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Ch. 4 – Communication - II
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 School of Engineering 
 & Technology (SET)

 University of Washington - Tacoma

TCSS 558: 

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (24 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.17 ( - previous 6.16)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.75 ( - previous 5.29)
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MATERIAL / PACE

 Week 8 :

▪ Tuesday February 20 – 12:30pm –KEY 102

▪ Thursday February 22 – 12:30pm –MLG 110

▪ Friday February 23 – 12:30pm –MLG 301

 Week 9 (ever y day) :

▪ Monday February 26 – 12:30pm – MLG 110

▪ Wednesday February 28 – 1:30pm – JOY 117

▪ Thursday February 29 – 1:30pm – MLG 110

▪ Friday March 1 – 1:30pm – MLG 301

 Week 10 (Monday  and Tuesday) :

▪ Mar 4, 5, 7 – 1:30pm – room TBA

 Earn up to 30 buf fer  points added to the Final Exam score

 Earn 3 points  for  each seminar attended

 Buffer points  replace missed points  on the Final Exam

 Once the Final Exam score = 100%, addit ional points  do not push the Final 
Exam score above 100%

 Buffer points  wil l  not impact the course cur ve for  the Final Exam

 Any course cur ve wil l  be applied before buf fer  points

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

CSS TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT

In Winter 23, the final 

exam scores ran approx. 
10 pts on average below 
the W’24 midterm 

scores
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FEEDBACK FROM 2/15

 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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 Find Teammates: signup posted on Canvas under ‘People’

 GenericNode.tar.gz includes Dockerfile examples

 GenericNode.tar.gz assumes Java 11

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of 

a client or server for a Key/Value Store

 Recommended in Java 11 LTS

 Client node program interacts with server node to put, get, 

delete, or list items in a key/value store
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ASSIGNMENT 2

 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure

to install and select JDK 11

 On left-hand Project menu, right-click on ‘GenericNode ’  project

 Select Properties

 Under Build | Compile, be sure Java Platform is JDK 11

 Under Sources, be sure Source/Binary Format is 11 
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USING JAVA 11 IN NETBEANS
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 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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OBJECTIVES – 2/20

 DUE Sunday March 10 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Builds off of Assignment 2 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking 

for extra credit
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ASSIGNMENT 3 – COMING SOON
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 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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OBJECTIVES – 2/20

Apache ActiveMQ

CH. 4.3: MESSAGE-

ORIENTED 

COMMUNICATION

L13.14
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 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”

 (0MQ) High performance intelligent socket library

 zero broker,  zero latency, zero admin, zero cost,  zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++

▪ 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker -less topologies
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ZEROMQ – SOCKET LIBRARY
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 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

▪ Basic socket operations abstracted away

▪ Supports many-to-one, one-to-one, and one-to-many 

connections

▪Multicast connections (one-to-many – single server socket 

simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication 

patterns
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ZEROMQ – 2

 Request-reply pattern

▪ Traditional client-server communication (e.g. RPC)

▪ Client: request socket (REQ)

▪ Server: reply socket (REP)

 Publish-subscribe pattern

▪ Clients subscribe to messages published by servers

▪ As in event-based coordination (Ch. 1)

▪ Supports multicasting messages from 

server to multiple

▪ Client: subscribe socket (SUB)

▪ Server: publish socket (PUB)
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ZEROMQ - PATTERNS

17

18



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.10

 Pipeline pattern (FIFO-queue)

▪ Analogous to a producer/consumer bounded buffer

▪ Producing processes generate results, push to pipe

▪ Consuming processes consume results,

pull from pipe

▪ Producers: push socket (PUSH socket)

▪ Consumers: pull socket (PULL socket)

▪ Push- distributes messages to all pull 

clients evenly

▪ Consumers pull results from pipe and 

push results downstream
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ZEROMQ – PATTERNS - 2

Cloud services

▪Amazon Simple Queueing Service (SQS)

▪Azure service bus

Open source frameworks

▪Nanomsg

▪ZeroMQ
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QUEUEING ALTERNATIVES

19

20



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.11

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:

Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations

in C, C++, Fortran
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MESSAGE PASSING INTERFACE (MPI)

 Motivation: sockets insufficient for interprocess

communication on large scale HPC compute clusters and 

super computers 

▪ Sockets at the wrong level of abstraction

▪ Sockets designed to communicate over the network using 

general purpose TCP/IP stacks

▪ Not designed for proprietary protocols

▪ Not designed for high-speed interconnection 

networks used by supercomputers, 

HPC-clusters, etc.

▪ Better buffering and synchronization needed
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MOTIVATIONS FOR MPI
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 Supercomputers had proprietary communication libraries

▪ Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel 

code that could migrate across supercomputers

 Led to development of MPI

▪ To support transient (non-persistent) communication for 

parallel programming
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MOTIVATIONS FOR MPI - 2

 Very large library, v1.0 (1994) 128 functions 

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings
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MPI FUNCTIONS / DATATYPES
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 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses
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COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

 Message-queueing systems

▪ Provide extensive support for persistent asynchronous 

communication

▪ In contrast to transient systems

▪ Temporally decoupled: messages are eventually delivered 

to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other 

applications can send messages
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MESSAGE-ORIENTED-MIDDLEWARE
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 Enables communication between applications, or sets of 

processes

▪ User applications

▪ App-to-database

▪ To support distributed real-time computations

 Use cases

▪ Batch processing, Email, workflow, groupware, routing 

subqueries
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MESSAGE QUEUEING SYSTEMS:

USE CASES

 Scenarios:

(a) Sender/receiver

both running

(b)  Sender running,

receiver offline

(c)  Sender offline,

receiver running

(d)  Sender/receiver

both offline

 Queue persists msgs,

and attempts to send 

them but no one may be available to receive them…
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MESSAGE QUEUEING SYSTEMS

SENDS

READS
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 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile 

and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue

▪ Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue
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MESSAGE QUEUEING SYSTEMS - 2

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed 

into a queue. Notifies receivers

 Queue managers: manage individual message queues as a 

separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue? 

 How should names be resolved (looked-up)?

▪ Contact address (host, port) pairs

▪ Local look-up tables can be stored at each queue manager

February 20, 2024
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MESSAGE QUEUEING SYSTEMS 

ARCHITECTURE
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 ISSUES:

 How do we route traffic between queue managers?

▪ How are name-to-address mappings efficiently kept?

▪ Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the 

same protocol (language)

 Need arises for message protocol converters

▪ “Reformatter” of messages

 Act as application-level gateway
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MESSAGE QUEUEING SYSTEMS 

ARCHITECTURE - 2
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MESSAGE BROKER ORGANIZATION

Plugins to convert 
messages between APPs Application-level

Queues
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 Message-queueing systems initially developed to enable 
legacy applications to interoperate

 Decouple inter-application communication to “open” 
messaging-middleware

 Many are proprietary solutions, so not very open

 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP) , 2006

 Address openness/interoperability of proprietary solutions

 Open wire protocol for messaging with powerful routing 
capabilities

 Help abstract messaging and application interoperability by 
means of a generic open protocol

 Suffer from incompatibil ity among protocol versions

 pre-1.0, 1.0+
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AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with 

potentially many channels, stable, reused by many 

channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two 

channels

 Link: provide fine-grained flow-control of message 

transfer/status between applications and queue manager
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AMQP - 2
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 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to 

recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)
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AMQP MESSAGING

 Some examples:

 RabbitMQ, Apache QPid

▪ Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka

▪ Dumb broker (message store), similar to a distributed log file

▪ Smart consumers – intelligence pushed off to the clients

▪ Stores stream of records in categories called topics

▪ Supports voluminous data, many consumers, with minimal O/H

▪ Kafka does not track which messages were read by each consumer

▪ Messages are removed after timeout

▪ Clients must track their own consumption (Kafka doesn’t help)

▪ Messages have key, value, timestamp

▪ Supports high volume pub/sub messaging and streams
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MESSAGE-ORIENTED-MIDDLEWARE 

EXAMPLES:
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 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L13.37

OBJECTIVES – 2/20

WE WILL RETURN AT 

4:55 PM
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Apache ActiveMQ

CH. 4.4: MULTICAST

COMMUNICATION

L13.39

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination
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CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”
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 Sending data to multiple receivers

 Many failed proposals for network-level / transport-level 
protocols to support multicast communication

 Problem: How to set up communication paths for 
information dissemination?

 Solutions: require huge management effort, human 
intervention

 Focus shifted more recently to peer-to-peer networks

▪ Structured overlay networks can be setup easily and 
provide efficient communication paths

▪ Application-level multicasting techniques more successful 

▪ Gossip-based dissemination: unstructured p2p networks

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

MULTICAST COMMUNICATION

 Overlay network

▪ Virtual network implemented on top of an actual physical network

 Underlying network

▪ The actual physical network that implements the overlay

February 20, 2024
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NETWORK STRUCTURE

41

42



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.22

 Application level multi -casting

▪ Nodes organize into an overlay network

▪ Network routers not involved in group membership

▪ Group membership is managed at the application level (A2)

 Downside:

▪ Application-level routing likely less efficient than network -level

▪ Necessary tradeoff until having better multicasting protocols at 

lower layers

 Overlay topologies

▪ TREE: top-down, unique paths between nodes

▪ MESH: nodes have multiple neighbors; multiple paths between nodes
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APPLICATION LEVEL 

TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per link, counts how often a packet 

crosses same link  ( ideally not more than 1 )

 Stretch: ratio in delay between two nodes in the overlay vs. 

the underlying networks 
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MULTICAST TREE METRICS

Numbers represent
network delay 
between nodes
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 Stretch (Relative Delay Penalty RDP)

 CONSIDER routing from B to C

 What is the Stretch?

 Stretch (delay ratio) = Overlay -delay / Underlying-delay

 Overlay: B→Rb→Ra→Re→E→Re→Rc→Rd→D→Rd→Rc→ C 

= 73

 Underlying: B→Rb→Rd→Rc→C = 47

 Stretch = 73 / 47 = 1.55

 Captures additional time (stretch) to transfer msg on overlay net

 Tree cost: Overall cost of the overlay network

 Ideally would like to minimize network costs

 Find a minimal spanning tree which minimizes total time for 

disseminating information to all nodes
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MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?
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FLOOD-BASED MULTICASTING
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 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for 
which the message is not intended

 If only leaf nodes are to receive the multicast message, many 
intermediate nodes are involved in storing and forwarding the 
message not meant for them

 Solution: construct an overlay network for each multicast 
group

▪ Sending a message to the group, becomes the same as broadcasting 
to the multicast group (group of nodes that listen and receive traffic 
for a shared IP address)

 Flooding: each node simply forwards a message to each of its 
neighbors, except to the message originator
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FLOOD-BASED MULTICASTING

 When there is no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probability distribution

 Probability Pedge that two nodes are joined

 Overlay network will have: ½ * Pedge * N * (N-1) edges
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RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability 

Assumptions may help then to 
reason or rationalize about the
network…
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

    
    

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

    ½ * (.1) * (10000) * (9999)
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

    ½ * (.1) * (10000) * (9999)
    4,999,500 edges

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904  (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)

if n=1000, p=(1-.01)298=.05 (unlikely)   
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 For deterministic topologies (such as hypercube), design of 

efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a 

deterministic topology

 Schlosser et al [2002] – offer simple and efficient 

broadcasting scheme that relies on keeping track of neighbors 

per dimension

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

MESSAGE FLOODING

 Hypercube Broadcast

 N(1001) starts the network broadcast 

 N(1001) neighbors {0001,1000,1011,1101}

 N(1001) Sends message to all neighbors

 >>Edge Labels (which bit is changed?, 1 st,  2nd,  3 rd,  4 th…)

 Edge to 0001 – labeled 1 – change the 1st bit

 Edge to 1000 – labeled 4 – change the 4 th bit

 Edge to 1011 – labeled 3 – change the 3 rd bit

 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension

 Node 1101 receives message on edge labeled 2

 Broadcast msg is only forwarded on higher valued edges (>2)
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MESSAGE 

FLOODING - 2
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 Hypercube: forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111} 

 Node (1101) - incoming broadcast edge = 2

 Label Edges:

 Edge to 0101 – labeled 1 – change the 1st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n,  
n=dimensions of hypercube
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MESSAGE FLOODING - 3

 When structured peer-to-peer topologies are not available

 Gossip based approaches support multicast communication 
over unstructured peer-to-peer networks

 General approach is to 
leverage how gossip 
spreads across a group

 This is also called 
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node
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GOSSIP BASED DATA DISSEMINATION

59

60



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.31

 Epidemic algorithms: algorithms for large-scale distributed 

systems that spread information

 Goal: “infect” all nodes with new information as fast as 

possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data
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INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the 

network to propagate the network

Complete set of nodes is known to each member
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EPIDEMIC PROTOCOLS

61

62



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.32

 Anti-entropy: Propagation model where node P picks node Q at 
random and exchanges message updates

 Akin to random walk

 Types of message exchange:

 PUSH: P only pushes its own updates to Q

 PULL: P only pulls in new updates from Q

 T WO-WAY: P and Q send updates to each other 
(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden 
susceptible nodes

 Pull: better because susceptible nodes can pull updates from 
infected nodes

 Push-pull is better still

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

ANTI ENTROPY DISSEMINATION MODEL 

FOR GOSSIPING

P Q

P Q

P Q

 Round: span of time during which every node takes initiative 

to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all 

nodes requires O(log(N)), where N=number of nodes

 Let p i denote probability that

node P has not received 

msg m after the i th round.

 For pull, push, and push-pull 

based approaches:
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ANTI ENTROPY EFFECTIVENESS

10,000 nodes →
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 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another 

node

 Node P may loose interest in spreading the rumor with 

probability = pstop, let’s say 20% . . .  (or 0.20)
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RUMOR SPREADING

 pstop,  is the probability node will stop spreading once contacting a 
node that already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative 
to the probability that node P 
stops propagating when finding 
a node already having the 
message

 Fraction of nodes not updated 
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping      →
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RUMOR SPREADING - 2
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 Gossiping is good for spreading data

 But how can data be removed from the system? 

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from 

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required 

for data element to clear out of entire system

 A few nodes maintain death certificates forever
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REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds 

the death certificate for Item X

 Node P will recirculate the death certificate across the 

network for Item X
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DEATH CERTIFICATE EXAMPLE
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QUESTIONS
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