
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.1

Ch. 4 – Communication - II

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)

 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

OBJECTIVES – 2/20

1

2

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

ONLINE DAILY FEEDBACK SURVEY

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L13.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.3

 Please classify your perspective on material covered in today’s

class (24 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.17 ( - previous 6.16)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.75 ( - previous 5.29)

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

MATERIAL / PACE

 Week 8 :

▪ Tuesday February 20 – 12:30pm –KEY 102

▪ Thursday February 22 – 12:30pm –MLG 110

▪ Friday February 23 – 12:30pm –MLG 301

 Week 9 (ever y day) :

▪ Monday February 26 – 12:30pm – MLG 110

▪ Wednesday February 28 – 1:30pm – JOY 117

▪ Thursday February 29 – 1:30pm – MLG 110

▪ Friday March 1 – 1:30pm – MLG 301

 Week 10 (Monday and Tuesday) :

▪ Mar 4, 5, 7 – 1:30pm – room TBA

 Earn up to 30 buf fer points added to the Final Exam score

 Earn 3 points for each seminar attended

 Buffer points replace missed points on the Final Exam

 Once the Final Exam score = 100%, addit ional points do not push the Final
Exam score above 100%

 Buffer points wil l not impact the course cur ve for the Final Exam

 Any course cur ve wil l be applied before buf fer points

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

CSS TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT

In Winter 23, the final

exam scores ran approx.
10 pts on average below
the W’24 midterm

scores

5

6

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.4

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

FEEDBACK FROM 2/15

 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

OBJECTIVES – 2/20

7

8

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.5

 Find Teammates: signup posted on Canvas under ‘People’

 GenericNode.tar.gz includes Dockerfile examples

 GenericNode.tar.gz assumes Java 11

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of

a client or server for a Key/Value Store

 Recommended in Java 11 LTS

 Client node program interacts with server node to put, get,

delete, or list items in a key/value store

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

ASSIGNMENT 2

 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure

to install and select JDK 11

 On left-hand Project menu, right-click on ‘GenericNode ’ project

 Select Properties

 Under Build | Compile, be sure Java Platform is JDK 11

 Under Sources, be sure Source/Binary Format is 11

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

USING JAVA 11 IN NETBEANS

9

10

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.6

 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

OBJECTIVES – 2/20

 DUE Sunday March 10 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Builds off of Assignment 2 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

ASSIGNMENT 3 – COMING SOON

11

12

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.7

 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

OBJECTIVES – 2/20

Apache ActiveMQ

CH. 4.3: MESSAGE-

ORIENTED

COMMUNICATION

L13.14

13

14

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.8

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

 (0MQ) High performance intelligent socket library

 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++

▪ 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker -less topologies

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

ZEROMQ – SOCKET LIBRARY

15

16

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.9

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

▪ Basic socket operations abstracted away

▪ Supports many-to-one, one-to-one, and one-to-many

connections

▪Multicast connections (one-to-many – single server socket

simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication

patterns

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

ZEROMQ – 2

 Request-reply pattern

▪ Traditional client-server communication (e.g. RPC)

▪ Client: request socket (REQ)

▪ Server: reply socket (REP)

 Publish-subscribe pattern

▪ Clients subscribe to messages published by servers

▪ As in event-based coordination (Ch. 1)

▪ Supports multicasting messages from

server to multiple

▪ Client: subscribe socket (SUB)

▪ Server: publish socket (PUB)

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

ZEROMQ - PATTERNS

17

18

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.10

 Pipeline pattern (FIFO-queue)

▪ Analogous to a producer/consumer bounded buffer

▪ Producing processes generate results, push to pipe

▪ Consuming processes consume results,

pull from pipe

▪ Producers: push socket (PUSH socket)

▪ Consumers: pull socket (PULL socket)

▪ Push- distributes messages to all pull

clients evenly

▪ Consumers pull results from pipe and

push results downstream

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

ZEROMQ – PATTERNS - 2

Cloud services

▪Amazon Simple Queueing Service (SQS)

▪Azure service bus

Open source frameworks

▪Nanomsg

▪ZeroMQ

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.20

QUEUEING ALTERNATIVES

19

20

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.11

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:

Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations

in C, C++, Fortran

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.21

MESSAGE PASSING INTERFACE (MPI)

 Motivation: sockets insufficient for interprocess

communication on large scale HPC compute clusters and

super computers

▪ Sockets at the wrong level of abstraction

▪ Sockets designed to communicate over the network using

general purpose TCP/IP stacks

▪ Not designed for proprietary protocols

▪ Not designed for high-speed interconnection

networks used by supercomputers,

HPC-clusters, etc.

▪ Better buffering and synchronization needed

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

MOTIVATIONS FOR MPI

21

22

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.12

 Supercomputers had proprietary communication libraries

▪ Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel

code that could migrate across supercomputers

 Led to development of MPI

▪ To support transient (non-persistent) communication for

parallel programming

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

MOTIVATIONS FOR MPI - 2

 Very large library, v1.0 (1994) 128 functions

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

MPI FUNCTIONS / DATATYPES

23

24

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.13

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

 Message-queueing systems

▪ Provide extensive support for persistent asynchronous

communication

▪ In contrast to transient systems

▪ Temporally decoupled: messages are eventually delivered

to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other

applications can send messages

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

MESSAGE-ORIENTED-MIDDLEWARE

25

26

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.14

 Enables communication between applications, or sets of

processes

▪ User applications

▪ App-to-database

▪ To support distributed real-time computations

 Use cases

▪ Batch processing, Email, workflow, groupware, routing

subqueries

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

MESSAGE QUEUEING SYSTEMS:

USE CASES

 Scenarios:

(a) Sender/receiver

both running

(b) Sender running,

receiver offline

(c) Sender offline,

receiver running

(d) Sender/receiver

both offline

 Queue persists msgs,

and attempts to send

them but no one may be available to receive them…

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

MESSAGE QUEUEING SYSTEMS

SENDS

READS

27

28

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.15

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile

and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue

▪ Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

MESSAGE QUEUEING SYSTEMS - 2

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed

into a queue. Notifies receivers

 Queue managers: manage individual message queues as a

separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked-up)?

▪ Contact address (host, port) pairs

▪ Local look-up tables can be stored at each queue manager

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE

29

30

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.16

 ISSUES:

 How do we route traffic between queue managers?

▪ How are name-to-address mappings efficiently kept?

▪ Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the

same protocol (language)

 Need arises for message protocol converters

▪ “Reformatter” of messages

 Act as application-level gateway

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE - 2

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

31

32

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.17

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter-application communication to “open”
messaging-middleware

 Many are proprietary solutions, so not very open

 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP) , 2006

 Address openness/interoperability of proprietary solutions

 Open wire protocol for messaging with powerful routing
capabilities

 Help abstract messaging and application interoperability by
means of a generic open protocol

 Suffer from incompatibil ity among protocol versions

 pre-1.0, 1.0+

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with

potentially many channels, stable, reused by many

channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two

channels

 Link: provide fine-grained flow-control of message

transfer/status between applications and queue manager

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.34

AMQP - 2

33

34

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.18

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to

recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.35

AMQP MESSAGING

 Some examples:

 RabbitMQ, Apache QPid

▪ Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka

▪ Dumb broker (message store), similar to a distributed log file

▪ Smart consumers – intelligence pushed off to the clients

▪ Stores stream of records in categories called topics

▪ Supports voluminous data, many consumers, with minimal O/H

▪ Kafka does not track which messages were read by each consumer

▪ Messages are removed after timeout

▪ Clients must track their own consumption (Kafka doesn’t help)

▪ Messages have key, value, timestamp

▪ Supports high volume pub/sub messaging and streams

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.36

MESSAGE-ORIENTED-MIDDLEWARE

EXAMPLES:

35

36

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.19

 Questions from 2/15

 Assignment 2: Key Value Store

 Assignment 3: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.37

OBJECTIVES – 2/20

WE WILL RETURN AT

4:55 PM

37

38

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.20

Apache ActiveMQ

CH. 4.4: MULTICAST

COMMUNICATION

L13.39

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

39

40

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.21

 Sending data to multiple receivers

 Many failed proposals for network-level / transport-level
protocols to support multicast communication

 Problem: How to set up communication paths for
information dissemination?

 Solutions: require huge management effort, human
intervention

 Focus shifted more recently to peer-to-peer networks

▪ Structured overlay networks can be setup easily and
provide efficient communication paths

▪ Application-level multicasting techniques more successful

▪ Gossip-based dissemination: unstructured p2p networks

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

MULTICAST COMMUNICATION

 Overlay network

▪ Virtual network implemented on top of an actual physical network

 Underlying network

▪ The actual physical network that implements the overlay

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

NETWORK STRUCTURE

41

42

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.22

 Application level multi -casting

▪ Nodes organize into an overlay network

▪ Network routers not involved in group membership

▪ Group membership is managed at the application level (A2)

 Downside:

▪ Application-level routing likely less efficient than network -level

▪ Necessary tradeoff until having better multicasting protocols at

lower layers

 Overlay topologies

▪ TREE: top-down, unique paths between nodes

▪ MESH: nodes have multiple neighbors; multiple paths between nodes

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

APPLICATION LEVEL

TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per link, counts how often a packet

crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.

the underlying networks

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

MULTICAST TREE METRICS

Numbers represent
network delay
between nodes

43

44

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.23

 Stretch (Relative Delay Penalty RDP)

 CONSIDER routing from B to C

 What is the Stretch?

 Stretch (delay ratio) = Overlay -delay / Underlying-delay

 Overlay: B→Rb→Ra→Re→E→Re→Rc→Rd→D→Rd→Rc→ C

= 73

 Underlying: B→Rb→Rd→Rc→C = 47

 Stretch = 73 / 47 = 1.55

 Captures additional time (stretch) to transfer msg on overlay net

 Tree cost: Overall cost of the overlay network

 Ideally would like to minimize network costs

 Find a minimal spanning tree which minimizes total time for

disseminating information to all nodes

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.45

MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

FLOOD-BASED MULTICASTING

45

46

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.24

 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 If only leaf nodes are to receive the multicast message, many
intermediate nodes are involved in storing and forwarding the
message not meant for them

 Solution: construct an overlay network for each multicast
group

▪ Sending a message to the group, becomes the same as broadcasting
to the multicast group (group of nodes that listen and receive traffic
for a shared IP address)

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

FLOOD-BASED MULTICASTING

 When there is no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probability distribution

 Probability Pedge that two nodes are joined

 Overlay network will have: ½ * Pedge * N * (N-1) edges

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability

Assumptions may help then to
reason or rationalize about the
network…

47

48

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.25

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

PROBABILISTIC FLOODING

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

49

50

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.26

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

 ½ * (.1) * (10000) * (9999)

51

52

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.27

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

 ½ * (.1) * (10000) * (9999)
 4,999,500 edges

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

53

54

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.28

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904 (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)

if n=1000, p=(1-.01)298=.05 (unlikely)

55

56

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.29

 For deterministic topologies (such as hypercube), design of

efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a

deterministic topology

 Schlosser et al [2002] – offer simple and efficient

broadcasting scheme that relies on keeping track of neighbors

per dimension

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

MESSAGE FLOODING

 Hypercube Broadcast

 N(1001) starts the network broadcast

 N(1001) neighbors {0001,1000,1011,1101}

 N(1001) Sends message to all neighbors

 >>Edge Labels (which bit is changed?, 1 st, 2nd, 3 rd, 4 th…)

 Edge to 0001 – labeled 1 – change the 1st bit

 Edge to 1000 – labeled 4 – change the 4 th bit

 Edge to 1011 – labeled 3 – change the 3 rd bit

 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension

 Node 1101 receives message on edge labeled 2

 Broadcast msg is only forwarded on higher valued edges (>2)

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

MESSAGE

FLOODING - 2

57

58

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.30

 Hypercube: forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111}

 Node (1101) - incoming broadcast edge = 2

 Label Edges:

 Edge to 0101 – labeled 1 – change the 1st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions of hypercube

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.59

MESSAGE FLOODING - 3

 When structured peer-to-peer topologies are not available

 Gossip based approaches support multicast communication
over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.60

GOSSIP BASED DATA DISSEMINATION

59

60

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.31

 Epidemic algorithms: algorithms for large-scale distributed

systems that spread information

 Goal: “infect” all nodes with new information as fast as

possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.61

INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the

network to propagate the network

Complete set of nodes is known to each member

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

EPIDEMIC PROTOCOLS

61

62

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.32

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

 Akin to random walk

 Types of message exchange:

 PUSH: P only pushes its own updates to Q

 PULL: P only pulls in new updates from Q

 T WO-WAY: P and Q send updates to each other
(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull: better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better still

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

ANTI ENTROPY DISSEMINATION MODEL

FOR GOSSIPING

P Q

P Q

P Q

 Round: span of time during which every node takes initiative

to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all

nodes requires O(log(N)), where N=number of nodes

 Let p i denote probability that

node P has not received

msg m after the i th round.

 For pull, push, and push-pull

based approaches:

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

ANTI ENTROPY EFFECTIVENESS

10,000 nodes →

63

64

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.33

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another

node

 Node P may loose interest in spreading the rumor with

probability = pstop, let’s say 20% . . . (or 0.20)

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

RUMOR SPREADING

 pstop, is the probability node will stop spreading once contacting a
node that already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative
to the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping →

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.66

RUMOR SPREADING - 2

65

66

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.34

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required

for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds

the death certificate for Item X

 Node P will recirculate the death certificate across the

network for Item X

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.68

DEATH CERTIFICATE EXAMPLE

67

68

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 20, 2024

Slides by Wes J. Lloyd L13.35

QUESTIONS

February 20, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L13.69

69

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/20
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: CSS Tenure track faculty candidate research seminars – EXTRA CREDIT
	Slide 7: Feedback from 2/15
	Slide 8: OBJECTIVES – 2/20
	Slide 9: Assignment 2
	Slide 10: Using java 11 in netbeans
	Slide 11: OBJECTIVES – 2/20
	Slide 12: Assignment 3 – coming soon
	Slide 13: OBJECTIVES – 2/20
	Slide 14: Ch. 4.3: message-oriented communication
	Slide 15: Chapter 4
	Slide 16: ZeroMq – socket library
	Slide 17: Zeromq – 2
	Slide 18: Zeromq - patterns
	Slide 19: Zeromq – patterns - 2
	Slide 20: Queueing alternatives
	Slide 21: Message passing interface (MPI)
	Slide 22: Motivations for mpi
	Slide 23: Motivations for mpi - 2
	Slide 24: Mpi functions / datatypes
	Slide 25: Common Mpi functions
	Slide 26: Message-oriented-middleware
	Slide 27: Message queueing systems: USE cases
	Slide 28: Message queueing systems
	Slide 29: Message queueing systems - 2
	Slide 30: Message queueing systems architecture
	Slide 31: Message queueing systems architecture - 2
	Slide 32: Message broker organization
	Slide 33: AmqP protocol
	Slide 34: Amqp - 2
	Slide 35: Amqp messaging
	Slide 36: Message-oriented-middleware examples:
	Slide 37: OBJECTIVES – 2/20
	Slide 38: We will return at 4:55 pm
	Slide 39: Ch. 4.4: multicast communication
	Slide 40: Chapter 4
	Slide 41: Multicast communication
	Slide 42: Network structure
	Slide 43: Application level tree-based multicasting
	Slide 44: Multicast tree metrics
	Slide 45: Multicast tree metrics - 2
	Slide 46: Flood-based multicasting
	Slide 47: Flood-based multicasting
	Slide 48: Random graphs
	Slide 49: Probabilistic flooding
	Slide 50: Probabilistic flooding
	Slide 51: Probabilistic flooding
	Slide 52: Probabilistic flooding
	Slide 53: Probabilistic flooding
	Slide 54: Probabilistic flooding
	Slide 55: Probabilistic flooding
	Slide 56: Probabilistic flooding
	Slide 57: Message flooding
	Slide 58: Message flooding - 2
	Slide 59: Message flooding - 3
	Slide 60: Gossip based data dissemination
	Slide 61: Information dissemination
	Slide 62: Epidemic protocols
	Slide 63: Anti entropy dissemination model for gossiping
	Slide 64: Anti entropy effectiveness
	Slide 65: Rumor spreading
	Slide 66: Rumor spreading - 2
	Slide 67: Removing data
	Slide 68: Death certificate example
	Slide 69: Questions

