyc t	racking							
Reference ID Stratum		EA97B (169.254	.169.12	3)				
Ref time (UTC)	: Tue								
System time Last offset					of NTP 1	time			
Last offset RMS offset			21 seco 8 secon						
Frequency Residual freq	: +0.	000 ppr							
Skew Root delay									
Root dispersion									
Update interval									
Leap status	: Nor	mal							

31

33

- Each node p records time Tp,k when k is received
- Tp,k is read from node p's clock

to achieve precision

February 27, 2024

- Two nodes p and q can exchange delivery times to estimate mutual relative offset
- Then calculate relative average offset for each other:

 $Offset[p,q] = \frac{\sum_{k=1}^{M} (T_{p,k} - T_{q,k})}{2}$

TCSS558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Washington - Tacoma

Where M is the total number of reference messages sent To save battery life: nodes store offsets instead of frequently synchronizing clocks to save energy

35

February 27, 2024

LINUX CRON

Cron: background process to run scheduled tasks at specified times Supports running maintenance jobs, scripts at regular intervals . Can schedule script to run at specific time of day or interval

/etc/cron.weekly /etc/cron.monthly

Linux scheduling facility

Highest frequency: once per minute /etc/crontab file captures scheduled tasks By default, runs scripts in /etc/cron.hourly /etc/cron.daily

---- minute (0 - 59)

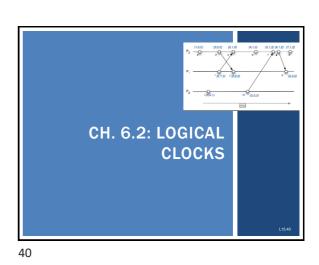
Example of job definition:

 $Offset[p,q](t) = \alpha t + \beta$

Models the clock drift so time offsets can be inferred

TCSS558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, University of Washington - Tacoma February 27, 2024

L15.35


L15.36

TCSS 558: Applied Distributed Computing [Winter 2024] School of Engineering and Technology, UW-Tacoma

L15.38

39

 Example 2

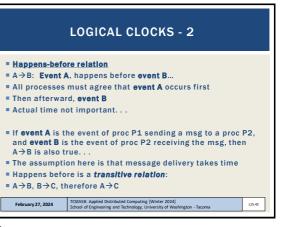
 Example 2

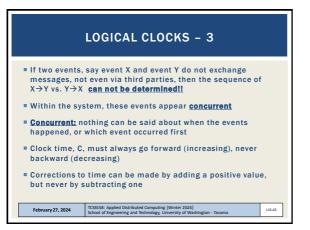
 In distributed systems, synchronizing to actual time may not be required...

 It may be sufficient for every node to simply agree on a current time (e.g. logical)

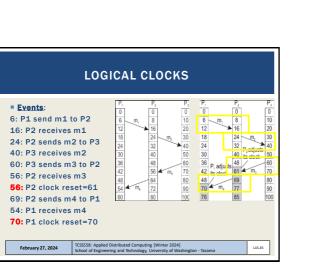
 It may be sufficient for every node to simply agree on a current time (e.g. logical)

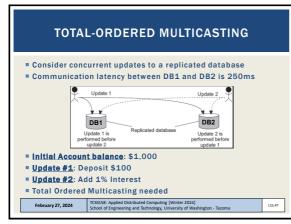
 It causal relationships in a distributed system

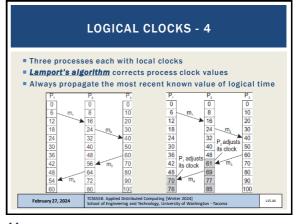

 It hink counters . . .

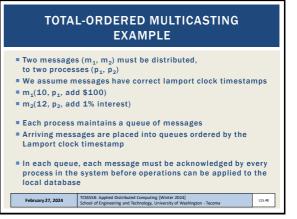

 Leslie Lamport [1978] seminal paper showed that absolute clock synchronization often is not required

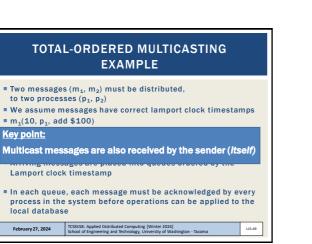
 Processes simply need to agree on the order in which events occur


 Itstate displayed Distributed Computing [Winter 2024]

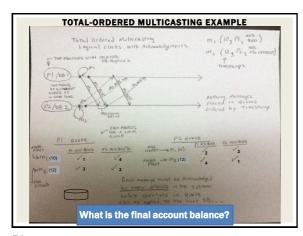

 Tebruary 27, 2021

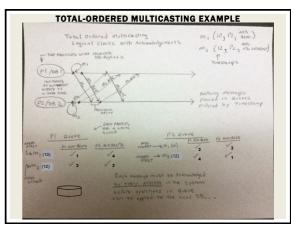


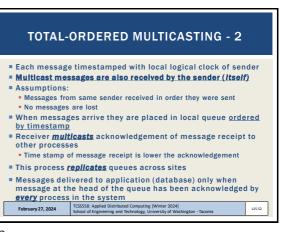


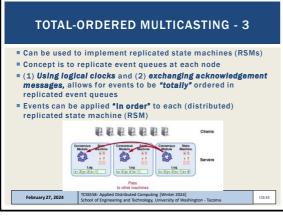


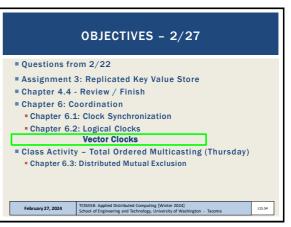
44


LAMPORT LOGICAL CLOCKS -IMPLEMENTATION Negative values not possible When a message is received, and the local clock is before the timestamp when then message was sent, the local clock is updated to message_sent_time + 1 1. Clock is incremented before an event: (sending-a-message, receiving-a-message, some-other-internal-event) Pi increments Ci: Ci \leftarrow Ci + 1 2. When Pi send msg m to Pj, m's timestamp is set to Ci When Pj receives msg m, Pj adjusts its local clock Cj ← max{Cj, timestamp(m)} 4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j> Both Lamport clocks are = 40 The winner has a higher alphanumeric Process ID J (winner) is greater than i, alphabetically February 27, 2024 L15.46 uting (\ ev. Univ School of Engin ing and Tec

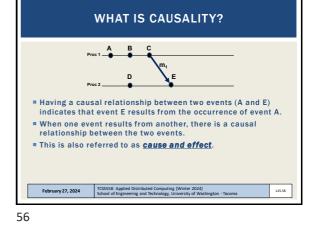






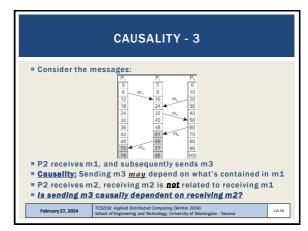


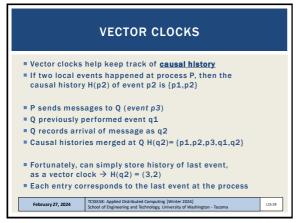
50


52

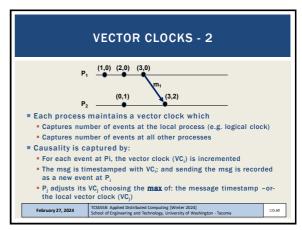
 CAUSALITY - 2

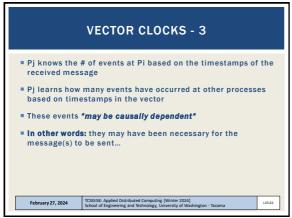
 • Disclaimer:


 • Without knowing actual information contained in messages, it is not possible to state with certainty that there is a causal relationship or perhaps a conflict


 • Lamport/Vector clocks can help us suggest possible causality

 • But we never know for sure...

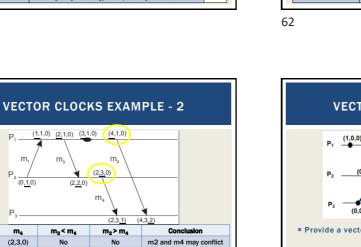

 Methods of Engineering and Relandage University of Washington - Tacoma


57

P.

Ρ,

 P_3

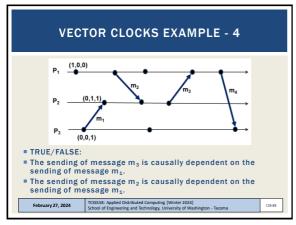

m4

(2.3.0)

Is m4 causally dependent on m3 ?

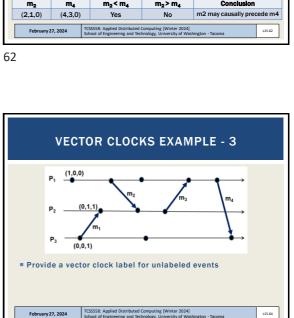
TCSS558: Applied Distributed School of Engineering and Tec

m



L15.63

63


 m_2 (4,1,0)

February 27, 2024

P3 can't determine if m4 may be causally dependent on m2

VECTOR CLOCKS EXAMPLE

(3,1,0) (4,1,0)

(2,1,1

m

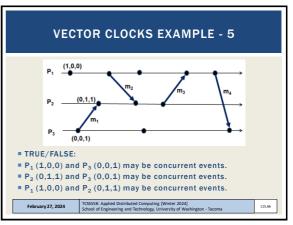
(4,2,0)

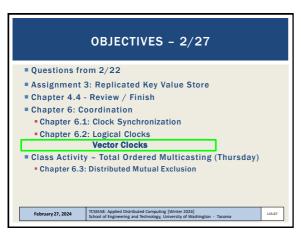
Local clock is underlined

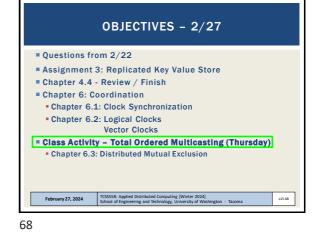
m

(0,1,0)

(1,1,0) (2,1,0)


m₂


CAUSALITY


(4<u>,3,</u>0)

m₄

(4,3,2)

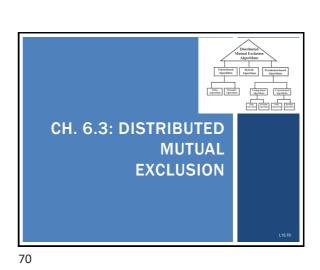
 OBJECTIVES - 2/27

 9 Questions from 2/22

 Assignment 3: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6.1 Cook Synchronization


 Chapter 6.1: Clock Synchronization

 Chapter 6.2: Logical Clocks Vector Clocks

 Class Activity - Total Ordered Multicasting (Thursday)

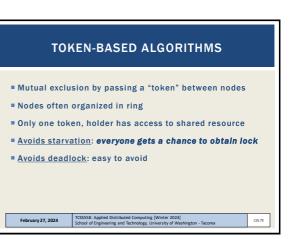
 Chapter 6.3: Distributed Mutual Exclusion

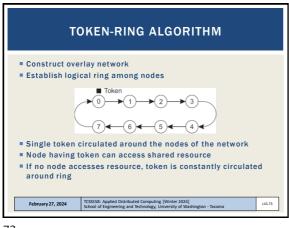
69

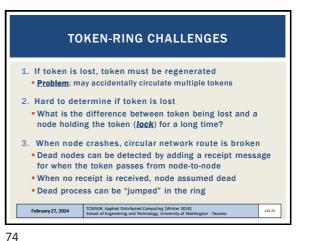
 DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS

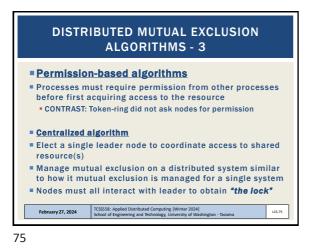
 • Coordinating access among distributed processes to a shared resource requires Distributed Mutual Exclusion

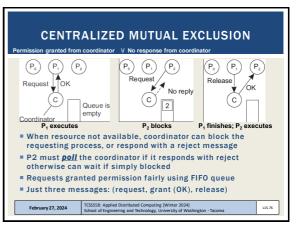
 • Algorithms in 6.3

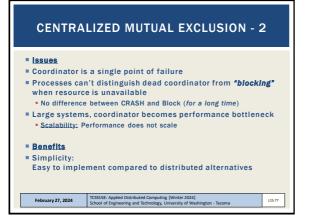

 • Token-ring algorithm

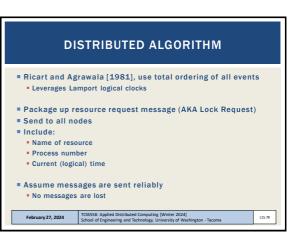

 • Permission-based algorithms:

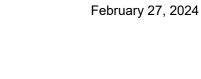

 • Centralized algorithm

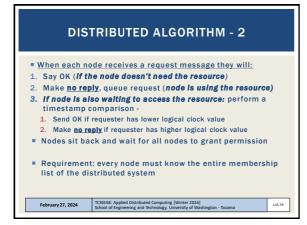

 • Distributed algorithm (Ricart and Agrawala)


 • Decentralized voting algorithm (Lin et al.)

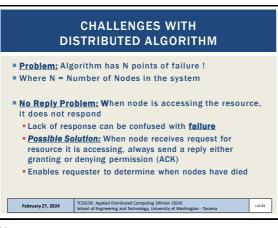


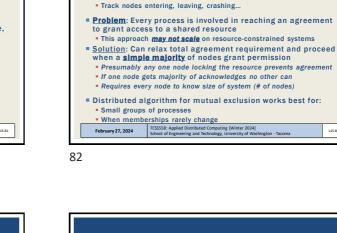




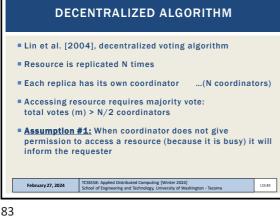


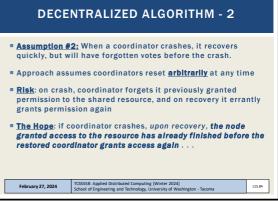





CHALLENGES WITH

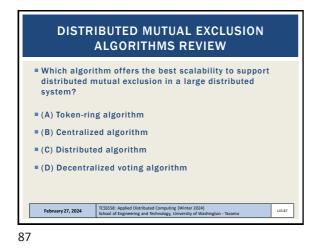
DISTRIBUTED ALGORITHM - 2 Problem: Multicast communication required -or- each node

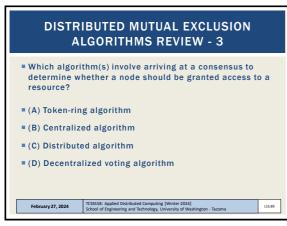

80

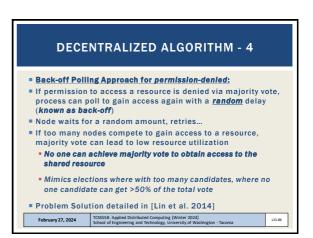


81

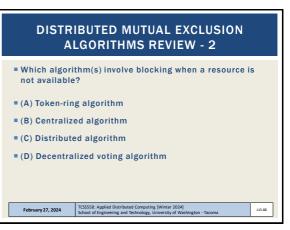
must maintain full group membership

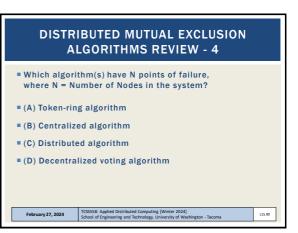


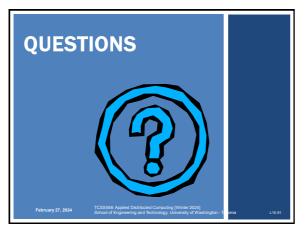



L15.82

		DE	CENTR	ALIZEI	D	AL	_G(ORITHM	- 3
c c = L	han omp .evei	ce o oaris rage	f violating on to othe s fact that	correctne r types of a new no	ss fa de	s <u>ls</u> ailur emu	e sto	(30 sec dow <u>ow</u> it can be btain a maj	neglected
a	N	ss re m	esource, w	Violation	re	s tii N	ne m	p	Violation
	8	5	3 sec/hour	$< 10^{-15}$		8	5	30 sec/hour	$< 10^{-10}$
	8	6	3 sec/hour	$< 10^{-18}$		8	6	30 sec/hour	$< 10^{-11}$
	16	9	3 sec/hour	$< 10^{-27}$		16	9	30 sec/hour	$< 10^{-18}$
	16	12	3 sec/hour	$< 10^{-36}$		16	12	30 sec/hour	$< 10^{-24}$
		17	3 sec/hour	$< 10^{-52}$	1	32	17	30 sec/hour	$< 10^{-35}$
	32				1		0.4	30 sec/hour	$< 10^{-49}$
	32 32	24	3 sec/hour	$< 10^{-73}$		32	24	30 sec/nour	< 10 *
	32 32	= nı		ource replic		s, m :	= req	uired "majori	







86

