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TCSS 422: OPERATING SYSTEMS

 Assignment 1 – 2/15

 Midterm 2/13 (???)

 Feedback 2/6

 Parallel programming with P-threads cont’d

 Chapter 29 – Lock-Based Data Structures

 Chapter 30 – Condition Variables

 Practice midterm questions
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 Is pthread_mutex_trylock() just 
pthread_mutex_timelock() with a default time?

 No.  Pthread_mutex_trylock() is closer to 
pthread_mutex_lock()

 From the manpages:

 pthread_mutex_trylock() function is equivalent to 
pthread_mutex_lock(), except that if the mutex object 
referenced by mutex is currently locked (by any thread, 
including the current thread), the call shall return 
immediately

 It is a non-blocking API that tries to obtain the lock
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FEEDBACK FROM 2/6

 Threading use cases:

 Is it more common to create threads in advance of them being 
needed, or to create them when conditions to use them are 
met (on demand)?

 Many server applications wil l  tend to uti lize thread pools, 
preinitialized sets of threads that are repurposed to process 
different requests in a system
 Latency from thread creation may impact multiple users by slowing 

down the server

 Client applications are may be more likely to create threads
on demand
 Latency from thread creation only impacts one user
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 Counters …?

 We ended on Wednesday Feb 6th introducing the 
sloppy counter ,  and now resume this example
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FEEDBACK - 3

CHAPTER 29 –
LOCK BASED

DATA STRUCTURES
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Chapter 29
Concurrent Data Structures

Performance

 Lock Granularity
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OBJECTIVES

Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity
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COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data
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 Decrease counter

 Get value
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CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times
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CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.
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 Achieve (N) per formance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core 

 N = 1000 tps
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PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically 
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  
Why do we want counters local to each CPU Core?
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 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters
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SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?
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 Example implementation

 Also with CPU affinity
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SLOPPY COUNTER - EXAMPLE

 Simplification - only basic l ist operations shown

 Structs and initialization:
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 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks
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CONCURRENT LINKED LIST - 2

 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks 
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 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …
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CONCURRENT LINKED LIST

 Init and Insert
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 Lookup
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CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire l ist is not very performant

 Users must “wait” in l ine for a single lock to access/modify 
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?
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 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 
same time
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MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue
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 Add to queue
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CONCURRENT QUEUE - 2

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list 

 One lock per hash (bucket)

 Hash bucket is a linked lists

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L9.28

CONCURRENT HASH TABLE



TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L9.15Slides by Wes J. Lloyd

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU
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INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.
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 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java 
/util/concurrent/atomic/package-summary.html
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LOCK-FREE DATA STRUCTURES

CHAPTER 30 –
CONDITION VARIABLES
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 There are many cases where a thread wants to 
wait for another thread before proceeding with 
execution

Consider when a precondition must be fulfilled 
before it is meaningful to proceed …
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CONDITION VARIABLES

 Support a signaling mechanism to alert 
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or 
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait 
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)
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 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L9.35

CONDITION VARIABLES - 3

pthread cond t c;

 Why would we want to put waiting threads on a queue… why 
not use a stack?
 Queue (FIFO), Stack (LIFO)

 Using condition variables eliminates busy waiting by putting  threads 
to “sleep” and yielding the CPU.  

 Why do we want to not busily wait for the lock to become 
available?

 A program has 10-threads, where 9 threads are waiting.  The 
working thread finishes and broadcasts that the lock is 
available.  What happens next?
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Matrix generation example

Chapter 30

signal.c
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MATRIX GENERATOR

 The main thread, and worker thread (generates matrices) 
share a single matrix pointer.

 What would happen if we don’t use a condition variable to 
coordinate exchange of the lock?

 Let’s try “nosignal.c”
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 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent 
is not waiting yet.  

 The signal is lost

 The parent deadlocks
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SUBTLE RACE CONDITION: 
WITHOUT A WHILE
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 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically 
generated matrices and performs an operation on them 
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process
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PRODUCER / CONSUMER

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep  wc as it is produced

 File stream
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 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L9.43

PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer  2. Consumer
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 The shared data structure needs synchronization!

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L9.45

PRODUCER / CONSUMER - 3

Producer

 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it  fails 
 How can it be fixed ?
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PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer
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 Two threads

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L9.47

EXECUTION TRACE: 
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 When producer threads awake, they do not check if there is 
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value 

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2
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PRODUCER/CONSUMER 
SYNCHRONIZATION
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EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Tc2 runs, no data to consume
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EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock
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 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer
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TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);

 Change buffer from int, to int buffer[MAX]

 Add indexing variables
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FINAL PRODUCER/CONSUMER
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FINAL P/C - 2

full

(&full);

&full,

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty
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FINAL P/C - 3
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 A condition that covers all cases (conditions):
 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:
When a program deals with huge memory 

allocation/deallocation on the heap
 Access to the heap must be managed when memory is 

scarce 

PREVENT: Out of memory:
- queue requests until memory is free

Which thread should be woken up?
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COVERING CONDITIONS
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COVERING CONDITIONS - 2

Broadcast

Check available memory
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 Broadcast awakens all blocked threads requesting 
memory

 Each thread evaluates if there’s enough memory: 
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute
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COVER CONDITIONS - 3

QUESTIONS


