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OBJECTIVES – 2/22

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.60 ( - previous 6.17)  

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.56 ( - previous 5.75)
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MATERIAL / PACE

 When considering an Overlay Network - where we have no  
information on the s tructure,  we can consider the system as  a  
“Random Graph” to  suppor t rationalization about the s tructure.

 For  the “Random Graph” rationalization, would we check each node 
for  the unlikely event that i t  was assigned no  neighbors and, i f  so ,  
then assign i t  a  neighbor? 

 NO. The Random Graphs here are not  actual physical graphs. We 
are using graph theory to rat ionalize about the possible structure of 
the overlay network.

 It  is worth not ing, for a physical graph, a node with no neighbors is
an orphan node, and is not  a member of the network

 In a physical graph, each node should have at least one edge or
else it is orphaned (not  connected)

 Is  there a  check to  make sure that a l l  nodes are ac tually connected
via  some path?

▪ Our Random Graphs are not physical graphs, but rationalization to apply 
graph theory to compute probabilities about different properties
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FEEDBACK FROM 2/20
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 Does the number o f  edges in  a  network impact the probability  o f  
message spread(p flood)?

 NO. It  is the number of neighbors (n),  not  the number of edges that  
influences the probabil ity of message spread ( p flood) .

 For a network with 10,000 nodes, with a 10% probabil ity of having 
an edge between every node, we calculated that  there are nearly 
5,000,000 edges that  a message could be flooded on.

 With full  message flooding, each node forwards the message m to 
each neighbor except the one from which it  received m, where the 
node then tracks the messages it  receives and forwards to not  
repeat sending→ Full  f looding requires ~10,000,000 messages 

 The idea with probabil ist ic flooding is to set a threshold to limit
message spread. If we only flood on p flood=.01 (1%) of the 5 mill ion 
edges, then we only send 50,000 messages across 10,000 nodes 
but if a node say ‘Q’  has 298 neighbors,  then it  is 95% likely that  Q 
will  receive the message with p flood=.01  !! (50-fold reduct ion)
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FEEDBACK - 2

 Does the number of edges in a network impact the probabil ity of 
message spread(p flood)?

 NO. It  is the number of neighbors (n),  not  the number of edges that  
influences the probabil ity of message spread ( p flood) .

 For a network with 10,000 nodes, with a 10% probabil ity of having 
an edge between every node, we calculated that  there are nearly 
5,000,000 edges that  a message could be flooded on.

 With full  message flooding, each node forwards the message m to 
each neighbor except the one from which it  received m, where the 
node then tracks the messages it  receives and forwards to not  
repeat sending, full  f looding requires ~10,000,000 messages 

 The idea with probabil ist ic flooding is to set a threshold to limit
message spread. If we only flood on p flood=.01 (1%) of the 5 mill ion 
edges, then we only send 50,000 messages across 10,000 nodes 
but if a node say ‘Q’  has 298 neighbors,  then it  is 95% likely that  Q 
will  receive the message with p flood=.01  !! (50-fold reduct ion)
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FEEDBACK - 2

What does it mean to have pflood =.01? (1%)

If a node Q has n neighbors, the probability

that all neighbors don’t forward the message
to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904  (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)

if n=298, p=(1-.01)298=.05 (unlikely)   

 In  Multi-Cast Tree, is  i t  the case that cost of  sending message 
over overlay network is  a lways greater than cost of  sending 
message over physical network? 

 The cost will always be equal to or higher than when using the 
physical network

 I f  so what is  the purpose of  the overlay network?

 The purpose is for Application level multi -casting (broadcast)

▪ Nodes organize into an overlay network

▪ KEY→ Network routers not involved in group membership

▪ KEY → Group membership is managed at the application level (A2)

 The disadvantage:

▪ Application-level routing likely less efficient than network-level

▪ Necessary tradeoff until we have better multicasting protocols 
defined at lower layers in the OSI model
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FEEDBACK - 3

 What is  an example o f  a  realistic message where i t  would be okay 
to  send to  95% of  nodes in  a  network (probabilistic  f looding).

 p flood=.95 is actually ve ry high!!

 Nodes wil l need very few neighbors to ensure message delivery 
(saturat ion)

 PROBLEM: 

▪ pflood=.95 is very close to pflood=1.00

▪ For a network with 5,000,000 edges, pflood=.100 is 10 million msgs

▪ pflood=.95 will be about 4.75 million msgs, which is about half the 
number of total messages…  

 Thinking about i t  I  guess i t  could be a message l ike " f lush to  d isk" 
or  "check in  wi th hear tbeat server" o r  something l ike that.  I  just 
haven't heard o f  something l ike th is used before.

▪ There are a variety of broadcast messages possible used to notify nodes 
about various events and state changes across the system

February 22, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

FEEDBACK - 4

 We ek 8 :

▪ Thursday February 22 – 12:30pm –MLG 110

▪ Friday February 23 – 12:30pm –MLG 301

 We ek 9 :

▪ Monday February 26 – 12:30pm – MLG 110

▪ Wednesday February 28 – 1:30pm – JOY 117

▪ Thursday February 29 – 1:30pm – MLG 110

▪ Friday March 1 – 1:30pm – MLG 301

 We ek 10 :

▪ Monday March 4 – 1:30pm - MLG 110

▪ Tuesday March 5 – 1:30pm - CP 324

▪ Thursday March 7 – 12:30pm – MLG 110

 Earn  up to 30 buf fer  points added to the Fina l  Exam score

 Earn  3 points for  each  seminar  a ttended

 Buf fer  points replace missed points on  the Fina l  Exam

 Once the Fina l  Exam score = 100%, addit iona l  points do not push  the Fina l  
Exam score above 100%

 Buf fer  points wi l l  not  impact the course cur ve for  the Fina l  Exam

 Any course cur ve wil l  be appl ied before buf fer  points
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CSS TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT

 Find Teammates: signup posted on Canvas under ‘People’

 GenericNode.tar.gz includes Dockerfile examples

 GenericNode.tar.gz assumes Java 11

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of 

a client or server for a Key/Value Store

 Recommended in Java 11 LTS

 Client node program interacts with server node to put, get, 

delete, or list items in a key/value store
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ASSIGNMENT 2 → DUE FEB 24
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 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure

to install and select JDK 11

 On left-hand Project menu, r ight-click on ‘GenericNode’  project

 Select Properties

 Under Build | Compile, be sure Java Platform is JDK 11

 Under Sources, be sure Source/Binary Format is 11 
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USING JAVA 11 IN NETBEANS

 Questions from 2/20

 Assignment 3:  Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization
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OBJECTIVES – 2/22

 Sunday March 10 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Build off of Assignment 2 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking 

for extra credit

 REQUIREMENT: ‘store’ command needs to output 1 key -value 

pair per line using ASCII text (no binary)
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ASSIGNMENT 2

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method 

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is 

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to 

refer to central membership server

U UDP membership tracking - automatically discovers 

nodes with no configuration
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SHORT-HAND-CODES FOR MEMBERSHIP 

TRACKING APPROACHES

 Questions from 2/20

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization
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OBJECTIVES – 2/22

Apache Act iveMQ

CH. 4.4: MULTICAST

COMMUNICATION

L14.18
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15 16
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 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination
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CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”

 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?
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FLOOD-BASED MULTICASTING

 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for 
which the message is not intended

 If only leaf nodes are to receive the multicast message, many 
intermediate nodes are involved in storing and forwarding the 
message not meant for them

 Solution: construct an overlay network for each multicast 
group

▪ Sending a message to the group, becomes the same as broadcasting 
to the multicast group (group of nodes that listen and receive traffic 
for a shared IP address)

 Flooding: each node simply forwards a message to each of its 
neighbors, except to the message originator
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FLOOD-BASED MULTICASTING

 Used when no information on the structure of the over lay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probabil ity distr ibut ion:

1. Given a probabil ity Pedge that  two nodes are joined

2. Size of a random overlay network is:  ½ * Pedge * N * (N-1) edges
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RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability 

Assumptions may help then to 
reason or rationalize about the
network…

Figure estimates
size of a random
overlay network
in nodes & edges
based on Pedge

 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a 

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

Washington state in winter?
 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a 

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

    

Washington state in winter?

19 20
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 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a 

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

    

    

Washington state in winter?
 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a 

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
    ½ * (.1) * (10000) * (9999)

    

Washington state in winter?

 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a 

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
    ½ * (.1) * (10000) * (9999)

    4,999,500 edges

Washington state in winter?
 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a 

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

With lower pflood messages may not reach all nodes

If there are 10,000 nodes and ~5 million edges, how
many messages is full flooding?
   > every node sends to all neighbors across all edges
   > will be ~10,000,000 messages

Washington state in winter?

 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a 

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors

Probability that all neighbors don’t forward message
to Q is p=(1-pflood)n

Washington state in winter?

 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a 

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors
Probability that no neighbors of Q forward the message to Q:

p=(1-pflood)n   


 probability of Q not getting the message

10 nodes: if n=10, p=(1-.01)10=.904  (small network, few edges, likely Q doesn’t get msg)
100 nodes: if n=100, p=(1-.01)100=.366 (less likely Q doesn’t get msg)
298 nodes: if n=298, p=(1-.01)298=.05 (Q probably gets msg)   

Washington state in winter?
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 For deterministic topologies (such as hypercube), design of 

ef ficient flooding scheme is much simpler

 If  the overlay network is structured, this gives us a 

deterministic topology

 Schlosser et al [2002] – offer simple and efficient 

broadcasting scheme that relies on keeping track of neighbors 

per dimension
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MESSAGE FLOODING

 Hypercube Broadcast

 N(1001) star ts the network broadcast 

 N(1001) neighbors {0001,1000,1011,1101}

 N(1001) Sends message to all neighbors

 >>Edge Labels (which bit  is  changed?, 1 st,  2nd,  3 rd,  4 th…)

 Edge to 0001 – labeled 1 – change the 1st bit

 Edge to 1000 – labeled 4 – change the 4 th bit

 Edge to 1011 – labeled 3 – change the 3 rd bit

 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension

 Node 1101 receives message on edge labeled 2

 Broadcast msg is only forwarded on higher valued edges (>2)
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MESSAGE 

FLOODING - 2

 Hypercube: forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111} 

 Node (1101) - incoming broadcast edge = 2

 Label Edges:

 Edge to 0101 – labeled 1 – change the 1st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher d imension edges

 Broadcast requires just: N -1 messages, where nodes N=2n,  
n=dimensions of hypercube
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MESSAGE FLOODING - 3

 When structured peer -to-peer topologies are not available

 Gossip based approaches support multicast communication 
over unstructured peer -to-peer networks

 General approach is to 
leverage how gossip 
spreads across a group

 This is also called 
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node
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GOSSIP BASED DATA DISSEMINATION

 Epidemic algorithms: algorithms for large-scale distributed 

systems that spread information

 Goal: “infect” all nodes with new information as fast as 

possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data
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INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the 

network to propagate the network

Complete set of nodes is known to each member
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EPIDEMIC PROTOCOLS

31 32

33 34

35 36



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 22, 2024

Slides by Wes J. Lloyd L14.7

 Anti-entropy: Propagation model where node P picks node Q at 
random and exchanges message updates

 Akin to random walk

 Types of  message exchange:

 PUSH: P only pushes its own updates to Q

 PULL: P only pulls in new updates from Q

 T WO-WAY: P and Q send updates to each other 
( i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden 
susceptible nodes

 Pull: better because susceptible nodes can pull updates from 
infected nodes

 Push-pull is better still
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ANTI ENTROPY DISSEMINATION MODEL 

FOR GOSSIPING

P Q

P Q

P Q

 Round: span of time during which every node takes initiative 

to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all 

nodes requires O(log(N)), where N=number of nodes

 Let p i denote probability that

node P has not received 

msg m after the i th round.

 For pull, push, and push-pull 

based approaches:
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ANTI ENTROPY EFFECTIVENESS

10,000 nodes →

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another 

node

 Node P may loose interest in spreading the rumor with 

probability = pstop, let’s say 20% . . .  (or 0.20)
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RUMOR SPREADING

 pstop,  is the probabil ity node wil l  stop spreading once contact ing a 
node that  already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative 
to the probability that node P 
stops propagating when finding 
a node already having the 
message

 Fraction of nodes not updated 
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping      →
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RUMOR SPREADING - 2

 Gossiping is good for spreading data

 But how can data be removed from the system? 

 Idea is to issue “death certif icates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from 

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required 

for data element to clear out of entire system

 A few nodes maintain death certificates forever
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REMOVING DATA

 For example:

 Node P keeps death certificates forever

 I tem X is removed from the system

 Node P receives an update request for I tem X, but also holds 

the death certificate for Item X

 Node P will recirculate the death certificate across the 

network for Item X
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DEATH CERTIFICATE EXAMPLE
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WE WILL RETURN AT 

4:55 PM

 Questions from 2/20

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6:  Coordination

▪ Chapter 6.1: Clock Synchronization
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OBJECTIVES – 2/22

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)
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CHAPTER 6 - COORDINATION

 How can processes synchronize and coordinate data?

 Process synchronization

▪ Coordinate cooperation to grant individual processes temporary 

access to shared resources (e.g. a file)

 Data synchronization

▪ Ensure two sets of data are the same (data replication)

 Coordination

▪ Goal is to manage interactions and dependencies between activities 

in the distributed system

▪ Encapsulates synchronization
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CHAPTER 6 - COORDINATION

 Synchronization challenges begin with time:

▪ How can we synchronize computers, so they all agree on 

the time?

▪ How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it 

is often sufficient to only agree on a relative ordering of 

events

▪ E.g. not actual time
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COORDINATION - 2

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved 
with distributed mutual exclusion algorithms

 Also in chapter 6:

▪Matching subscriptions to publications in publish-
subscribe systems

▪ Gossip-based coordination problems:

▪ Aggregation

▪ Peer sampling

▪ Overlay construction
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COORDINATION - 3
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 Questions from 2/20

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization
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OBJECTIVES – 2/22

CH. 6.1: CLOCK

SYNCHRONIZATION

L14.50

 Example:

 “make” is used to compile source files into binary object and 

executable files

 As an optimization, make only compiles files when the “last 

modified time” of source files is more recent than object and 

executables

 Consider if  f iles are on a shared disk of a distributed system 

where there is no agreement on time

 Consider if  the program has 1,000 source files
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CLOCK SYNCHRONIZATION

 Updates from dif ferent machines, may have clocks set to 

dif ferent times

 Make becomes confused with which files to recompile
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TIME SYNCHRONIZATION PROBLEM 

FOR DISTRIBUTED SYSTEMS
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PHYSICAL CLOCKS

 Computer t imers: precisely machined
quartz crystals

 When under tension, they oscillate at 
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for 

 Today, crystals are associated with 
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one

 When counter gets to zero, an interrupt fires

 Can program timer to generate interrupt, let’s say 60 
times a second, or another frequency to track time

1960s ERA radio crystal →

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time

▪ Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly dif ferent rates

 Time dif ferences accumulate as clocks

drif t forward or backward slightly

 In an automobile, where there is no

clock synchronization, clock skew may

become noticeable over months, years
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COMPUTER CLOCKS
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 Universal Coordinated Time (UTC)

▪Worldwide standard for time keeping

▪ Equivalent to Greenwich Mean Time (United Kingdom)

▪ 40 shortwave radio stations around the world broadcast a 
short pulse at the start of each second (WWV)

▪World wide “atomic” clocks powered by constant 
transitions of the non-radioactive caesium-133 atom 

▪ 9,162,631,770 transitions per second

 Computers track time using UTC as a base

▪ Avoid thinking in local time, which can lead to 
coordination issues

▪ Operating systems may translate to show local time
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UNIVERSAL COORDINATED TIME

How do we synchronize computer clocks with 

real-world clocks?

How do we synchronize computer clocks with 

each other?
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COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time 

accuracy to 50ns

 Time servers: Server computers with UTC receivers that 

provide accurate time

 Precision ( ) : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock dr ift : clocks on dif ferent machines gradually become 

out of sync due to crystal imperfections, temperature 

dif ferences, etc.

 Clock dr ift rate: typical is 31.5s per year

 Maximum clock drif t rate () :  clock specifications include one
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CLOCK SYNCHRONIZATION

 If two clocks drift from UTC in opposite directions, 

after time t after synchronization, they may be 2 apart.

▪  - clock drift rate,  - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of 

time for servers

 Leverage distributed network 

of time servers
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CLOCK SYNCHRONIZATION - 2

 Servers organized 
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d 
with atomic clocks

 Servers connect
with closest NTP 
server for time 
synchronization

 Servers assume 
role as NTP server
at stratum+1
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NETWORK TIME PROTOCOL

Atomic
clocks

 Must est imate network delays when synchronizing with remote UTC 
receiver clocks / t ime servers

Time server B

Client  A

1. A sends message to B, with t imestamp T1

2. B records t ime of receipt  T2 (from local clock)

3. B returns response with send t ime T3, and receipt  t ime T2 

4. A records arrival of T4

 Assuming propagation delay of A→B→A is the same

 Est imate propagation delay:

 Add delay to t ime
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NTP - 2
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 Cannot set clocks backwards (recall “make” file example)

 Instead, temporarily slow the progress of time to allow fast 
clock to align with actual time

 Change rate of clock interrupt routine

 Slow progress of time until synchronized

 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst

server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)

 Run ntpdate: (sudo ntpdate time.u.washington.edu)

 Startup service (sudo service ntp start)
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NTP - 3

 Berkeley time daemon server actively polls network to 

determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks 

to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm
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BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronizat ion

▪ Address resource constraints : limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides precision of t ime, not  accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to 

adjust  clocks

 No mult i -hop rout ing

 Time to propagate a signal to nodes is roughly constant

 Message propagation t ime does not  consider t ime spent wait ing in 

NIC for message to send

▪ Wireless network resource contention may force wait before message 

even can be sent
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CLOCK SYNCHRONIZATION

IN WIRELESS NETWORKS

 Node broadcasts reference message m

 Each node p records time Tp,m when m is received

 Tp,m is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate 

mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently 

synchronizing clocks to save energy
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REFERENCE BROADCAST 

SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drif t apart

 Averages become less precise

 Elson et al. propose using standard linear regression to 

predict of fsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear 

regression to continuously refine a formula with coefficients 

to predict time offsets:
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REFERENCE BROADCAST 

SYNCHRONIZATION (RBS) - 2 QUESTIONS
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