
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.1

 Chapter 4 – Communication–III

 Chapter 6 - Coordination

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)
 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/20

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

OBJECTIVES – 2/22

1

2

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

ONLINE DAILY FEEDBACK SURVEY

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.3

 Please classify your perspective on material covered in today’s

class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.60 ( - previous 6.17)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.56 ( - previous 5.75)

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

MATERIAL / PACE

 When considering an Overlay Network - where we have no
information on the structure, we can consider the system as a
“Random Graph” to suppor t rationalization about the structure.

 For the “Random Graph” rationalization, would we check each node
for the unl ikely event that i t was assigned no neighbors and, i f so,
then assign i t a neighbor?

 NO. The Random Graphs here are not actual physical graphs. We
are using graph theory to rationalize about the possible structure of
the overlay network.

 I t is worth noting, for a physical graph, a node with no neighbors is
an orphan node, and is not a member of the network

 In a physical graph, each node should have at least one edge or
else it is orphaned (not connected)

 Is there a check to make sure that al l nodes are actually connected
via some path?

▪ Our Random Graphs are not physical graphs, but rationalization to apply
graph theory to compute probabilities about different properties

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.6

FEEDBACK FROM 2/20

5

6

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.4

 Does the number of edges in a network impact the probability of
message spread(p flood)?

 NO. It is the number of neighbors (n), not the number of edges that
influences the probability of message spread (p flood) .

 For a network with 10,000 nodes, with a 10% probability of having
an edge between every node, we calculated that there are nearly
5,000,000 edges that a message could be flooded on.

 With full message flooding, each node forwards the message m to
each neighbor except the one from which it received m, where the
node then tracks the messages it receives and forwards to not
repeat sending→ Full f looding requires ~10,000,000 messages

 The idea with probabilistic flooding is to set a threshold to limit
message spread. If we only flood on p flood=.01 (1%) of the 5 million
edges, then we only send 50,000 messages across 10,000 nodes
but if a node say ‘Q’ has 298 neighbors, then it is 95% likely that Q
will receive the message with p flood=.01 !! (50-fold reduction)

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

FEEDBACK - 2

 Does the number of edges in a network impact the probability of
message spread(p flood)?

 NO. It is the number of neighbors (n), not the number of edges that
influences the probability of message spread (p flood) .

 For a network with 10,000 nodes, with a 10% probability of having
an edge between every node, we calculated that there are nearly
5,000,000 edges that a message could be flooded on.

 With full message flooding, each node forwards the message m to
each neighbor except the one from which it received m, where the
node then tracks the messages it receives and forwards to not
repeat sending, full f looding requires ~10,000,000 messages

 The idea with probabilistic flooding is to set a threshold to limit
message spread. If we only flood on p flood=.01 (1%) of the 5 million
edges, then we only send 50,000 messages across 10,000 nodes
but if a node say ‘Q’ has 298 neighbors, then it is 95% likely that Q
will receive the message with p flood=.01 !! (50-fold reduction)

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

FEEDBACK - 2

What does it mean to have pflood =.01? (1%)

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904 (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)

if n=298, p=(1-.01)298=.05 (unlikely)

7

8

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.5

 In Multi -Cast Tree, is it the case that cost of sending message
over overlay network is always greater than cost of sending
message over physical network?

 The cost will always be equal to or higher than when using the
physical network

 If so what is the purpose of the overlay network?

 The purpose is for Application level multi -casting (broadcast)

▪ Nodes organize into an overlay network

▪ KEY→ Network routers not involved in group membership

▪ KEY → Group membership is managed at the application level (A2)

 The disadvantage:

▪ Application-level routing likely less efficient than network -level

▪ Necessary tradeoff until we have better multicasting protocols
defined at lower layers in the OSI model

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

FEEDBACK - 3

 What is an example of a real istic message where i t would be okay
to send to 95% of nodes in a network (probabilistic f looding).

 p flood=.95 is actually very high!!

 Nodes will need very few neighbors to ensure message delivery
(saturation)

 PROBLEM:

▪ pflood=.95 is very close to pflood=1.00

▪ For a network with 5,000,000 edges, pflood=1.00 is 10 million msgs

▪ pflood=.95 will be about 4.75 million msgs, which is about half the
number of total messages…

 Thinking about i t I guess i t could be a message l ike "f lush to disk"
or "check in with hear tbeat server" or something l ike that. I just
haven't heard of something l ike this used before.

▪ There are a variety of broadcast messages possible used to notify nodes
about various events and state changes across the system

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

FEEDBACK - 4

9

10

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.6

 Week 8 :

▪ Thursday February 22 – 12:30pm –MLG 110

▪ Friday February 23 – 12:30pm –MLG 301

 Week 9 :

▪ Monday February 26 – 12:30pm – MLG 110

▪ Wednesday February 28 – 1:30pm – JOY 117

▪ Thursday February 29 – 1:30pm – MLG 110

▪ Friday March 1 – 1:30pm – MLG 301

 Week 10:

▪ Monday March 4 – 1:30pm - MLG 110

▪ Tuesday March 5 – 1:30pm - CP 324

▪ Thursday March 7 – 12:30pm – MLG 110

 Earn up to 30 buf fer points added to the Final Exam score

 Earn 3 points for each seminar attended

 Buffer points replace missed points on the Final Exam

 Once the Final Exam score = 100%, addit ional points do not push the Final
Exam score above 100%

 Buffer points wil l not impact the course cur ve for the Final Exam

 Any course cur ve wil l be applied before buf fer points

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

CSS TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT

 Find Teammates: signup posted on Canvas under ‘People’

 GenericNode.tar.gz includes Dockerfile examples

 GenericNode.tar.gz assumes Java 11

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of

a client or server for a Key/Value Store

 Recommended in Java 11 LTS

 Client node program interacts with server node to put, get,

delete, or list items in a key/value store

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

ASSIGNMENT 2 → DUE FEB 24

11

12

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.7

 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure

to install and select JDK 11

 On left-hand Project menu, right-click on ‘GenericNode ’ project

 Select Properties

 Under Build | Compile, be sure Java Platform is JDK 11

 Under Sources, be sure Source/Binary Format is 11

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

USING JAVA 11 IN NETBEANS

 Questions from 2/20

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

OBJECTIVES – 2/22

13

14

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.8

 Sunday March 10 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Build off of Assignment 2 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

 REQUIREMENT: ‘store’ command needs to output 1 key -value

pair per line using ASCII text (no binary)

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

ASSIGNMENT 2

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to

refer to central membership server

U UDP membership tracking - automatically discovers

nodes with no configuration

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

15

16

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.9

 Questions from 2/20

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

OBJECTIVES – 2/22

Apache ActiveMQ

CH. 4.4: MULTICAST

COMMUNICATION

L14.18

17

18

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.10

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

FLOOD-BASED MULTICASTING

19

20

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.11

 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 If only leaf nodes are to receive the multicast message, many
intermediate nodes are involved in storing and forwarding the
message not meant for them

 Solution: construct an overlay network for each multicast
group

▪ Sending a message to the group, becomes the same as broadcasting
to the multicast group (group of nodes that listen and receive traffic
for a shared IP address)

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

FLOOD-BASED MULTICASTING

 Used when no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probability distribution:

1. Given a probability Pedge that two nodes are joined

2. Size of a random overlay network is: ½ * Pedge * N * (N-1) edges

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability

Assumptions may help then to
reason or rationalize about the
network…

Figure estimates
size of a random
overlay network
in nodes & edges
based on Pedge

21

22

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.12

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

PROBABILISTIC FLOODING

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Washington state in winter?

23

24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.13

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

 ½ * (.1) * (10000) * (9999)

Washington state in winter?

25

26

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.14

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

 ½ * (.1) * (10000) * (9999)
 4,999,500 edges

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

With lower pflood messages may not reach all nodes

If there are 10,000 nodes and ~5 million edges, how
many messages is full flooding?
 > every node sends to all neighbors across all edges

 > will be ~10,000,000 messages

Washington state in winter?

27

28

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.15

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors
Probability that all neighbors don’t forward message

to Q is p=(1-pflood)n

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors

Probability that no neighbors of Q forward the message to Q:

p=(1-pflood)n


 probability of Q not getting the message

10 nodes: if n=10, p=(1-.01)10=.904 (small network, few edges, likely Q doesn’t get msg)

100 nodes: if n=100, p=(1-.01)100=.366 (less likely Q doesn’t get msg)
298 nodes: if n=298, p=(1-.01)298=.05 (Q probably gets msg)

Washington state in winter?

29

30

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.16

 For deterministic topologies (such as hypercube), design of

efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a

deterministic topology

 Schlosser et al [2002] – offer simple and efficient

broadcasting scheme that relies on keeping track of neighbors

per dimension

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

MESSAGE FLOODING

 Hypercube Broadcast

 N(1001) starts the network broadcast

 N(1001) neighbors {0001,1000,1011,1101}

 N(1001) Sends message to all neighbors

 >>Edge Labels (which bit is changed?, 1 st, 2nd, 3 rd, 4 th…)

 Edge to 0001 – labeled 1 – change the 1st bit

 Edge to 1000 – labeled 4 – change the 4 th bit

 Edge to 1011 – labeled 3 – change the 3 rd bit

 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension

 Node 1101 receives message on edge labeled 2

 Broadcast msg is only forwarded on higher valued edges (>2)

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

MESSAGE

FLOODING - 2

31

32

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.17

 Hypercube: forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111}

 Node (1101) - incoming broadcast edge = 2

 Label Edges:

 Edge to 0101 – labeled 1 – change the 1st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions of hypercube

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

MESSAGE FLOODING - 3

 When structured peer-to-peer topologies are not available

 Gossip based approaches support multicast communication
over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

GOSSIP BASED DATA DISSEMINATION

33

34

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.18

 Epidemic algorithms: algorithms for large-scale distributed

systems that spread information

 Goal: “infect” all nodes with new information as fast as

possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the

network to propagate the network

Complete set of nodes is known to each member

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

EPIDEMIC PROTOCOLS

35

36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.19

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

 Akin to random walk

 Types of message exchange:

 PUSH: P only pushes its own updates to Q

 PULL: P only pulls in new updates from Q

 T WO-WAY: P and Q send updates to each other
(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull: better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better still

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

ANTI ENTROPY DISSEMINATION MODEL

FOR GOSSIPING

P Q

P Q

P Q

 Round: span of time during which every node takes initiative

to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all

nodes requires O(log(N)), where N=number of nodes

 Let p i denote probability that

node P has not received

msg m after the i th round.

 For pull, push, and push-pull

based approaches:

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

ANTI ENTROPY EFFECTIVENESS

10,000 nodes →

37

38

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.20

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another

node

 Node P may loose interest in spreading the rumor with

probability = pstop, let’s say 20% . . . (or 0.20)

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

RUMOR SPREADING

 pstop, is the probability node will stop spreading once contacting a
node that already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative
to the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping →

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

RUMOR SPREADING - 2

39

40

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.21

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required

for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds

the death certificate for Item X

 Node P will recirculate the death certificate across the

network for Item X

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

DEATH CERTIFICATE EXAMPLE

41

42

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.22

WE WILL RETURN AT

4:55 PM

 Questions from 2/20

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

OBJECTIVES – 2/22

43

44

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.23

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

CHAPTER 6 - COORDINATION

 How can processes synchronize and coordinate data?

 Process synchronization

▪ Coordinate cooperation to grant individual processes temporary

access to shared resources (e.g. a file)

 Data synchronization

▪ Ensure two sets of data are the same (data replication)

 Coordination

▪ Goal is to manage interactions and dependencies between activities

in the distributed system

▪ Encapsulates synchronization

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

CHAPTER 6 - COORDINATION

45

46

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.24

 Synchronization challenges begin with time:

▪ How can we synchronize computers, so they all agree on

the time?

▪ How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it

is often sufficient to only agree on a relative ordering of

events

▪ E.g. not actual time

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

COORDINATION - 2

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved
with distributed mutual exclusion algorithms

 Also in chapter 6:

▪Matching subscriptions to publications in publish-
subscribe systems

▪ Gossip-based coordination problems:

▪ Aggregation

▪ Peer sampling

▪ Overlay construction

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

COORDINATION - 3

47

48

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.25

 Questions from 2/20

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

OBJECTIVES – 2/22

CH. 6.1: CLOCK

SYNCHRONIZATION

L14.50

49

50

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.26

 Example:

 “make” is used to compile source files into binary object and

executable files

 As an optimization, make only compiles files when the “last

modified time” of source files is more recent than object and

executables

 Consider if files are on a shared disk of a distributed system

where there is no agreement on time

 Consider if the program has 1,000 source files

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

CLOCK SYNCHRONIZATION

 Updates from different machines, may have clocks set to

dif ferent times

 Make becomes confused with which files to recompile

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

TIME SYNCHRONIZATION PROBLEM

FOR DISTRIBUTED SYSTEMS

51

52

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.27

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

PHYSICAL CLOCKS

 Computer timers: precisely machined
quartz crystals

 When under tension, they oscillate at
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for

 Today, crystals are associated with
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one

 When counter gets to zero, an interrupt fires

 Can program timer to generate interrupt, let’s say 60
times a second, or another frequency to track time

1960s ERA radio crystal →

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time

▪ Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly dif ferent rates

 Time differences accumulate as clocks

drift forward or backward slightly

 In an automobile, where there is no

clock synchronization, clock skew may

become noticeable over months, years

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

COMPUTER CLOCKS

53

54

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.28

 Universal Coordinated Time (UTC)

▪Worldwide standard for time keeping

▪ Equivalent to Greenwich Mean Time (United Kingdom)

▪ 40 shortwave radio stations around the world broadcast a
short pulse at the start of each second (WWV)

▪World wide “atomic” clocks powered by constant
transitions of the non-radioactive caesium-133 atom

▪ 9,162,631,770 transitions per second

 Computers track time using UTC as a base

▪ Avoid thinking in local time, which can lead to
coordination issues

▪ Operating systems may translate to show local time

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

UNIVERSAL COORDINATED TIME

How do we synchronize computer clocks with

real-world clocks?

How do we synchronize computer clocks with

each other?

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

COMPUTING: CLOCK CHALLENGES

55

56

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.29

 UTC services: use radio and satellite signals to provide time

accuracy to 50ns

 Time servers: Server computers with UTC receivers that

provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock drif t : clocks on dif ferent machines gradually become

out of sync due to crystal imperfections, temperature

differences, etc.

 Clock drif t rate: typical is 31.5s per year

 Maximum clock drif t rate (): clock specifications include one

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

CLOCK SYNCHRONIZATION

 If two clocks drift from UTC in opposite directions,

after time t after synchronization, they may be 2 apart.

▪  - clock drift rate,  - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of

time for servers

 Leverage distributed network

of time servers

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

CLOCK SYNCHRONIZATION - 2

57

58

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.30

 Servers organized
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d
with atomic clocks

 Servers connect
with closest NTP
server for time
synchronization

 Servers assume
role as NTP server
at stratum+1

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

NETWORK TIME PROTOCOL

Atomic
clocks

 Must estimate network delays when synchronizing with remote UTC
receiver clocks / time servers

Time server B

Client A

1. A sends message to B, with timestamp T1

2. B records time of receipt T2 (from local clock)

3. B returns response with send time T3, and receipt time T2

4. A records arrival of T4

 Assuming propagation delay of A→B→A is the same

 Estimate propagation delay:

 Add delay to time

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

NTP - 2

59

60

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.31

 Cannot set clocks backwards (recall “make” file example)

 Instead, temporarily slow the progress of time to allow fast
clock to align with actual time

 Change rate of clock interrupt routine

 Slow progress of time until synchronized

 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst

server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)

 Run ntpdate: (sudo ntpdate time.u.washington.edu)

 Startup service (sudo service ntp start)

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

NTP - 3

 Berkeley time daemon server actively polls network to

determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks

to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

BERKELEY ALGORITHM

61

62

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.32

 Sensor networks bring unique challenges for clock synchronization

▪ Address resource constraints : limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides precision of time, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to

adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider time spent waiting in

NIC for message to send

▪ Wireless network resource contention may force wait before message

even can be sent

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

CLOCK SYNCHRONIZATION

IN WIRELESS NETWORKS

 Node broadcasts reference message m

 Each node p records time Tp,m when m is received

 Tp,m is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate

mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently

synchronizing clocks to save energy

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.64

REFERENCE BROADCAST

SYNCHRONIZATION (RBS)

63

64

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.33

 Cloud skew: over time clocks drif t apart

 Averages become less precise

 Elson et al. propose using standard linear regression to

predict offsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear

regression to continuously refine a formula with coefficients

to predict time offsets:

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.65

REFERENCE BROADCAST

SYNCHRONIZATION (RBS) - 2

QUESTIONS

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.66

65

66

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/22
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 2/20
	Slide 7: Feedback - 2
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: Feedback - 4
	Slide 11: CSS Tenure track faculty candidate research seminars – EXTRA CREDIT
	Slide 12: Assignment 2  due feb 24
	Slide 13: Using java 11 in netbeans
	Slide 14: OBJECTIVES – 2/22
	Slide 15: Assignment 2
	Slide 16: Short-hand-codes for Membership Tracking Approaches
	Slide 17: OBJECTIVES – 2/22
	Slide 18: Ch. 4.4: multicast communication
	Slide 19: Chapter 4
	Slide 20: Flood-based multicasting
	Slide 21: Flood-based multicasting
	Slide 22: Random graphs
	Slide 23: Probabilistic flooding
	Slide 24: Probabilistic flooding
	Slide 25: Probabilistic flooding
	Slide 26: Probabilistic flooding
	Slide 27: Probabilistic flooding
	Slide 28: Probabilistic flooding
	Slide 29: Probabilistic flooding
	Slide 30: Probabilistic flooding
	Slide 31: Message flooding
	Slide 32: Message flooding - 2
	Slide 33: Message flooding - 3
	Slide 34: Gossip based data dissemination
	Slide 35: Information dissemination
	Slide 36: Epidemic protocols
	Slide 37: Anti entropy dissemination model for gossiping
	Slide 38: Anti entropy effectiveness
	Slide 39: Rumor spreading
	Slide 40: Rumor spreading - 2
	Slide 41: Removing data
	Slide 42: Death certificate example
	Slide 43: We will return at 4:55 pm
	Slide 44: OBJECTIVES – 2/22
	Slide 45: Chapter 6 - Coordination
	Slide 46: Chapter 6 - coordination
	Slide 47: Coordination - 2
	Slide 48: Coordination - 3
	Slide 49: OBJECTIVES – 2/22
	Slide 50: Ch. 6.1: clock synchronization
	Slide 51: Clock synchronization
	Slide 52: Time synchronization problem for distributed systems
	Slide 53: Physical clocks
	Slide 54: Computer clocks
	Slide 55: Universal coordinated time
	Slide 56: Computing: clock challenges
	Slide 57: Clock synchronization
	Slide 58: Clock synchronization - 2
	Slide 59: Network time protocol
	Slide 60: NTP - 2
	Slide 61: Ntp - 3
	Slide 62: Berkeley algorithm
	Slide 63: Clock synchronization in wireless networks
	Slide 64: Reference broadcast synchronization (RBS)
	Slide 65: Reference broadcast synchronization (RBS) - 2
	Slide 66: Questions

