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Lock-based Data Structures,
Condition Variables
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TCSS 422: OPERATING SYSTEMS

 Assignment 1 – 2/15

 Midterm 2/13 (???)

 Feedback 2/6

 Parallel programming with P-threads cont’d

 Chapter 29 – Lock-Based Data Structures

 Chapter 30 – Condition Variables

 Practice midterm questions
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 Is pthread_mutex_trylock() just 
pthread_mutex_timelock() with a default time?

 No.  Pthread_mutex_trylock() is closer to 
pthread_mutex_lock()

 From the manpages:

 pthread_mutex_trylock() function is equivalent to 
pthread_mutex_lock(), except that if the mutex object 
referenced by mutex is currently locked (by any thread, 
including the current thread), the call shall return 
immediately

 It is a non-blocking API that tries to obtain the lock
February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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FEEDBACK FROM 2/6

 Threading use cases:

 Is it more common to create threads in advance of them being 
needed, or to create them when conditions to use them are 
met (on demand)?

 Many server applications wil l  tend to uti lize thread pools, 
preinitialized sets of threads that are repurposed to process 
different requests in a system
 Latency from thread creation may impact multiple users by slowing 

down the server

 Client applications are may be more likely to create threads
on demand
 Latency from thread creation only impacts one user
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FEEDBACK - 2
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 Counters …?

 We ended on Wednesday Feb 6th introducing the 
sloppy counter ,  and now resume this example
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FEEDBACK - 3

CHAPTER 29 –
LOCK BASED

DATA STRUCTURES

February 11, 2019
TCSS422: Operating Systems [Winter 2019]
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Chapter 29
Concurrent Data Structures

Performance

 Lock Granularity

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES

Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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LOCK-BASED
CONCURRENT DATA STRUCTURES
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February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONCURRENT COUNTER



TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L9.6Slides by Wes J. Lloyd

 Decrease counter

 Get value

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.
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 Achieve (N) per formance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core 

 N = 1000 tps

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically 
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  
Why do we want counters local to each CPU Core?

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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SLOPPY COUNTER
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 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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THRESHOLD VALUE S
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 Example implementation

 Also with CPU affinity

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L9.17

SLOPPY COUNTER - EXAMPLE

 Simplification - only basic l ist operations shown

 Structs and initialization:

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L9.18

CONCURRENT LINKED LIST - 1
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 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONCURRENT LINKED LIST - 2

 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks 

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONCURRENT LINKED LIST - 3
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 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONCURRENT LINKED LIST

 Init and Insert

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 Lookup

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire l ist is not very performant

 Users must “wait” in l ine for a single lock to access/modify 
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L9.24
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 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 
same time

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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CONCURRENT QUEUE
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 Add to queue

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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CONCURRENT QUEUE - 2

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list 

 One lock per hash (bucket)

 Hash bucket is a linked lists

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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CONCURRENT HASH TABLE
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 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONCURRENT HASH TABLE
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 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java 
/util/concurrent/atomic/package-summary.html
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LOCK-FREE DATA STRUCTURES

CHAPTER 30 –
CONDITION VARIABLES

February 11, 2019
TCSS422: Operating Systems [Winter 2019]
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 There are many cases where a thread wants to 
wait for another thread before proceeding with 
execution

Consider when a precondition must be fulfilled 
before it is meaningful to proceed …

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONDITION VARIABLES

 Support a signaling mechanism to alert 
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or 
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait 
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONDITION VARIABLES - 2
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 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L9.35

CONDITION VARIABLES - 3

pthread cond t c;

 Why would we want to put waiting threads on a queue… why 
not use a stack?
 Queue (FIFO), Stack (LIFO)

 Using condition variables eliminates busy waiting by putting  threads 
to “sleep” and yielding the CPU.  

 Why do we want to not busily wait for the lock to become 
available?

 A program has 10-threads, where 9 threads are waiting.  The 
working thread finishes and broadcasts that the lock is 
available.  What happens next?

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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CONDITION VARIABLES - QUESTIONS
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Matrix generation example

Chapter 30

signal.c

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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MATRIX GENERATOR

 The main thread, and worker thread (generates matrices) 
share a single matrix pointer.

 What would happen if we don’t use a condition variable to 
coordinate exchange of the lock?

 Let’s try “nosignal.c”

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L9.38

MATRIX GENERATOR
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 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent 
is not waiting yet.  

 The signal is lost

 The parent deadlocks

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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SUBTLE RACE CONDITION: 
WITHOUT A WHILE
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 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically 
generated matrices and performs an operation on them 
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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PRODUCER / CONSUMER

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep  wc as it is produced

 File stream

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization
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PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer  2. Consumer

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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PRODUCER / CONSUMER - 3
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 The shared data structure needs synchronization!

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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PRODUCER / CONSUMER - 3

Producer

 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it  fails 
 How can it be fixed ?

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer
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 Two threads

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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EXECUTION TRACE: 
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 When producer threads awake, they do not check if there is 
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value 

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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PRODUCER/CONSUMER 
SYNCHRONIZATION
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EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Tc2 runs, no data to consume

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock
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 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);

 Change buffer from int, to int buffer[MAX]

 Add indexing variables
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FINAL PRODUCER/CONSUMER
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FINAL P/C - 2

full

(&full);

&full,

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty
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FINAL P/C - 3
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 A condition that covers all cases (conditions):
 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:
When a program deals with huge memory 

allocation/deallocation on the heap
 Access to the heap must be managed when memory is 

scarce 

PREVENT: Out of memory:
- queue requests until memory is free

Which thread should be woken up?
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COVERING CONDITIONS

February 11, 2019 TCSS422: Operating Systems [Winter 2019]
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COVERING CONDITIONS - 2

Broadcast

Check available memory
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 Broadcast awakens all blocked threads requesting 
memory

 Each thread evaluates if there’s enough memory: 
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute
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COVER CONDITIONS - 3

QUESTIONS


