
TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.1

Ch. 4 - Communication

 Wes J. Lloyd

 School of Engineering
 & Technology (SET)

 University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/13

 Midterm Review

 Assignment 2: Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-review)

▪ Chapter 4.3: Message Oriented Communication

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.2

OBJECTIVES – 2/15

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.3

ONLINE DAILY FEEDBACK SURVEY

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L12.4

 Please classify your perspective on material covered in today’s

class (19 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.16 (- previous 5.45)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 6.11 (- previous 5.29)

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.5

MATERIAL / PACE

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.6

QUESTIONS FROM 2/13

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.2

 Week 8:

▪ Tuesday February 20 – 12:30pm –room TBA

▪ Thursday February 22 – 12:30pm –room TBA

▪ Friday February 23 – 1:30pm –room TBA

 Week 9 (every day):

▪ Feb 26, 27, 28, 29, Mar 1 – 1:30pm –room TBA

 Week 10 (Monday and Tuesday):

▪ Mar 4, 5 – 1:30pm – room TBA

 Earn up to 30 buffer points added to the Final Exam score

 Earn 3 points for each seminar attended

 Buffer points replace missed points on the Final Exam

 Once the Final Exam score = 100%, addit ional points do not push
the Final Exam score above 100%

 Buffer points wil l not impact the course curve for the Final Exam

 Any course curve wil l be applied before buffer points

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.7

CSS TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT

In Winter 23, the final
exam scores ran approx.
10 pts on average below

the W’24 midterm
scores

 Questions from 2/13

 Midterm Review

 Assignment 2: Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-review)

▪ Chapter 4.3: Message Oriented Communication

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.8

OBJECTIVES – 2/15

 Review of questions

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.12

MIDTERM

 Questions from 2/13

 Midterm Review

 Assignment 2: Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-review)

▪ Chapter 4.3: Message Oriented Communication

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.13

OBJECTIVES – 2/15

This seems fairly
normally distributed.

 Find Teammates: signup posted on Canvas under ‘People’

 GenericNode.tar.gz includes Dockerfile examples

 GenericNode.tar.gz assumes Java 11

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of

a client or server for a Key/Value Store

 Recommended in Java 11 LTS

 Client node program interacts with server node to put, get,

delete, or list items in a key/value store

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.14

ASSIGNMENT 2

 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure

to install and select JDK 11

 On left-hand Project menu, r ight-click on ‘GenericNode’ project

 Select Properties

 Under Build | Compile, be sure Java Platform is JDK 11

 Under Sources, be sure Source/Binary Format is 11

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.15

USING JAVA 11 IN NETBEANS

7 8

12 13

14 15

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.3

 Questions from 2/13

 Midterm Review

 Assignment 2: Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-review)

▪ Chapter 4.3: Message Oriented Communication

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.16

OBJECTIVES – 2/15

CH. 4 COMMUNICATION

L12.17

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.18

CHAPTER 4

Reviews and builds on
content from Ch. 2/3

CH. 4.1: FOUNDATIONS

L12.19

 Persistent communication

▪ Message submitted for transmission is stored by communication

middleware as long as it takes to deliver it

▪ Example: email system (SMTP)

▪ Receiver can be offline when message sent

▪ Temporal decoupling (delayed message delivery)

 Transient communication

▪ Message stored by middleware only as long as sender/receiver

applications are running

▪ If recipient is not active, message is dropped

▪ Transport level protocols typically are transient (no msg storage)

 What OSI protocol level is the SMTP Protocol?

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.20

TYPES OF COMMUNICATION

 Asynchronous communication

▪ Client does not block, continues doing other work

 Synchronous communication

▪ Client blocks and waits

 Three types of blocking (synchronous)

1. SHORTEST:
Until middleware notifies it will take over delivering request

2. MEDIUM:
Sender may block until request has been delivered

3. LONGEST:
Sender waits until request is processed and result is returned

 Persistence + synchronization (blocking)

▪ Common scheme for message-queueing systems

▪ Publish message to queue : block until message delivered to queue

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.21

TYPES OF COMMUNICATION - 2

16 17

18 19

20 21

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.4

 Questions from 2/13

 Midterm Review

 Assignment 2: Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-review)

▪ Chapter 4.3: Message Oriented Communication

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.23

OBJECTIVES – 2/15

CH. 4.2: RPC (LIGHT-

REVIEW)

L12.24

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call look

like a local one

 newlist = append(data, dbList)

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.25

RPC – REMOTE PROCEDURE CALL

 Transparency enabled with client and server “stubs”

 Client has “stub” implementation of the server -side function

 Inter face exactly same as server side

 But client DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends request to

server. Call blocks and waits for reply

 Server stub: transforms incoming

request into local procedure call

 Blocks to wait for reply

 Server stub unpacks request ,

calls server procedure

 I t’s as if the routine were called locally

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.26

RPC - 2

 Server packs procedure results and sends back to client.

 Client “request” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the

network… except for network latency…

 Call abstraction enables clients to invoke functions in

alternate languages, on different machines

 Differences are handled by the RPC “framework”

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.27

RPC - 3

22 23

24 25

26 27

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.5

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server -side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.28

RPC STEPS

 STUBS: take parameters, pack into a message, send across

network

 Parameter marshaling:

 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly

interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must understand how to unmarshal (unserialize) data

 Processor architectures vary with how bytes are numbered:

Intel (r ight→left) , older ARM (left→right)

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.29

PARAMETER PASSING

 Big-Endian: write bytes lef t to r ight (ARM processors)

 Little-endian: write bytes right to lef t (x86 processors)

 Networks: typically transfer data in Big -Endian form

 Solution: transform data to machine/network independent

format

 Marshaling/unmarshaling:

transform data to neutral

format

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.30

RPC: BYTE ORDERING

 Passing by value is straightforward

 Passing by reference is challenging

 Pointers only make sense on local machine owning the data

 Memory space of client and server are dif ferent

 Solutions to RPC pass-by-reference:

1. Forbid pointers altogether

2. Replace pass-by-reference with pass -by-value

▪ Requires transferring entire object/array data over network

▪ Read-only optimization: don’t return data if unchanged on server

3. Passing global references

▪ Example: file handle to file accessible by client and server
via shared file system

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.31

RPC: PASS-BY-REFERENCE

 Let developer specify which routines will be called

remotely

▪ Automate client/server side stub generation for these

routines

 Embed remote procedure call mechanism into the

programming language

▪ E.g. Java RMI

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.32

RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])

 1-byte character transmits with 3 -padded bytes

 Float sent as whole word (4 -bytes)

▪ Array as group of words, proceed by word describing
length

▪ Client stub must package data in specific format

▪ Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple
data structures: int, char, floats w/ little endian

 RPC clients/servers: must agree on protocol

▪ TCP? UDP?

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.33

STUB GENERATION

28 29

30 31

32 33

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.6

 Inter faces are specified using an Inter face Definition

Language (IDL)

 Inter face specifications in IDL are used to generate language

specific stubs

 IDL is compiled into client and server -side stubs

 Much of the plumbing for RPC involves maintaining

boilerplate-code

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.34

STUB GENERATION - 2

 Leads to simpler application development

 Helps with providing access transparency

▪ Differences in data representation, and how object is

accessed

▪ Inter-language parameter passing issues resolved:

→ just 1 language

 Well known example: Java Remote Method Invocation

RPC equivalent embedded in Java

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.35

LANGUAGE BASED SUPPORT

 RPC: client typically blocks until reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs

▪ When no result, server can immediately send reply

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.36

RPC VARIATIONS

Client/server synchronous RPC Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous

procedure calls?

▪ For a local program

▪ For a distributed program (system)

 Use cases for asynchronous procedure calls

▪ Long running jobs allow client to perform alternate work

in background (in parallel)

▪ Client may need to make multiple service calls to multiple

server backends at the same time…

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.37

RPC VARIATIONS – 2

 Deferred synchronous RPC

▪ Server performs CALLBACK to client

▪ Client, upon making call, spawns separate thread which blocks and

waits for call

 One-way RPCs

▪ Client does not wait for any server acknowledgement – it just goes…

 Client polling

▪ Client (using separate thread) continually polls server for result

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.38

TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration:

Does the client need all results or just one?

 Use cases:

▪ Fault tolerance – wait for just one

▪ Replicate execution – verify

results, use first result

▪ Divide and conquer - multiple

RPC calls work in parallel on

different parts of dataset,

client aggregates results

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.39

MULTICAST RPC

34 35

36 37

38 39

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.7

 DCE : basis for Microsoft’s distributed computing object model
(DCOM)

 Used in Samba, cross-platform file and print sharing via RPC

 Middleware system – provides layer of abstraction between OS
and distributed applications

 Designed for Unix, ported to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then access shared resources to:

▪ Mount a windows file system on Linux

▪ Share a printer connected to a Windows server

 Uses client/server model

 All communication via RPC

 DCE daemon tracks participating machines, ports

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.40

RPC EXAMPLE:
DISTRIBUTED COMPUTING ENVIRONMENT (DCE)

 Server name comes from directory server

 Server port comes from DCE daemon

▪ DCE daemon has a well known port # client already knows

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.41

DCE CLIENT-TO-SERVER BINDING

1. Create Interface definition language (IDL) files

▪ IDL files contain Globally unique identifier (GUID)

▪ GUIDs must match: client and server compare GUIDs to
verify proper versions of the distributed object

▪ 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:

▪ Header file (interface.h in C)

▪ Client stub

▪ Server stub

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.42

EXTRA: DCE – CLIENT/SERVER DEVELOPMENT

 For a client to call a server, server must be registered

▪ Java: uses RMI registry

 Client process to search for RMI server:

1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot:

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server

that tracks DCE servers

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.43

EXTRA: DCE – BINDING CLIENT TO SERVER

WE WILL RETURN AT

2:58 PM

 Questions from 2/13

 Midterm Review

 Assignment 2: Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-review)

▪ Chapter 4.3: Message Oriented Communication

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.45

OBJECTIVES – 2/15

40 41

42 43

44 45

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.8

Apache Act iveMQ

CH. 4.3: MESSAGE-

ORIENTED

COMMUNICATION

L12.46

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.47

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

 RPC assumes that the client and server are running

at the same time… (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

▪ Synchronous vs. asynchronous

▪Messaging systems

▪Message-queueing systems

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.48

MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to file streams for I/O, but network streams

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.49

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Servers execute 1 st - 4 operations (socket, bind, listen, accept)

 Methods refer to C API functions

 Mappings across dif ferent libraries will vary (e.g. Java)

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.50

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking

call reserves buffers for specified number of pending

connection requests server is willing to accept

 Accept: blocks until connection request arrives

▪ Upon arrival, new socket is created matching original

▪ Server spawns thread, or forks process to service incoming request

▪ Server continues to wait for new connections on original socket

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.51

SERVER SOCKET OPERATIONS

46 47

48 49

50 51

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.9

 Socket: Creates socket client uses for communication

 Connect: Server transport -level address provided, client blocks

until connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel

▪ Analogous to closing a file stream

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.52

CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own

TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted)

messaging is very basic, can be brittle

▪ Easy to make mistakes…

 Any extra communication facilities must be implemented

by the application developer

 More advanced approaches are desirable

▪ E.g. frameworks with support common desirable

functionality

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.53

SOCKET COMMUNICATION

 (0MQ) High performance intelligent socket l ibrary

 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++

▪ 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker -less topologies

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.54

ZEROMQ – SOCKET LIBRARY

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

▪ Basic socket operations abstracted away

▪ Supports many-to-one, one-to-one, and one-to-many

connections

▪Multicast connections (one-to-many – single server socket

simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication

patterns

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.55

ZEROMQ – 2

 Request-reply pattern

▪ Traditional client-server communication (e.g. RPC)

▪ Client: request socket (REQ)

▪ Server: reply socket (REP)

 Publish-subscribe pattern

▪ Clients subscribe to messages published by servers

▪ As in event-based coordination (Ch. 1)

▪ Supports multicasting messages from

server to multiple

▪ Client: subscribe socket (SUB)

▪ Server: publish socket (PUB)

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.56

ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

▪ Analogous to a producer/consumer bounded buffer

▪ Producing processes generate results, push to pipe

▪ Consuming processes consume results,

pull from pipe

▪ Producers: push socket (PUSH socket)

▪ Consumers: pull socket (PULL socket)

▪ Push- distributes messages to all pull

clients evenly

▪ Consumers pull results from pipe and

push results downstream

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.57

ZEROMQ – PATTERNS - 2

52 53

54 55

56 57

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.10

Cloud services

▪Amazon Simple Queueing Service (SQS)

▪Azure service bus

Open source frameworks

▪Nanomsg

▪ZeroMQ

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.58

QUEUEING ALTERNATIVES

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:

Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations

in C, C++, Fortran

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.59

MESSAGE PASSING INTERFACE (MPI)

 Motivation: sockets insufficient for interprocess

communication on large scale HPC compute clusters and

super computers

▪ Sockets at the wrong level of abstraction

▪ Sockets designed to communicate over the network using

general purpose TCP/IP stacks

▪ Not designed for proprietary protocols

▪ Not designed for high-speed interconnection

networks used by supercomputers,

HPC-clusters, etc.

▪ Better buffering and synchronization needed

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.60

MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

▪ Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel

code that could migrate across supercomputers

 Led to development of MPI

▪ To support transient (non-persistent) communication for

parallel programming

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.61

MOTIVATIONS FOR MPI - 2

 Very large library, v1.0 (1994) 128 functions

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.62

MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.63

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

58 59

60 61

62 63

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.11

 Message-queueing systems

▪ Provide extensive support for persistent asynchronous

communication

▪ In contrast to transient systems

▪ Temporally decoupled: messages are eventually delivered

to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other

applications can send messages

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.64

MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of

processes

▪ User applications

▪ App-to-database

▪ To support distributed real-time computations

 Use cases

▪ Batch processing, Email, workflow, groupware, routing

subqueries

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.65

MESSAGE QUEUEING SYSTEMS:

USE CASES

 Scenarios:

(a) Sender/receiver

both running

(b) Sender running,

receiver offline

(c) Sender offline,

receiver running

(d) Sender/receiver

both offline

 Queue persists msgs,

and attempts to send

them but no one may be available to receive them…

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.66

MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile

and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue

▪ Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.67

MESSAGE QUEUEING SYSTEMS - 2

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed

into a queue. Notifies receivers

 Queue managers: manage individual message queues as a

separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked -up)?

▪ Contact address (host, port) pairs

▪ Local look-up tables can be stored at each queue manager

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.68

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

▪ How are name-to-address mappings efficiently kept?

▪ Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the

same protocol (language)

 Need arises for message protocol converters

▪ “Reformatter” of messages

 Act as application-level gateway

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.69

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE - 2

64 65

66 67

68 69

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.12

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.70

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter -application communication to “open”
messaging-middleware

 Many are proprietary solutions, so not very open

 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP) , 2006

 Address openness/interoperability of proprietary solutions

 Open wire protocol for messaging with powerful routing
capabilities

 Help abstract messaging and application interoperability by
means of a generic open protocol

 Suffer from incompatibility among protocol versions

 pre-1.0, 1.0+

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.71

AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with

potentially many channels, stable, reused by many

channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two

channels

 Link: provide fine-grained flow -control of message

transfer/status between applications and queue manager

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.72

AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to

recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.73

AMQP MESSAGING

 Some examples:

 RabbitMQ, Apache QPid

▪ Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka

▪ Dumb broker (message store), similar to a distributed log file

▪ Smart consumers – intelligence pushed off to the clients

▪ Stores stream of records in categories called topics

▪ Supports voluminous data, many consumers, with minimal O/H

▪ Kafka does not track which messages were read by each consumer

▪ Messages are removed after timeout

▪ Clients must track their own consumption (Kafka doesn’t help)

▪ Messages have key, value, timestamp

▪ Supports high volume pub/sub messaging and streams

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.74

MESSAGE-ORIENTED-MIDDLEWARE

EXAMPLES:

Apache Act iveMQ

CH. 4.4: MULTICAST

COMMUNICATION

L12.75

70 71

72 73

74 75

TCSS 558: Applied Distributed Computing
[Winter 2024] School of Engineering and Technology,
UW-Tacoma

February 15, 2024

Slides by Wes J. Lloyd L12.13

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.76

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

 Sending data to multiple receivers

 Many failed proposals for network-level / transport-level
protocols to support multicast communication

 Problem: How to set up communication paths for
information dissemination?

 Solutions: require huge management effort, human
intervention

 Focus shifted more recently to peer-to-peer networks

▪ Structured overlay networks can be setup easily and
provide efficient communication paths

▪ Application-level multicasting techniques more successful

▪ Gossip-based dissemination: unstructured p2p networks

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.77

MULTICAST COMMUNICATION

QUESTIONS

February 15, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma L12.78

76 77

78

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/15
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Questions from 2/13
	Slide 7: CSS Tenure track faculty candidate research seminars – EXTRA CREDIT
	Slide 8: OBJECTIVES – 2/15
	Slide 12: midterm
	Slide 13: OBJECTIVES – 2/15
	Slide 14: Assignment 2
	Slide 15: Using java 11 in netbeans
	Slide 16: OBJECTIVES – 2/15
	Slide 17: Ch. 4 communication
	Slide 18: Chapter 4
	Slide 19: Ch. 4.1: foundations
	Slide 20: Types of communication
	Slide 21: Types of communication - 2
	Slide 22
	Slide 23: OBJECTIVES – 2/15
	Slide 24: Ch. 4.2: RPC (light-review)
	Slide 25: Rpc – remote procedure call
	Slide 26: Rpc - 2
	Slide 27: Rpc - 3
	Slide 28: Rpc steps
	Slide 29: Parameter passing
	Slide 30: Rpc: byte ordering
	Slide 31: Rpc: pass-by-reference
	Slide 32: Rpc: development support
	Slide 33: Stub generation
	Slide 34: Stub generation - 2
	Slide 35: Language based support
	Slide 36: Rpc variations
	Slide 37: Rpc variations – 2
	Slide 38: Types of asynchronous rpc
	Slide 39: Multicast rpc
	Slide 40: RPC Example: distributed computing environment (DCE)
	Slide 41: DCE client-to-server binding
	Slide 42: EXTRA: Dce – client/server development
	Slide 43: EXTRA: Dce – binding client to server
	Slide 44: We will return at 2:58 pm
	Slide 45: OBJECTIVES – 2/15
	Slide 46: Ch. 4.3: message-oriented communication
	Slide 47: Chapter 4
	Slide 48: Message oriented communication
	Slide 49: sockets
	Slide 50: Sockets - 2
	Slide 51: Server Socket operations
	Slide 52: Client socket operations
	Slide 53: Socket communication
	Slide 54: ZeroMq – socket library
	Slide 55: Zeromq – 2
	Slide 56: Zeromq - patterns
	Slide 57: Zeromq – patterns - 2
	Slide 58: Queueing alternatives
	Slide 59: Message passing interface (MPI)
	Slide 60: Motivations for mpi
	Slide 61: Motivations for mpi - 2
	Slide 62: Mpi functions / datatypes
	Slide 63: Common Mpi functions
	Slide 64: Message-oriented-middleware
	Slide 65: Message queueing systems: USE cases
	Slide 66: Message queueing systems
	Slide 67: Message queueing systems - 2
	Slide 68: Message queueing systems architecture
	Slide 69: Message queueing systems architecture - 2
	Slide 70: Message broker organization
	Slide 71: AmqP protocol
	Slide 72: Amqp - 2
	Slide 73: Amqp messaging
	Slide 74: Message-oriented-middleware examples:
	Slide 75: Ch. 4.4: multicast communication
	Slide 76: Chapter 4
	Slide 77: Multicast communication
	Slide 78: Questions

