TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

TCSS 558:

Ch. 4 - Communication - 1l

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

APPLIED DISTRIBUTED COMPUTING
| |

oy Comected B

Lire
- .

OBJECTIVES - 2/20

| = Questions from 2/15]

m Assignment 2: Key Value Store
®m Assighment 3: Replicated Key Value Store
® Chapter 4: Communication
= Chapter 4.1: Foundations
= Chapter 4.2: RPC (light-overview)
= Chapter 4.3: Message Oriented Communication

= Chapter 4.4: Multicast Communication

February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma

L13.2

Slides by Wes J. Lloyd

February 20, 2024

L13.1

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

— TCSS 558 A > Assignments

Winter 2021

Home

Announcements

e

* Upcoming Assignments

Zoom TCSS 558 - Online Daily Feedback Survey - 1/5
b

Chat Not available until Jan 5 at 1:30pm | Due Jan é at 10pm | -/1 pts

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

| L13.3 |

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4

Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None

[| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s

class:
1 2 3 4 5 6 7 8 9 1e
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 1e

Slow Just Right Fast

TCSS558: Applied Distributed Computing [Winter 2024]

Hebuanvi20i2024 School of Engineering and Technology, University of Washington - Tacoma L13.4

Slides by Wes J. Lloyd

February 20, 2024

L13.2

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (24 respondents):

1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.17 (T - previous 6.16)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.75 (T - previous 5.29)

February 20, 2024

TCSS558: Applied Distributed Computing [Winter 2024] 135
School of Engineering and Technology, University of Washington - Tacoma :

CSS TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS - EXTRA CREDIT

= Week 8: In Winter 23, the final
= Tuesday February 20 - 12:30pm -KEY 102 exam scores ran approx.
= Thursday February 22 - 12:30pm -MLG 110 10 pts on average below

= Friday February 23 - 12:30pm -MLG 301 the W24 midterm
= Week 9 (every day):

= Monday February 26 - 12:30pm - MLG 110 scores

= Wednesday February 28 - 1:30pm - JOY 117
= Thursday February 29 - 1:30pm - MLG 110
= Friday March 1 - 1:30pm - MLG 301

= Week 10 (Monday and Tuesday):
= Mar 4,5, 7 - 1:30pm - room TBA

Earn up to 30 buffer points added to the Final Exam score
Earn 3 points for each seminar attended
Buffer points replace missed points on the Final Exam

Once the Final Exam score = 100%, additional points do not push the Final
Exam score above 100%

Buffer points will not impact the course curve for the Final Exam
= Any course curve will be applied before buffer points

February 20, 2024

TCSS558: Applied Distributed Computing [Winter 2024] 136
School of Engineering and Technology, University of Washington - Tacoma :

Slides by Wes J. Lloyd

February 20, 2024

L13.3

TCSS 558: Applied Distributed Computing February 20, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

FEEDBACK FROM 2/15

TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma | 137

February 20, 2024

OBJECTIVES - 2/20

® Questions from 2/15

| = Assignment 2: Key Value Store |
®m Assighment 3: Replicated Key Value Store
® Chapter 4: Communication
= Chapter 4.1: Foundations
= Chapter 4.2: RPC (light-overview)
= Chapter 4.3: Message Oriented Communication
= Chapter 4.4: Multicast Communication

February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024] | 38

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L13.4

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

ASSIGNMENT 2

= Find Teammates: signup posted on Canvas under ‘People’

= GenericNode.tar.gz includes Dockerfile examples
®m GenericNode.tar.gz assumes Java 11

= TCP/UDP/RMI Key Value Store

= Implement a “GenericNode” project which assumes the role of
a client or server for a Key/Value Store

® Recommended in Java 11 LTS

m Client node program interacts with server node to put, get,
delete, or list items in a key/value store

February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024] | 113.9 |

School of Engineering and Technology, University of Washington - Tacoma

USING JAVA 11 IN NETBEANS

=5 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure
to install and select JDK 11

Java Platform Manager

Use the Javadoc tab to register the APl documentation for your JDK in the IDE.
Click Add Platform to register other Java platform versions.

Platforms:

Java SE Platform Name: | JDK 11 (Default)

=) JDK 11 . T—
=) JDK 11 (Defaul) Platform Folder: | jusr/lib/jm/java-11-openjdk-amd64

® On left-hand Project menu, right-click on ‘GenericNode’ project
m Select Properties

® Under Build | Compile, be sure Java Platform is JDK 11

= Under Sources, be sure Source/Binary Format is 11

TCSS558: Applied Distributed Computing [Winter 2024]

February 20, 2024 School of Engineering and Technology, University of Washington - Tacoma

L13.10

10

Slides by Wes J. Lloyd

February 20, 2024

L13.5

TCSS 558: Applied Distributed Computing February 20, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 2/20

® Questions from 2/15

= Assignment 2: Key Value Store
| = Assignment 3: Replicated Key Value Store |
® Chapter 4: Communication
= Chapter 4.1: Foundations
= Chapter 4.2: RPC (light-overview)
= Chapter 4.3: Message Oriented Communication
= Chapter 4.4: Multicast Communication

TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma L1311

February 20, 2024

11

ASSIGNMENT 3 - COMING SOON

| = DUE Sunday March 10th |
®m Goal: Replicated Key Value Store

= Team sighup to be posted on Canvas under ‘People’
m Builds off of Assignment 2 GenericNode

® Focus on TCP client/server w/ replication

= How to track membership for data replication?

= Can implement multiple types of membership tracking
for extra credit

TCSS558: Applied Distributed Computing [Winter 2024]

3.12
School of Engineering and Technology, University of Washington - Tacoma L

February 20, 2024

12

Slides by Wes J. Lloyd L13.6

TCSS 558: Applied Distributed Computing February 20, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 2/20

® Questions from 2/15

= Assignment 2: Key Value Store
= Assignment 3: Replicated Key Value Store
® Chapter 4: Communication

= Chapter 4.1: Foundations

= Chapter 4.2: RPC (Iight-overview)

| = Chapter 4.3: Message Oriented Communication I

= Chapter 4.4: Multicast Communication

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

113.13 |

13

Network Services

L

Apache AétiveMQ

CH. 4.3: MESSAGE-

ORIENTED
COMMUNICATION

14

Slides by Wes J. Lloyd L13.7

TCSS 558: Applied Distributed Computing February 20, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

CHAPTER 4

= 4.1 Foundations
= Protocols
= Types of communication
= 4.2 Remote procedure call
m 4.3 Message-oriented communication
= Socket communication
= Messaging libraries
= Message-Passing Interface (MPI)

— These sections feature

= Message-queueing systems many details,
= Examples Our focus is on the
“big picture”

® 4.4 Multicast communication
= Flooding-based multicasting
= Gossip-based data dissemination

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.15

15

ZEROMQ - SOCKET LIBRARY

= (0MQ) High performance intelligent socket library
= zero broker, zero latency, zero admin, zero cost, zero waste

= Provides a message queue
= Builds upon functionality of traditional sockets QMQ
5 I[mplementation in C++
= 30+ language bindings provided
= Enables support for various messaging patterns

® Can support brokered (centralized) and broker-less topologies

TCSS558: Applied Distributed Computing [Winter 2024]

3.16
School of Engineering and Technology, University of Washington - Tacoma L3

| February 20, 2024

16

Slides by Wes J. Lloyd L13.8

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

m ZeroMQ is TCP-connection-oriented communication

= Basic socket operations abstracted away

connections

®m Asynchronous messaging

patterns

= Provides socket-like primitives with more functionality

= Supports many-to-one, one-to-one, and one-to-many

= Multicast connections (one-to-many - single server socket
simultaneously “connects” to multiple clients)

® Supports pairing sockets to support communication

February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma

113.17

17

ZEROMQ - PATTERNS

= Request-reply pattern
= Traditional client-server communication (e.g. RPC)
= Client: request socket (REQ)
= Server: reply socket (REP)

= Publish-subscribe pattern
= Clients subscribe to messages published by servers
= As in event-based coordination (Ch. 1)

= Supports multicasting messages from
server to multiple

Client

Server

Publisher

PuB

unn%les

bind

= Client: subscribe socket (SUB) uvdfn
= Server: publish socket (PUB)

..,,(.f.,,

updptes

connect

suB

Subscriber

Subscriber

Subscriber

February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma

113.18

18

Slides by Wes J. Lloyd

February 20, 2024

L13.9

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

ZEROMQ - PATTERNS - 2

= Pipeline pattern (FIFO-queue)

= Analogous to a producer/consumer bounded buffer
= Producing processes generate results, push to pipe
= Consuming processes consume results,

pull from pipe
= Producers: push socket (PUSH socket)
= Consumers: pull socket (PULL socket) 4 ‘ ‘ i
= Push- distributes messages to all pull [T o
clients evenly : I TR
= Consumers pull results from pipe and T
push results downstream
February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma

L13.19

19

QUEUEING ALTERNATIVES

®ECloud services

=Amazon Simple Queueing Service (SQS)
=Azure service bus

®Open source frameworks
*Nanomsg
=ZeroMQ

February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma

L13.20

20

Slides by Wes J. Lloyd

February 20, 2024

L13.10

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MESSAGE PASSING INTERFACE (MPI)

= MPI introduced - version 1.0 March 1994
= Message passing API for parallel programming: supercomputers

= Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

® Point-to-point and collective communication
® Goals: high performance, scalability, portability

P I | .
- | network | -

= Most implementations
in C, C++, Fortran

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.21

21

MOTIVATIONS FOR MPI

® Motivation: sockets insufficient for interprocess
communication on large scale HPC compute clusters and
super computers

= Sockets at the wrong level of abstraction

= Sockets designed to communicate over the network using
general purpose TCP/IP stacks § |

= Not designed for proprietary protocols

= Not designed for high-speed interconnection
networks used by supercomputers,
HPC-clusters, etc.

= Better buffering and synchronization needed

TCSS558: Applied Distributed Computing [Winter 2024]

3.22
School of Engineering and Technology, University of Washington - Tacoma L

February 20, 2024

22

Slides by Wes J. Lloyd

February 20, 2024

L13.11

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MOTIVATIONS FOR MPI - 2

® Supercomputers had proprietary communication libraries
= Offer a wealth of efficient communication operations

= All libraries mutually incompatible

® | ed to significant portability problems developing parallel
code that could migrate across supercomputers

® L ed to development of MPI

= To support transient (non-persistent) communication for
parallel programming

February 20, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

113.23

23

MPI FUNCTIONS / DATATYPES

= Very large library, v1.0 (1994) 128 functions

m Version 3 (2015) 440+

= MPI data types:
= Provide common mappings

MPI_ABOAT
MPT_ALLREDUCE
MPT_ATTR GET
WPT_BSEND
MPT_CANCEL

MPT_CART GET
MPI_CART SUB
MPT_COMM_FREE
MPT_COMM REMOTE SIZE
MPT_DIMS_CREATE
MPT_ERFHANDLER_SET
MPT_GATHER

MPI_ADDRESS
MPT_ALLTOALL
HRT_ATTR_PUT
MP1_BSEND INIT
MPI_CARTDIM_GET
HPT_CART MAP
HPT_COMM_COMPARE
HPT_COMM_GROUP
MP1_COMM SIZE
MP1_ERRHANDLER_(REATE
MPI_ERROR_CLASS
HP1_GATHERY

MPT_ALLGATHER
MPT_ALLTOALLV
MPT_BARRIER
MPT_BUFFER_ATTACH
MPT_CART_COORDS.
MPT_CART RAMK
MPL_COMM CREATE
MPT_COMM_ RANK
MPT_COMM SPLIT
MPT_ERRHANDLER_FREE
HPI_ERROA_STRING
MPL_GET_COUNT

HPT_ALLGATHERY
MP1_ATTR DELETE
MPT_BLAST
MP1_BUFFER DETACH
MP1_CART_CREATE
MPI_CART SHIFT
HP1_COMM_OUF
HPT_COMM_REMOTE GROUP
MPT_COMM_TEST INTER
MPT_ERRHANDLER_GET
WPT_FINALIZE
HP1_GET ELEMENTS

MPT_GET PROCESSOR NAME MP1_GRAPHDIMS GET MPT_GRAPH CREATE T GRAPH GET
P fraiyen © dafaizee il
MPICHAR signed char MPI_GAOUP_INTERSECTION MP1_GAOUP RANGE EXCL HPT_GROUP_RANGE_INCL HPT_GROUP RANK
MPISHORT signed shert int MPT_GROUP_SIZE MP1_GROUP_TRANSLATE RANKS MPT_GROUP_UNION HP1_18SEND
MPLINT signed int T INIT 1_INITIALIZED MPT_INTERCOMM CREATE MP1_INTERCOMM MERGE
)) WPT_IPROGE W1_IRECY WPI_IRSEND WP1_1SEND
MPILONG signed long ink WPI_ISSEND MP1_KEYVAL_CREATE NPI_KEYVAL_FREE HP1_0P_CREATE
MP| UNSIGNED CHAR | uneigned char WPT 0P FREE HPT_PACK WPI_PACK SIZE HPT_PCONTROL
MPl_UNSlGNEDSHORT unsignnd ghort int MPI_PROBE MP1_RECV MPI_RECV_INIT MP1_REDUCE
MPIUNSIGNED ianed int NPT REDUCE SCATTER MPI_REQUEST FREE PT_RSEND PI_RSEND_INIT
- uneigned ink MPI_SCAN MP1_SCATTER MPL_SCATTERYV WP1_SEND
MPI_UNSIGNED LONG | unsigned long int MPI_SENDRECY WP1_SENDRECV_REPLACE NPI_SEND_INIT HP1_SSEND
MP| FLOAT #loat MPT_SSEND_INIT W1 _START MPI_STARTALL WY TEST
MPI_TESTALL MP1_TESTANY MPI_TESTSOME MP1_TEST _CANCELLED
MPIDOUBLE doutla MPI_TOPO TEST MP1_TYPE COMMIT MPI_TYPE_CONTIGUOUS MP1_TYPE EXTENT
MPILONG DOUBLE long double MPL_TYPE_FREE 1 _TYPE_HIMDEXED MPL_TYPE_HVECTOR MP1_TYPE_INDEXED
MPIBYTE WPI_TYPE LB WP1_TYPE_SIZE MPI_TYPE_STRUCT HPT_TYPE_UB
MPI_PACKED MPT_TYPE VECTOR BT UNPACK MPT_WAIT KT WAITALL
MPT_WAITAMY MP1_WAITSOME MPT_WTICK MP1_WTIME
February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024] 1320

School of Engineering and Technology, University of Washington - Tacoma

24

Slides by Wes J. Lloyd

February 20, 2024

L13.12

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

COMMON MPI FUNCTIONS

= MPI - no recovery for process crashes, network partitions
= Communication among grouped processes: (groupID, processID)
= |[Ds used to route messages in place of IP addresses

MPI_bsend Append outgoing message to a local send buffer
MPI_send Send message, wait until copied to local/remote buffer
MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue
MPI_issend Pass reference to outgoing messages, wait until receipt start
MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.25

25

MESSAGE-ORIENTED-MIDDLEWARE

= Message-queueing systems

= Provide extensive support for persistent asynchronous
communication

= [n contrast to transient systems

= Temporally decoupled: messages are eventually delivered
to recipient queues

= Message transfers may take minutes vs. sec or ms

= Each application has its own private queue to which other
applications can send messages

TCSS558: Applied Distributed Computing [Winter 2024]

3.26
School of Engineering and Technology, University of Washington - Tacoma L

February 20, 2024

26

Slides by Wes J. Lloyd

February 20, 2024

L13.13

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MESSAGE QUEUEING SYSTEMS:

processes
= User applications
= App-to-database

USE CASES

= To support distributed real-time computations

= Use cases
= Batch processing, Email, workflow, groupware, routing

subqueries

® Enables communication between applications, or sets of

February 20, 2024

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

113.27

27

MESSAGE QUEUEING SYSTEMS

. Sender Sender Sender

= Scenarios: running running passive
(a) Sender/receiver

. | |

both running SENDS

(b) Sender running,
receiver offline

(c) Sender offline,
receiver running

¢
!

<11

(d) Sender/receiver READS | |
both offline Receiver Receiver Receiver
running passive running
B Queue persists msgs,
(a) (b) (c)

and attempts to send

them but no one may be available to receive them...

Receive
passive

(d)

TCSS558: Applied Distributed Computing [Winter 2024]

February 20, 2024 School of Engineering and Technology, University of Washington - Tacoma

L13.28

28

Slides by Wes J. Lloyd

February 20, 2024

L13.14

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MESSAGE QUEUEING SYSTEMS - 2

= Key: Truly persistent messaging

= Message queueing systems can persist messages for awhile
and senders and receivers can be offline

= Messages
= Contain any data, may have size limit

= Are properly addressed, to a destination queue

= Basic Inteface

= PUT: called by sender to append msg to specified queue

® GET: blocking call to remove oldest msg from specified queue
= Blocked if queue is empty

® POLL: Non-blocking, gets msg from specified queue

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

February 20, 2024 113.29

29

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE

= Basic interface cont’d

= NOTIFY: install a callback function, for when msg is placed
into a queue. Notifies receivers

® Queue managers: manage individual message queues as a
separate process/library

= Applications get/put messages only from local queues
= Queue manager and apps share local network
= |[SSUES:
® How should we reference the destination queue?
® How should names be resolved (looked-up)?
= Contact address (host, port) pairs
= Local look-up tables can be stored at each queue manager

TCSS558: Applied Distributed Computing [Winter 2024]

3.30
School of Engineering and Technology, University of Washington - Tacoma L

February 20, 2024

30

Slides by Wes J. Lloyd

February 20, 2024

L13.15

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE - 2

= |SSUES:

= How do we route traffic between queue managers?
= How are name-to-address mappings efficiently kept?
= Each queue manager should be known to all others

= Message brokers
= Handle message conversion among different users/formats

= Addresses cases when senders and receivers don’t speak the
same protocol (language)

= Need arises for message protocol converters
= “Reformatter” of messages
= Act as application-level gateway

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

113.31

31

MESSAGE BROKER ORGANIZATION

Source Message broker Destination
Application D D D Application
Brokgr plugins Rules
! y
£, =} Queuing —
EN IR = A
Local OS T Local 08 Local OS
[s I SN
Plugins to convert \
messages between APPs Application-level
Queues

TCSS558: Applied Distributed Computing [Winter 2024]

332
School of Engineering and Technology, University of Washington - Tacoma L

February 20, 2024

32

Slides by Wes J. Lloyd

February 20, 2024

L13.16

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

AMQP PROTOCOL

= Message-queueing systems initially developed to enable
legacy applications to interoperate

® Decouple inter-application communication to “open”
messaging-middleware

= Many are proprietary solutions, so not very open
= e.g. Microsoft Message Queueing service, Windows NT 1997

= Advanced message queueing protocol (AMQP), 2006

= Address openness/interoperability of proprietary solutions

® Open wire protocol for messaging with powerful routing
capabilities

= Help abstract messaging and application interoperability by
means of a generic open protocol

= Suffer from incompatibility among protocol versions

® pre-1.0, 1.0+

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

113.33

33

AMQP - 2

® Consists of: Applications, Queue managers, Queues

= Connections: set up to a queue manager, TCP, with
potentially many channels, stable, reused by many
channels, long-lived

= Channels: support short-lived one-way communication

m Sessions: bi-directional communication across two
channels

® Link: provide fine-grained flow-control of message
transfer/status between applications and queue manager

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

February 20, 2024 113.34

34

Slides by Wes J. Lloyd

February 20, 2024

L13.17

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

AMQP MESSAGING

= AMQP nodes: producer, consumer, queue
= Producer/consumer: represent regular applications
B Queues: store/forward messages

= Persistent messaging:
= Messages can be marked durable

= These messages can only be delivered by nodes able to
recover in case of failure

= Non-failure resistant nodes must reject durable messages
= Source/target nodes can be marked durable
= Track what is durable (hode state, node+msgs)

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.35

35

MESSAGE-ORIENTED-MIDDLEWARE

EXAMPLES:

= Some examples:
= RabbitMQ, Apache QPid
= Implement Advanced Message Queueing Protocol (AMQP)

= Apache Kafka
= Dumb broker (message store), similar to a distributed log file
= Smart consumers - intelligence pushed off to the clients
= Stores stream of records in categories called topics
= Supports voluminous data, many consumers, with minimal O/H
= Kafka does not track which messages were read by each consumer
= Messages are removed after timeout
= Clients must track their own consumption (Kafka doesn’t help)
= Messages have key, value, timestamp
= Supports high volume pub/sub messaging and streams

TCSS558: Applied Distributed Computing [Winter 2024]

336
School of Engineering and Technology, University of Washington - Tacoma L

February 20, 2024

36

Slides by Wes J. Lloyd

February 20, 2024

L13.18

TCSS 558: Applied Distributed Computing February 20, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 2/20

® Questions from 2/15

= Assignment 2: Key Value Store
= Assignment 3: Replicated Key Value Store
® Chapter 4: Communication
= Chapter 4.1: Foundations
= Chapter 4.2: RPC (light-overview)
= Chapter 4.3: Message Oriented Communication
| = Chapter 4.4: Multicast Communication |

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

113.37

February 20, 2024

37

WE WILL RETURN AT

4:55 PM

38

Slides by Wes J. Lloyd L13.19

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

Multicast

one to many

E = subscriber

Apache ActiveMQ

CH. 4.4: MULTICAST
COMMUNICATION

CHAPTER 4

= 4.1 Foundations
= Protocols
= Types of communication
= 4.2 Remote procedure call
® 4.3 Message-oriented communication
= Socket communication
= Messaging libraries

= Message-Passing Interface (MPI) L These sections feature

* Message-queueing systems many details,
= Examples Our focus is on the
“big picture”

" 4.4 Multicast communication
= Flooding-based multicasting
= Gossip-based data dissemination

TCSS558: Applied Distributed Computing [Winter 2024]

February 20, 2024 School of Engineering and Technology, University of Washington - Tacoma

L13.40

40

Slides by Wes J. Lloyd

February 20, 2024

L13.20

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MULTICAST COMMUNICATION

® Sending data to multiple receivers

® Many failed proposals for network-level / transport-level
protocols to support multicast communication

= Problem: How to set up communication paths for
information dissemination?

® Solutions: require huge management effort, human
intervention

® Focus shifted more recently to peer-to-peer networks

= Structured overlay networks can be setup easily and
provide efficient communication paths

= Application-level multicasting techniques more successful
= Gossip-based dissemination: unstructured p2p networks

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

113.41

41

NETWORK STRUCTURE

= Overlay network

= Virtual network implemented on top of an actual physical network
= Underlying network

= The actual physical network that implements the overlay

End host

Overlay network

TCSS558: Applied Distributed Computing [Winter 2024]

3.42
School of Engineering and Technology, University of Washington - Tacoma L34

February 20, 2024

42

Slides by Wes J. Lloyd

February 20, 2024

L13.21

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

APPLICATION LEVEL

TREE-BASED MULTICASTING

®m Application level multi-casting
= Nodes organize into an overlay network
= Network routers not involved in group membership
= Group membership is managed at the application level (A2)

= Downside:
= Application-level routing likely less efficient than network-level

= Necessary tradeoff until having better multicasting protocols at
lower layers

® Qverlay topologies
= TREE: top-down, unique paths between nodes
= MESH: nodes have multiple neighbors; multiple paths between nodes

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

113.43

43

MULTICAST TREE METRICS

= Measure quality of application-level multicast tree

m Link stress: is defined per link, counts how often a packet
crosses same link (ideally not more than 1)

= Stretch: ratio in delay between two nodes in the overlay vs.
the underlying networks

End host

Numbers represent o I
network delay o
between nodes
Overlay network

TCSS558: Applied Distributed Computing [Winter 2024]

3.
School of Engineering and Technology, University of Washington - Tacoma L1344

February 20, 2024

44

Slides by Wes J. Lloyd

February 20, 2024

L13.22

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MULTICAST TREE METRICS - 2

= Stretch (Relative Delay Penalty RDP)
® CONSIDER routing from B to C
= What is the Stretch?
® Stretch (delay ratio) = Overlay-delay / Underlying-delay
= Overlay: B>Rb>Ra>Re>E>Re>Rc>Rd>D>Rd>Rc~> C
=73
= Underlying: B>Rb>Rd>Rc>C = 47
® Stretch = 73 / 47 = 1.55
® Captures additional time (stretch) to transfer msg on overlay net

= Tree cost: Overall cost of the overlay network
= |deally would like to minimize network costs

® Find a minimal spanning tree which minimizes total time for
disseminating information to all nodes

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.45

45

FLOOD-BASED MULTICASTING

= Broadcasting: every node in overlay network receives message

End host

Overlay network

= How many nodes are in the overlay network?
® How many nodes are in the underlying network?

TCSS558: Applied Distributed Computing [Winter 2024]

3.46
School of Engineering and Technology, University of Washington - Tacoma L34

February 20, 2024

46

Slides by Wes J. Lloyd

February 20, 2024

L13.23

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

FLOOD-BASED MULTICASTING

= Broadcasting: every node in overlay network receives message

= Key design issue: minimize the use of intermediate nodes for
which the message is not intended

= |f only leaf nodes are to receive the multicast message, many
intermediate nodes are involved in storing and forwarding the
message not meant for them

® Solution: construct an overlay network for each multicast
group
= Sending a message to the group, becomes the same as broadcasting

to the multicast group (group of nodes that listen and receive traffic
for a shared IP address)

= Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

TCSS558: Applied Distributed Computing [Winter 2024]
Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.47 |

47

RANDOM GRAPHS

= When there is no information on the structure of the overlay network
= Assume network can be represented as a Random graph

® Random graphs are described by a probability distribution

= Probability P 4, that two nodes are joined

= Overlay network will have: % * P .. * N * (N-1) edges

300
Random graphs allow us to assume 250 F
some structure (# of nodes, # of edges)

200

regarding the network by scaling the

Peage Probability 150

100
Assumptions may help then to

Number of edges (x 1000)

reason or rationalize about the 50
network... 0 ‘ L L
100 500 1000
Number of nodes
February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024] \13.48

School of Engineering and Technology, University of Washington - Tacoma

48

Slides by Wes J. Lloyd

February 20, 2024

L13.24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

PROBABILISTIC FLOODING

=Washington state in winter?

® When a node is flooding a message, concept is to enforce
a probability that the message is spread (Pso0q)

= Throttle message flooding based on a probability

= Implementation needs to considers # of neighbors to
achieve various py,,qSCOres

= With lower p;,,q messages may not reach all nodes

= USEFULNESS: For random network with 10,000 nodes
= With p.gee = 0.1 and pyo0q =-01
m Achieves 50-fold reduction in messages vs. full flooding

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.49

49

PROBABILISTIC FLOODING

= ...Washington state in winter?

g g t is to enforce
GGl How many edges does network with
gl 10,000 nodes have with p,y,.=0.1?

= Imple
achie
= With |I6W Ptlood

® When a node is flooding a message, concep

= USEFULNESS: For random network with 10,000 nodes
= With pegge = 0.1 and py 04 =-01
® Achieves 50-fold reduction in messages vs. full flooding

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

February 20, 2024

50

Slides by Wes J. Lloyd

February 20, 2024

L13.25

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

PROBABILISTIC FLOODING

=Washington state in winter?

® When a node is flooding a message, concept is to enforce
ERIGE How many edges does network with
glllblll 10,000 nodes have with p,y,.=0.1?

= Imple

achie _
I Edges = %% * Py * N * (N-1)

to

= USEF
= With p.gee = 0.1 and pyo0q =-01
m Achieves 50-fold reduction in messages vs. full flooding

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.51

51

PROBABILISTIC FLOODING

= ...Washington state in winter?

® When a node is flooding a message, concept is to enforce
GG How many edges does network with

alllld 10,000 nodes have with p,,,,=0.1?

E Impl¢

) Edges = %% * Py * N * (N-1)

15 * (.1) * (10000) * (9999)

= With pegee = 0.1 and pgo0q =-01
m Achieves 50-fold reduction in messages vs. full flooding

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

February 20, 2024

52

Slides by Wes J. Lloyd

February 20, 2024

L13.26

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

PROBABILISTIC FLOODING

=Washington state in winter?

= When a node is flooding a message, concept is to enforce
How many edges does network with

gl 10,000 nodes have with p,,,,=0.1?

E Implé

jEdges = %2 * Py, * N * (N-1)

Y * (.1) * (10000) * (9999)

= USE 4,999,500 edges

= With p.gee = 0.1 and pyo0q =-01

m Achieves 50-fold reduction in messages vs. full flooding

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.53

53

Mflood

= With lower p;,,q messages may not reach all nodes

= USEFULNESS: For random network with 10,000 nodes
= With pegee = 0.1 and pgo0q =-01
m Achieves 50-fold reduction in messages vs. full flooding

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

February 20, 2024 113.54

54

Slides by Wes J. Lloyd

February 20, 2024

L13.27

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

PROBABILISTIC FLOODING

=Washington state in winter?

® When a node is flooding a message, concept is to enforce

that all neighbors don’t forward the message

to Q is p=(1-Psi504)"
= USEFULNESS: For random network with 10,000 nodes

= With p.gee = 0.1 and pyo0q =-01
m Achieves 50-fold reduction in messages vs. full flooding

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.55

55

PROBABILISTIC FLOODING

= ...Washington state in winter?

if n=10, p=(1-.01)1°=,904 (pretty likely)
g if =100, p=(1-.01)1%0=366 (less likely)
if n=1000, p=(1-.01)2°8=.05 (unlikely)

TCSS558: Applied Distributed Computing [Winter 2024]

February 20, 2024 School of Engineering and Technology, University of Washington - Tacoma

56

Slides by Wes J. Lloyd

February 20, 2024

L13.28

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MESSAGE FLOODING

= For deterministic topologies (such as hypercube), design of
efficient flooding scheme is much simpler

= |f the overlay network is structured, this gives us a
deterministic topology

m Schlosser et al [2002] - offer simple and efficient
broadcasting scheme that relies on keeping track of neighbors
per dimension

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.57

57

MESSAGE

FLOODING - 2

= Hypercube Broadcast

® N(1001) starts the network broadcast

= N(1001) neighbors {0001,1000,1011,1101}

® N(1001) Sends message to all neighbors

>>Edge Labels (which bit is changed?, 15¢, 2n9, 3rd, 4th,,)
Edge to 0001 - labeled 1 - change the 1st bit

Edge to 1000 - labeled 4 - change the 4t" bit

Edge to 1011 - labeled 3 - change the 3" bit

Edge to 1101 - labeled 2 - change the 29 bit

RULE: nodes only forward along edges with a higher dimension
Node 1101 receives message on edge labeled 2
= Broadcast msg is only forwarded on higher valued edges (>2)

TCSS558: Applied Distributed Computing [Winter 2024]

February 20, 2024 School of Engineering and Technology, University of Washington - Tacoma

L13.58

58

Slides by Wes J. Lloyd

February 20, 2024

L13.29

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

MESSAGE FLOODING - 3

= Hypercube: forward msg along edges with higher dimension
= Node(1101)-neighbors {0101,1100,1001,1111}

= Node (1101) - incoming broadcast edge = 2

= | abel Edges:

= Edge to 0101 - labeled 1 - change the 15t bit
= Edge to 1100 - labeled 4 - change the 4t" bit *<FORWARD>*
= Edge to 1001 - labeled 2 - change the 2" bit
® Edge to 1111 - labeled 3 - change the 3' bit *<FORWARD>*

N(1101) broadcast - forward only to N(1100) and N(1111)
(1100) and (1111) are the higher dimension edges

= Broadcast requires just: N-1 messages, where nodes N=2",
n=dimensions of hypercube

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.59

59

®m General approach is to

® This is also called

® Data updates for a specific

GOSSIP BASED DATA DISSEMINATION

® When structured peer-to-peer topologies are not available
®m Gossip based approaches support multicast communication

over unstructured peer-to-peer networks

leverage how gossip
spreads across a group

“epidemic behavior”...

item begin at a specific
node

TCSS558: Applied Distributed Computing [Winter 2024]

February 20, 2024 School of Engineering and Technology, University of Washington - Tacoma

L13.60

60

Slides by Wes J. Lloyd

February 20, 2024

L13.30

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

INFORMATION DISSEMINATION

= Epidemic algorithms: algorithms for large-scale distributed
systems that spread information

® Goal: “infect” all nodes with new information as fast as
possible

= |Infected: node with data that can spread to other nodes

= Susceptible: node without data

= Removed: node with data that is unable to spread data

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.61

61

EPIDEMIC PROTOCOLS

= Gossiping

®Nodes are randomly selected

®0One node, randomly selects any other node in the
network to propagate the network

®Complete set of nodes is known to each member

TCSS558: Applied Distributed Computing [Winter 2024]

3.62
School of Engineering and Technology, University of Washington - Tacoma L

February 20, 2024

62

Slides by Wes J. Lloyd

February 20, 2024

L13.31

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

ANTI ENTROPY DISSEMINATION MODEL

FOR GOSSIPING

= Anti-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

= Akin to random walk

= Types of message exchange: @_’ :
= PUSH: P only pushes its own updates to Q E‘ :

= PULL: P only pulls in new updates from Q

= TWO-WAY: P and Q send updates to each other [Ple—{Q]
(i.e. a push-pull approach)

= Push only: hard to propagate updates to last few hidden
susceptible nodes

= Pull: better because susceptible nodes can pull updates from
infected nodes

= Push-pull is better still

TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington - Tacoma L13.63

February 20, 2024

63

ANTI ENTROPY EFFECTIVENESS

= Round: span of time during which every node takes initiative
to exchange updates with a randomly chosen node

= The number of rounds to propagate a single update to all
nodes requires O(log(N)), where N=number of nodes

1.0
= Let p, denote probability that B N = 10,000
node P has not received D'B:
msg m after the it round. 06 push

Probability not yet updated

= For pull, push, and push-pull 0.4 push-pull
based approaches: 02:
10,000 nodes > 0 5 10 15 20 25

Round

TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

February 20, 2024

64

Slides by Wes J. Lloyd

February 20, 2024

L13.32

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

RUMOR SPREADING

® Variant of epidemic protocols
= Provides an approach to “stop” message spreading
® Mimics “gossiping” in real life

= Rumor spreading:

= Node P receives new data item X

® Contacts an arbitrary node Q to push update

= Node Q reports already receiving item X from another
node

= Node P may loose interest in spreading the rumor with
probability = pg,,, let’'s say 20% ... (or 0.20)

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.65

65

RUMOR SPREADING - 2

® Psopr IS the probability node will stop spreading once contacting a
node that already has the message

= Does not guarantee all nodes will be updated

= The fraction of nodes s, that remain susceptible grows relative
to the probability that node P
stops propagating when finding
a node already having the
message

0.20-
0.15

= Fraction of nodes not updated s 0-10

remains < 0.20 with high pg,, 0.05

= Susceptible nodes (s) vs.
probability of stopping >

TCSS558: Applied Distributed Computing [Winter 2024]

February 20, 2024 School of Engineering and Technology, University of Washington - Tacoma

L13.66

66

Slides by Wes J. Lloyd

February 20, 2024

L13.33

TCSS 558: Applied Distributed Computing February 20, 2024
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

REMOVING DATA

® Gossiping is good for spreading data
= But how can data be removed from the system?

® |dea is to issue “death certificates”

m Act like data records, which are spread like data
® When death certificate is received, data is deleted

® Certificate is held to prevent data element from
reinitializing from gossip from other nodes

® Death certificates time-out after expected time required
for data element to clear out of entire system

® A few nodes maintain death certificates forever

TCSS558: Applied Distributed Computing [Winter 2024]

Februaryi20,12024 School of Engineering and Technology, University of Washington - Tacoma

L13.67

67

DEATH CERTIFICATE EXAMPLE

= For example:
= Node P keeps death certificates forever

= [tem X is removed from the system

= Node P receives an update request for Item X, but also holds
the death certificate for Item X

= Node P will recirculate the death certificate across the
network for Item X

TCSS558: Applied Distributed Computing [Winter 2024]

3.68
School of Engineering and Technology, University of Washington - Tacoma L

February 20, 2024

68

Slides by Wes J. Lloyd L13.34

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,

UW-Tacoma

QUESTIONS

February 20, 2024 TCSS558: Applied Distributed Computing [Winter 2024]

School of Engineering and Technology, University of Washington -

L13.69

69

Slides by Wes J. Lloyd

February 20, 2024

L13.35

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/20
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: CSS Tenure track faculty candidate research seminars – EXTRA CREDIT
	Slide 7: Feedback from 2/15
	Slide 8: OBJECTIVES – 2/20
	Slide 9: Assignment 2
	Slide 10: Using java 11 in netbeans
	Slide 11: OBJECTIVES – 2/20
	Slide 12: Assignment 3 – coming soon
	Slide 13: OBJECTIVES – 2/20
	Slide 14: Ch. 4.3: message-oriented communication
	Slide 15: Chapter 4
	Slide 16: ZeroMq – socket library
	Slide 17: Zeromq – 2
	Slide 18: Zeromq - patterns
	Slide 19: Zeromq – patterns - 2
	Slide 20: Queueing alternatives
	Slide 21: Message passing interface (MPI)
	Slide 22: Motivations for mpi
	Slide 23: Motivations for mpi - 2
	Slide 24: Mpi functions / datatypes
	Slide 25: Common Mpi functions
	Slide 26: Message-oriented-middleware
	Slide 27: Message queueing systems: USE cases
	Slide 28: Message queueing systems
	Slide 29: Message queueing systems - 2
	Slide 30: Message queueing systems architecture
	Slide 31: Message queueing systems architecture - 2
	Slide 32: Message broker organization
	Slide 33: AmqP protocol
	Slide 34: Amqp - 2
	Slide 35: Amqp messaging
	Slide 36: Message-oriented-middleware examples:
	Slide 37: OBJECTIVES – 2/20
	Slide 38: We will return at 4:55 pm
	Slide 39: Ch. 4.4: multicast communication
	Slide 40: Chapter 4
	Slide 41: Multicast communication
	Slide 42: Network structure
	Slide 43: Application level tree-based multicasting
	Slide 44: Multicast tree metrics
	Slide 45: Multicast tree metrics - 2
	Slide 46: Flood-based multicasting
	Slide 47: Flood-based multicasting
	Slide 48: Random graphs
	Slide 49: Probabilistic flooding
	Slide 50: Probabilistic flooding
	Slide 51: Probabilistic flooding
	Slide 52: Probabilistic flooding
	Slide 53: Probabilistic flooding
	Slide 54: Probabilistic flooding
	Slide 55: Probabilistic flooding
	Slide 56: Probabilistic flooding
	Slide 57: Message flooding
	Slide 58: Message flooding - 2
	Slide 59: Message flooding - 3
	Slide 60: Gossip based data dissemination
	Slide 61: Information dissemination
	Slide 62: Epidemic protocols
	Slide 63: Anti entropy dissemination model for gossiping
	Slide 64: Anti entropy effectiveness
	Slide 65: Rumor spreading
	Slide 66: Rumor spreading - 2
	Slide 67: Removing data
	Slide 68: Death certificate example
	Slide 69: Questions

