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TCSS 558: 

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/6

 Midterm Grading In Progress - Targeting Review Thursday

 Assignment 2: Key/Value Store

▪ Java Maven project template files posted

 Chapter 3: Processes

▪ Chapter 3.4: Servers

▪ Chapter 3.5: Resource (Code) Migration ( light-review)

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-review)

▪ Chapter 4.3: Message Oriented Communication
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OBJECTIVES – 2/13

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (28 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.45 ( - previous 6.04)  

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.29 ( - previous 5.52)
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MATERIAL / PACE
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FEEDBACK FROM 2/6
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OBJECTIVES – 2/13

 Find Teammates: signup posted on Canvas under ‘People’

 GenericNode.tar.gz includes Dockerfile examples

 GenericNode.tar.gz assumes Java 11

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of 

a client or server for a Key/Value Store

 Recommended in Java 11 LTS

 Client node program interacts with server node to put, get, 

delete, or list items in a key/value store
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ASSIGNMENT 2

 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure

to install and select JDK 11

 On left-hand Project menu, right-click on ‘GenericNode’  project

 Select Properties

 Under Build | Compile, be sure Java Platform is JDK 11

 Under Sources, be sure Source/Binary Format is 11 
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USING JAVA 11 IN NETBEANS
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OBJECTIVES – 2/13

7 8

9 10

11 12



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 13, 2024

Slides by Wes J. Lloyd L11.3

CH. 3.5: RESOURCE

(CODE) MIGRATION

L11.13

 To support on-the-fly reorganization of distributed 

systems, at times there is interest in resource 

migration

Can consider various types of resource migration

▪Code migration: source code, libraries

▪Process migration: a running job/task

▪VM migration: an entire virtual server!
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RESOURCE MIGRATION

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it is executing

 Portability – transferring code (running or not) across 

heterogeneous systems:

Mac OS X → Windows 10 → Linux

 Code migration enables f lexibi lity of distributed systems

▪ Topologies can be dynamically reconfigured on-the-fly
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TYPES OF CODE MIGRATION

Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate

▪Need to pause, save intermediate state, move, resume

▪Consider application specific vs. agnostic approaches

What would be:

an application agnostic approach to migration? 

an application specific approach?

What are advantages and disadvantages of each?
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PROCESS MIGRATION

 Move processes:  
from heavily loaded → lightly loaded nodes

 When do we consider a node as heavily loaded?

▪ Load average

▪ CPU utilization

▪ CPU queue length

 Which process(es) should be moved?

▪Must consider resource requirements for the task

 Where should process(es) be moved to?
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PROCESS MIGRATION - 2

 Can migrate processes or entire virtual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?
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MOTIVATIONS FOR MIGRATION

13 14

15 16

17 18



TCSS 558: Applied Distributed Computing
[Winter 2024]  School of Engineering and Technology, 
UW-Tacoma

February 13, 2024

Slides by Wes J. Lloyd L11.4

 Linux (CRIU) Checkpoint restore in userspace

 Linux tool: https://www.criu.org/

 Supports freezing a running application (or part of it)  to create 

a checkpoint to persistent storage ( e.g. disk) as a collection of 

files.

▪ This means saving the state of RAM to disk

 Can use checkpoint files to restore and run the application 

from the point it was frozen at. 

 Distinctive feature of CRIU is that it can be run in the user 

space (CPU user mode), rather than in kernel mode.

 CRIU can save a Docker container’s state for migration 

elsewhere
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LINUX CRIU

 Make decisions concerning allocation and 

redistribution of tasks across machines

 Provide resource management for compute intensive 

systems

 Often CPU centric

▪ Algorithms should also account for other resources

▪ Network capacity may be larger bottleneck that CPU 

capacity
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LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative 

reasoning or adhoc decisions vs. formal mathematical models

▪ Difficult to formalize solutions due to heterogeneous composition 

and state of systems and networks

 Is  i t  better to migrate code or  data?

 What factors should be considered?

▪ Cost of data transfer

▪ Processing power of nodes

▪ Cost of processing 

▪ Are there security 

requirements for the data?

WHEN TO MIGRATE?
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▪ Size of code

▪ Size of data

▪ Available network transfer 
speed

 Traditional clients

▪ Client interacts with server using specific protocol

▪ Tight coupling of client->server limits system flexibility

▪ Difficult to change protocol when there are many clients

 Dynamic web clients

▪Web browser downloads client code immediately before use

▪ New versions can readily be distributed
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APPROACHES TO CODE MIGRATION

 Advantages

▪ Client code loaded in as necessary

▪ Discarded when no longer needed

▪ Can easily change the client/server protocol

 Disadvantages

▪ Security: we have to trust the code

▪ Downloading client requires 

network bandwidth & time
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DYNAMIC WEB CLIENTS

 Sender- initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web browser

 Remote cloning

▪ Produce a copy of the process on another machine 

while parent runs
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CODE MIGRATION
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 What is migrated?

▪ Code segment

▪ Resource segment (device info)

▪ Execution segment (process info: data, state, stack, PC)

 Weak mobility

▪ Only code segment, no state

▪ Code always restarts 

 Strong mobility

▪ Code + execution segment

▪ Process stopped, state saved, moved, resumed

▪ Represents true process migration
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CODE MIGRATION - 2

* indicates what is 

modified 

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get

modified?

 State is stored in exec
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CODE MOBILITY TYPES

client obtains & runs code

client provides code for remote exec

everything runs remotely

client moves code and exec to server

 Assumption: code will always work at new node

 Invalid if  node architecture is dif ferent ( heterogeneous)

▪ X86, ARM, MAC, etc.

 What approaches are available to migrate code across 
heterogeneous systems?

 Intermediate code

▪ 1970s Pascal: generate machine-independent intermediate code

▪ Programs could then run anywhere

▪ Today: web languages: Javascript, Java

 VM Migration 
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MIGRATION OF 

HETEROGENEOUS SYSTEMS

 Four approaches:

1. PRECOPY: Push all memory pages to new machine 

(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 

start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1 -4?
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VIRTUAL MACHINE MIGRATION

L11.29

1. PRECOPY: Push all memory pages to new machine 
(slow),  resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory pages as 
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1 -4?

▪ (+) 1/3: no loss of service

▪ (+) 4: fast transfer, minimal loss of service

▪ (+) 2: fastest data transfer

▪ (+) 3: new VM immediately available

▪ (-) 1: must track modified pages during full page copy

▪ (-) 2: longest downtime - unacceptable for live services

▪ (-) 3: prolonged, slow, migration

▪ (-) 3: original VM must stay online for quite a while

▪ (-) 1/3: network load while original VM still in service
October 24, 2016
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 Questions from 2/6

 Midterm Grading In Progress - Targeting Review Thursday

 Assignment 2: Key/Value Store

▪ Java Maven project template files posted

 Chapter 3: Processes

▪ Chapter 3.4: Servers

▪ Chapter 3.5: Resource (Code) Migration ( light-review)
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▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-review)
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OBJECTIVES – 2/13

CH. 4 COMMUNICATION 

L11.32

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination
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CHAPTER 4

Reviews and builds on
content from Ch. 2/3

CH. 4.1: FOUNDATIONS

L11.34

 Distributed systems lack shared memory

 All distributed system communication 

is based on sending and receiving low -level messages

▪ P → Q

 Open Systems Interconnection Reference Model 

(OSI Model)

▪ Open systems communicate with any other open system

▪ Standards govern format, contents, meaning of messages

▪ Formalization of rules forms a communication protocol
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LAYERED PROTOCOLS

 Protocols provide a communication service

 Two service types:

▪Connection-oriented: sender/receiver establish 

connection, negotiate parameters of the protocol, close 

connection when done

▪ Physical example: telephone

▪Connectionless: No setup.  Sender sends. Receiver 

receives.

▪ Physical example: Mailing a letter
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LAYERED PROTOCOLS - 2
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 Physical layer: just sends bits → … 0 0 0 1 0 1 1 0 1 1 …

 Data link layer: Groups bits into frames

▪ Provides error correction via checksum

▪ Special bit pattern at start/end of frame
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OSI MODEL REVISITED

 Data link layer:

▪ Checksum: computed by adding all bytes in frame in particular 
way

▪ Added to message

▪ Receiver removes checksum, recomputes checksum, and 
compares

▪ If receiver and sender agree, frame is considered correct

▪ Receiver can request failed frames to be resent

▪ Frames assigned sequence numbers in the header

 Network layer:

▪ Sometimes referred to as the Internet layer

▪ On WANs sending msgs between client/server requires routing

▪ Provides addressing using IPV4 (32-bit), IPV6 (64-bit)
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OSI MODEL - 2

 Network layer:

▪ Helps with routing network traffic

▪ Shortest route (# of hops) may not be the best route

▪Minimizing delay (latency) is paramount

▪ Routing algorithms: use long-term average network 

conditions, or try to adapt to changing conditions

▪ ICMP Protocol: Internet Control Message Protocol

▪ Not typically for sending data, used for diagnostic/control 

purposes

▪ ICMP Examples: (ping, traceroute)
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OSI MODEL - 3

 Internet Control Message Protocol ( ICMP)

▪ 8 bytes header: 4 fixed, 4 variable

▪ Example message types:

▪ 0- echo reply (PING), 3- destination unreachable, 4- source quench 

(congestion control), 5- redirect message, 8- echo request (PING), 

9- router advertisement

▪ Others: 10 (router solicitation), 11 (time exceeded), 12 (parameter 

problem), 13 (timestamp), 15 (info request), 16 (info reply), 17 

(address mask request), 18 (address mask reply), 

30-39 (traceroute), 40 (security failures), 42 (ext echo request)…255
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OSI MODEL - 4

 Transport layer:

▪ Provides reliable connections

▪ Reorganizes packets arriving out of sequence

▪ Requests delivery of missing packets

1. Breaks application layer protocol messages into pieces 

to transmit

2. Assigns messages sequence numbers

3. Sends all messages
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OSI MODEL - 5

 Transport layer provides an infallible “message pipe”

▪ Put messages in

▪ Always come out undamaged, in correct order

 Transport layer protocols:

▪ TCP: Transmission Control Protocol (connection-oriented)

▪ UDP: Universal Datagram Protocol (connectionless)
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OSI MODEL - 6
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 Other transport  protocols

▪ Real-time transport protocol (RTP): real -time data, no data delivery 

guarantee

▪ Streaming Control Transmission Protocol (SCTP): alternative to TCP

 Higher- level protocols:

 Session layer : mechanisms for opening, closing, managing session 

between communicat ing processes

 Presentation layer :  deals with syntact ical meaning of messages

▪ Presentation services convert data among formats, for example:

▪ from extended binary coded decimal interchange code (EBCDIC) to ASCII

 Application layer :  protocols that don’t  fit  into other layers

▪ Many protocols: FTP, SFTP, HTTP, etc. etc.
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OSI MODEL - 7

 Each OSI layer contributes overhead bits to the message

 Layers append data to front (and maybe end) of the message

 Receiver strips off headers as the message goes up the OSI 

model stack: 

physical → data-link → network → transport → application
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OSI MODEL - 8

 Collection of layers used for communication from OSI model
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PROTOCOL STACK

 Middleware is reused by many applications

 Provide needed functions applications are built and 

depend upon

▪ For example: communication frameworks/libraries

 Middleware offer many general -purpose protocols

 Middleware protocol examples:

▪ Authentication protocols: supports granting users and 

processes access to authorized resources

▪ Doesn’t fit as an “application specific” protocol

▪ Considered a “Middleware protocol”
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MIDDLEWARE PROTOCOLS

 Distributed commit protocols

▪ Coordinate a group of processes (nodes)

▪ Facilitate all nodes carrying out a particular operation

▪ Or abort transaction

▪ Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

▪ Protect a resource from simultaneous access from 

multiple nodes

 Remote procedure call

▪ One of the oldest middleware protocols
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MIDDLEWARE PROTOCOLS - 2

 Message queueing services

▪ Support synchronization of data 

streams

▪ Transfer real-time data

▪ Distributed and scalable 

implementation

 Multicast services

▪ Scale communication to thousands of 

receivers spread across the Internet
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MIDDLEWARE PROTOCOLS - 3
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 Message queueing services

▪ Support synchronization of data 

streams

▪ Transfer real-time data

▪ Distributed and scalable 

implementation

 Multicast services

▪ Scale communication to thousands of 

receivers spread across the Internet
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MIDDLEWARE PROTOCOLS - 3

KEY: middleware protocols offer functionality to satisfy the 

software requirements of many applications

Middleware functions are general, application-independent 

in nature

Functions are so commonly needed they are offered in 

reusable frameworks / libraries
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ADAPTED REFERENCE MODEL

Combines network
and transport 

Physical and
Data link

 Persistent communication

▪ Message submitted for transmission is stored by communication 

middleware as long as it takes to deliver it

▪ Example: email system (SMTP)

▪ Receiver can be offline when message sent

▪ Temporal decoupling (delayed message delivery)

 Transient communication

▪ Message stored by middleware only as long as sender/receiver 

applications are running

▪ If recipient is not active, message is dropped

▪ Transport level protocols typically are transient (no msg storage)

 What OSI protocol level is  the SMTP Protocol?
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TYPES OF COMMUNICATION

 Asynchronous communication

▪ Client does not block, continues doing other work

 Synchronous communication

▪ Client blocks and waits

 Three types of blocking (synchronous)

1. Until middleware notifies it will take over delivering request

2. Sender may block until request has been delivered

3. Sender waits until request is processed and result is returned

 Persistence + synchronization (blocking)

▪ Common scheme for message-queueing systems

▪ Publish message to queue : block until message delivered to queue
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TYPES OF COMMUNICATION - 2
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OBJECTIVES – 2/13
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WE WILL RETURN AT 

4:55 PM

CH. 4.2: RPC (LIGHT-

REVIEW)

L11.56

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call look 

like a local one

 newlist = append(data, dbList)
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RPC – REMOTE PROCEDURE CALL

 Transparency enabled with client and server “stubs”

 Client has “stub” implementation of the server -side function

 Inter face exactly same as server side

 But client DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends request to 

server. Call blocks and waits for reply

 Server stub: transforms incoming 

request into local procedure call

 Blocks to wait for reply

 Server stub unpacks request ,  

calls server procedure

 I t’s as if  the routine were called locally
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RPC - 2

 Server packs procedure results and sends back to client.

 Client “request” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the 

network… except for network latency…

 Call abstraction enables clients to invoke functions in 

alternate languages, on different machines

 Differences are handled by the RPC “framework”
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RPC - 3

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server -side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client
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RPC STEPS
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 STUBS: take parameters, pack into a message, send across 

network

 Parameter marshaling:

 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly 

interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must understand how to unmarshal (unserialize) data

 Processor architectures vary with how bytes are numbered: 

Intel (r ight→left) , older ARM ( left→right)
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PARAMETER PASSING

 Big-Endian: write bytes lef t to r ight (ARM)

 Little-endian: write bytes right to lef t ( Intel)

 Networks: typically transfer data in Big -Endian form

 Solution: transform data to machine/network independent 

format

 Marshaling/unmarshaling: 

transform data to neutral 

format
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RPC: BYTE ORDERING

 Passing by value is straightforward

 Passing by reference is challenging

 Pointers only make sense on local machine owning the data

 Memory space of client and server are dif ferent

 Solutions to RPC pass-by-reference:

1. Forbid pointers altogether

2. Replace pass-by-reference with pass -by-value

▪ Requires transferring entire object/array data over network

▪ Read-only optimization: don’t return data if unchanged on server

3. Passing global references

▪ Example: file handle to file accessible by client and server 
via shared file system
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RPC: PASS-BY-REFERENCE

 Let developer specify which routines will be called 

remotely

▪ Automate client/server side stub generation for these 

routines

 Embed remote procedure call mechanism into the 

programming language

▪ E.g. Java RMI
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RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])

 1-byte character transmits with 3 -padded bytes

 Float sent as whole word (4-bytes)

▪ Array as group of words, proceed by word describing 
length

▪ Client stub must package data in specific format

▪ Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple 
data structures: int, char, floats w/ little endian 

 RPC clients/servers: must agree on protocol

▪ TCP? UDP?
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STUB GENERATION

 Inter faces are specified using an Inter face Definition 

Language (IDL)

 Inter face specifications in IDL are used to generate language 

specific stubs

 IDL is compiled into client and server -side stubs

 Much of the plumbing for RPC involves maintaining 

boilerplate-code
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STUB GENERATION - 2
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 Leads to simpler application development

 Helps with providing access transparency 

▪ Differences in data representation, and how object is 

accessed

▪ Inter-language parameter passing issues resolved: 

→ just 1 language

 Well known example: Java Remote Method Invocation

RPC equivalent embedded in Java
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LANGUAGE BASED SUPPORT

 RPC: client typically blocks until reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs

▪ When no result, server can immediately send reply
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RPC VARIATIONS

Client/server synchronous RPC         Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous 

procedure calls?

▪ For a local program

▪ For a distributed program (system)

 Use cases for asynchronous procedure calls

▪ Long running jobs allow client to perform alternate work 

in background (in parallel)

▪ Client may need to make multiple service calls to multiple 

server backends at the same time…
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RPC VARIATIONS – 2

 Deferred synchronous RPC

▪ Server performs CALLBACK to client

▪ Client, upon making call, spawns separate thread which blocks and 

waits for call 

 One-way RPCs

▪ Client does not wait for any server acknowledgement – it just goes…

 Client polling

▪ Client (using separate thread) continually polls server for result
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TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration: 

Does the client need all  results or  just one?

 Use cases:

▪ Fault tolerance – wait for just one

▪ Replicate execution – verify 

results, use first result

▪ Divide and conquer - multiple 

RPC calls work in parallel on 

different parts of dataset, 

client aggregates results
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MULTICAST RPC

 DCE : basis for Microsoft’s distributed computing object model 
(DCOM)

 Used in Samba, cross-platform file and print sharing via RPC

 Middleware system – provides layer of abstraction between OS 
and distributed applications

 Designed for Unix, ported to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then access shared resources to:

▪ Mount a windows file system on Linux

▪ Share a printer connected to a Windows server

 Uses client/server model

 All communication via RPC

 DCE daemon tracks participating machines, ports
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RPC EXAMPLE: DISTRIBUTED 

COMPUTING ENVIRONMENT (DCE)
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 Server name comes from directory server

 Server port comes from DCE daemon

▪ DCE daemon has a well known port # client already knows
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DCE CLIENT-TO-SERVER BINDING

1. Create Interface definition language (IDL) files

▪ IDL files contain Globally unique identifier (GUID)

▪ GUIDs must match: client and server compare GUIDs to 
verify proper versions of the distributed object

▪ 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:

▪ Header file (interface.h in C)

▪ Client stub

▪ Server stub
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EXTRA: DCE – CLIENT/SERVER DEVELOPMENT

 For a client to call a server, server must be registered

▪ Java: uses RMI registry

 Client process to search for RMI server:

1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot: 

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server 

that tracks DCE servers
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EXTRA: DCE – BINDING CLIENT TO SERVER

 Questions from 2/6

 Midterm Grading In Progress - Targeting Review Thursday

 Assignment 2: Key/Value Store

▪ Java Maven project template files posted

 Chapter 3: Processes

▪ Chapter 3.4: Servers

▪ Chapter 3.5: Resource (Code) Migration ( light-review)

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-review)

▪ Chapter 4.3: Message Oriented Communication
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OBJECTIVES – 2/13

Apache Act iveMQ

CH. 4.3: MESSAGE-

ORIENTED 

COMMUNICATION

L11.77

 RPC assumes that the client and server are running 

at the same time…  ( temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is  a use case for message-oriented communication

▪ Synchronous vs. asynchronous

▪Messaging systems

▪Message-queueing systems
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MESSAGE ORIENTED COMMUNICATION
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 Communication end point

 Applications can read / write data to

 Analogous to file streams for I/O, but network streams
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SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Servers execute 1 st - 4 operations (socket, bind, listen, accept)

 Methods refer to C API functions

 Mappings across dif ferent libraries will vary ( e.g. Java )
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SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking 

call reserves buffers for specified number of pending 

connection requests server is willing to accept

 Accept: blocks until connection request arrives

▪ Upon arrival, new socket is created matching original

▪ Server spawns thread, or forks process to service incoming request

▪ Server continues to wait for new connections on original socket
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SERVER SOCKET OPERATIONS

 Socket: Creates socket client uses for communication

 Connect: Server transport -level address provided, client blocks 

until connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel

▪ Analogous to closing a file stream
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CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own 

TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted) 

messaging is very basic, can be brittle

▪ Easy to make mistakes…

 Any extra communication facilities must be implemented 

by the application developer

 More advanced approaches are desirable

▪ E.g. frameworks with support common desirable 

functionality
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SOCKET COMMUNICATION

 (0MQ) High performance intelligent socket l ibrary

 zero broker, zero latency, zero admin,  zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++

▪ 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker -less topologies
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ZEROMQ – SOCKET LIBRARY
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 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

▪ Basic socket operations abstracted away

▪ Supports many-to-one, one-to-one, and one-to-many 

connections

▪Multicast connections (one-to-many – single server socket 

simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication 

patterns
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ZEROMQ – 2

 Request-reply pattern

▪ Traditional client-server communication (e.g. RPC)

▪ Client: request socket (REQ)

▪ Server: reply socket (REP)

 Publish-subscribe pattern

▪ Clients subscribe to messages published by servers

▪ As in event-based coordination (Ch. 1)

▪ Supports multicasting messages from 

server to multiple

▪ Client: subscribe socket (SUB)

▪ Server: publish socket (PUB)
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ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

▪ Analogous to a producer/consumer bounded buffer

▪ Producing processes generate results, push to pipe

▪ Consuming processes consume results,

pull from pipe

▪ Producers: push socket (PUSH socket)

▪ Consumers: pull socket (PULL socket)

▪ Push- distributes messages to all pull 

clients evenly

▪ Consumers pull results from pipe and 

push results downstream
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ZEROMQ – PATTERNS - 2

Cloud services

▪Amazon Simple Queueing Service (SQS)

▪Azure service bus

Open source frameworks

▪Nanomsg

▪ZeroMQ
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QUEUEING ALTERNATIVES

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:

Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations

in C, C++, Fortran
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MESSAGE PASSING INTERFACE (MPI)

 Motivation: sockets insufficient for interprocess

communication on large scale HPC compute clusters and 

super computers 

▪ Sockets at the wrong level of abstraction

▪ Sockets designed to communicate over the network using 

general purpose TCP/IP stacks

▪ Not designed for proprietary protocols

▪ Not designed for high-speed interconnection 

networks used by supercomputers, 

HPC-clusters, etc.

▪ Better buffering and synchronization needed
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MOTIVATIONS FOR MPI
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 Supercomputers had proprietary communication libraries

▪ Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel 

code that could migrate across supercomputers

 Led to development of MPI

▪ To support transient (non-persistent) communication for 

parallel programming
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MOTIVATIONS FOR MPI - 2

 Very large library, v1.0 (1994) 128 functions 

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings
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MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

February 13, 2024
TCSS558: Applied Distributed Computing [Winter 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.93

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

 Message-queueing systems

▪ Provide extensive support for persistent asynchronous 

communication

▪ In contrast to transient systems

▪ Temporally decoupled: messages are eventually delivered 

to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other 

applications can send messages
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MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of 

processes

▪ User applications

▪ App-to-database

▪ To support distributed real-time computations

 Use cases

▪ Batch processing, Email, workflow, groupware, routing 

subqueries
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MESSAGE QUEUEING SYSTEMS:

USE CASES

 Scenarios:

(a) Sender/receiver

both running

(b)  Sender running,

receiver offline

(c)  Sender offline,

receiver running

(d)  Sender/receiver

both offline

 Queue persists msgs,

and attempts to send 

them but no one may be available to receive them…
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MESSAGE QUEUEING SYSTEMS

SENDS

READS
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 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile 

and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue

▪ Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue
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MESSAGE QUEUEING SYSTEMS - 2

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed 

into a queue. Notifies receivers

 Queue managers: manage individual message queues as a 

separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue? 

 How should names be resolved (looked-up)?

▪ Contact address (host, port) pairs

▪ Local look-up tables can be stored at each queue manager
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MESSAGE QUEUEING SYSTEMS 

ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

▪ How are name-to-address mappings efficiently kept?

▪ Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the 

same protocol ( language)

 Need arises for message protocol converters

▪ “Reformatter” of messages

 Act as application-level gateway
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MESSAGE QUEUEING SYSTEMS 

ARCHITECTURE - 2
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MESSAGE BROKER ORGANIZATION

Plugins to convert 
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable 
legacy applications to interoperate

 Decouple inter -application communication to “open” 
messaging-middleware

 Many are proprietary solutions, so not very open

 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP) , 2006

 Address openness/interoperability of proprietary solutions

 Open wire protocol for messaging with powerful routing 
capabilities

 Help abstract messaging and application interoperability by 
means of a generic open protocol

 Suffer from incompatibility among protocol versions

 pre-1.0, 1.0+
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AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with 

potentially many channels, stable, reused by many 

channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two 

channels

 Link: provide fine-grained flow -control of message 

transfer/status between applications and queue manager
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AMQP - 2
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 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to 

recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)
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AMQP MESSAGING

 Some examples:

 RabbitMQ, Apache QPid

▪ Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka

▪ Dumb broker (message store), similar to a distributed log file

▪ Smart consumers – intelligence pushed off to the clients

▪ Stores stream of records in categories called topics

▪ Supports voluminous data, many consumers, with minimal O/H

▪ Kafka does not track which messages were read by each consumer

▪ Messages are removed after timeout

▪ Clients must track their own consumption (Kafka doesn’t help)

▪ Messages have key, value, timestamp

▪ Supports high volume pub/sub messaging and streams
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MESSAGE-ORIENTED-MIDDLEWARE 

EXAMPLES:

QUESTIONS
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