TCSS 422 A — Winter 2019
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Introduction to Concurrency,
Locks, Lock-based Data Structures,
Condition Variables

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

(R (3 2 School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES

= C Tutorial

® Assignment 1
= Midterm 2/13
= Feedback 1/30

= Parallel programming with P-threads cont’d
® Chapter 27 - Linux Thread API

® Chapter 28 - Intro to locks

®m Chapter 29 - Lock-Based Data Structures

®m Chapter 30 - Condition Variables

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.2

Slides by Wes J. Lloyd

2/9/2019

L8.1

TCSS 422 A — Winter 2019
School of Engineering and Technology

FEEDBACK FROM 1/30

® Ticket Distribution - Proportional Share Schedulers:
® Can nice values be used to determine ticket distribution?

® Linux nice values:

® Range from: -20 (highest priority) to 19 (lowest priority)

® Can’t directly use the nice value to assign tickets

® Job with -20 tickets !!!

® CAN use nice value to identify jobs with the same priority
= Assign tickets proportionally for jobs with same priority

receive to share amongst its jobs
= Will vary based on # of jobs at the priority level

® Need to determine how many tickets each priority level should

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

L8.3

FEEDBACK - 2

Didn’t quite understand parallel programming and locks

What is parallel programming?

= Parallel programming - use of multiple threads to execute over the
same program code at the same time sharing memory

What data is shared by threads?
= Heap segment, data segment (global variables), code segment
What do locks do?

at the same time, making execution atomic within these sections
= What is a blocking API call?

= A kernel function that “hibernates” the user thread to wait for a
resource to become available. The users thread goes from

an interrupt, and the user thread is awoken to process the interrupt.
Is pthread_mutex_lock() a blocking API call?

= Locks BLOCK multiple threads from executing critical sections of code

RUNNING—>BLOCKED. When the resource is available, the OS generates

= YES - Note that if multiple threads are sleeping for the lock, only one
gets woken up - this is chosen by the kernel - fairness can be an issue

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.4

Slides by Wes J. Lloyd

2/9/2019

L8.2

TCSS 422 A — Winter 2019 2/9/2019
School of Engineering and Technology

FEEDBACK - 3

® Can you run an entire program with atomic execution?

® Good question!, SURE, there is no reason this wouldn't be
allowed, --BUT- this scenario may have little value as
essentially the program would become sequential, and
operate as if “single threaded”

-- nothing can happen in parallel!

® Does C or any other high level programming language
automatically create multiple threads for a process?

® SURE, high level languages may include functions or
classes that automatically create worker threads to
complete tasks in parallel

= Example: Java Array.parallelSort() -- added in Java 8

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L85

February 6, 2019

JAVA ARRAY PARALLEL SORT EXAMPLE

import java.util.Arrays;
public class Example
{
public static void main(String[] args)
{
int numbers[] = {22, 89, 1, 32, 19, 5};
//Parallel Sort method for sorting int array
» Arrays.parallelSort (numbers) ;

//convert array to stream and display w/
forEach

Arrays.stream(numbers) . forEach (n-
>System.out.print(n+" ")) ;

}

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

L8.6

Slides by Wes J. Lloyd L8.3

TCSS 422 A — Winter 2019 2/9/2019
School of Engineering and Technology

FEEDBACK - 4

= What chapters / subjects will the midterm cover?

= Midterm Wednesday February 13th
® |[nclusive of content covered in class through February 11th

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 187

February 6, 2019

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Winter 2019]

RELmavie2 s School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd L8.4

TCSS 422 A — Winter 2019
School of Engineering and Technology

THREAD CREATION

® pthread_create

#include <pthread.h>

int
pthread create(pthread t* thread,
const pthread attr t* attr,
void#* (*start_routine) (void*),
void#* arg) ;

® thread: thread struct

® attr: stack size, scheduling priority... (optional)

® start_routine: function pointer to thread routine

® arg: argument to pass to thread routine (optional)

TCSS422: Operating Systems [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.9

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>
typedef struct _ myarg_t {
» int a:
int b;
} myarg t;
void *mythread(void *arg) {
myarg t *m = (myarg t *) arg;
» printf (“%d %d\n”, m->»a, m-—>b):
NULL;
}
int main(int argc, char *argv[]) {
pthread t p;
ah i) 8 o ol
myarg_t args;
» args.a = 10;
args.b = 207

rc = pthread create(&4p, NULL, mythread, &args):

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.10

Slides by Wes J. Lloyd

2/9/2019

L8.5

TCSS 422 A — Winter 2019 2/9/2019
School of Engineering and Technology

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,

How large (in bvtes) can the primitive data type be?

I e B T

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

AN G, Ly,
pthread create (&p, NULL, mythread, EOE)
Ak pthread join(p, (void **) a&m);
printf (*returned %d\n”, m);
e b

TCSS422: Operating Systems [Winter 2019]

February'6,2019 School of Engineering and Technology, University of Washington - Tacoma

L8.11

WAITING FOR THREADS TO FINISH

int pthread join(pthread t thread, void **value ptr);

® thread: which thread?

® value_ptr: pointer to return value
type is dynamic / agnostic

® Returned values *must* be on the heap

® Thread stacks destroyed upon thread termination (join)

® Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1812

February 6, 2019

Slides by Wes J. Lloyd L8.6

TCSS 422 A — Winter 2019
School of Engineering and Technology

{

}

{

struct myarg {

};

void *worker(void *arg)

int main (int argc, char

int a; What will this code do?

int b;

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

Zﬁzgﬁz_gyzr%;wtpur’ Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
a=10 b=20

Segmentation fault (core dumped)

%

argv[D)

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a =
args.b =
pthread_
pthread_;
printf("
return 0

How can this code be fixed?

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.13

February 6, 2019

{

}

{

struct myarg {

};

void *worker(void *arg)

int main (int argc, char

int a; How about this code?

int b;

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;

input->b = 2;

return (void *) &input;

$./pthread_struct
a=10 b=20

*

argv[l)

returned 1 2

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b = 20;

pthread_create(&l, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);

printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Winter 2019]

[FELTELR) G 200K School of Engineering and Technology, University of Washington - Tacoma L8.14

Slides by Wes J. Lloyd

2/9/2019

L8.7

TCSS 422 A — Winter 2019
School of Engineering and Technology

ADDING CASTS

® Casting
B Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

® Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(pl, &plval);

® Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument

is of type fint *%*’
extern int pthread_join (pthread_t __th, void **__thread_return);

TCSS422: Operating Systems [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.15

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

® return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

L8.16

Slides by Wes J. Lloyd

2/9/2019

L8.8

TCSS 422 A — Winter 2019

School of Engineering and Technology

{

}

int i;

LOCKS

" pthread_mutex_t data type
®m /usr/include/bits/pthread_types.h

// Global Address Space
static volatile int counter = 0;

void *worker(void *arg)

for (i=0;i<10000000;i++) {

assert(rc==0);
counter = counter + 1;

}
return NULL;

February 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.17

LOCKS - 2

® Ensure critical sections are executed atomically-as a unit

= Provides implementation of “Mutual Exclusion”

= API

int pthread mutex lock (pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex):;

® Example w/o initialization & error checking

pthread mutex t lock;

pthread mutex lock(&lock);

x = x + 1; // or whatever your critical section is
pthread mutex unlock(&lock);

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained

= Releases lock

February 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.18

Slides by Wes J. Lloyd

2/9/2019

L8.9

TCSS 422 A — Winter 2019
School of Engineering and Technology

L

OCK INITIALIZATION

® Assigning the constant

‘ pthread mutex t lock = PTHREAD MUTEX INITIALIZER;

® AP| call:

int rc = pthread mutex init(&lock, NULL);
assert(rc == 0); // always check success!

m |nitializes mutex with attributes specified by 2"9 argument
® |f NULL, then default attributes are used

® Upon initialization, the mutex is initialized and unlocked

TCSS422: Operating Systems [Winter 2019]
February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.19

® Error checking

LOCKS -3

wrapper

// Use this

// Only use

int .¥e

void Pthread mutex lock(pthread mutex t *mutex)
= pthread mutex lock(mutex);

assert (r

to keep your code clean but check for failures

if exiting program is OK upon failure
{

c— 0);

® What if lock can’t be obtained?

int pthread mutex trylock(pthread mutex t *mutex);
int pthread mutex timelock (pthread mutex t *mutex,

struct timespec *abs_timeout):

® trylock - returns immediately (fails) if lock is unavailable
® timelock - tries to obtain a lock for a specified duration

February 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.20

Slides by Wes J. Lloyd

2/9/2019

L8.10

TCSS 422 A — Winter 2019 2/9/2019
School of Engineering and Technology

CONDITIONS AND SIGNALS

® Condition variables support “signaling”
between threads

int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);
int pthread cond signal (pthread cond t *cond);

" pthread_cont_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to FIFO queue, lock is released
= Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L8.21

February 6, 2019

CONDITIONS AND SIGNALS - 2

*

int pthread_cond_signal(pthread_cond_t cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

m pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFO “wait” queue
= The goal is to unblock a thread to respond to the signal

m pthread_cond_broadcast()

= Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

= Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFO wait queue
= When awoken threads acquire lock as in pthread_mutex_lock ()

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1822

February 6, 2019

Slides by Wes J. Lloyd L8.11

TCSS 422 A — Winter 2019

School of Engineering and Technology

CONDITIONS AND SIGNALS -3

= Wait example:

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond t cond = PTHREAD COND_INITIALIZER;

while (initialized == 0)
pthread cond wait(&cond, &lock);

// Perform work that requires lock

a=a+ b;

pthread mutex unlock (&lock) ;

pthread mutex lock (&lock) ;

® wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then r

leased bv this code)

® When initialized, another thread signals State variable set,

pthread mutex lock (&lock) ; to proceed above.

initialized = 1;
pthread cond signal (&cond);
pthread mutex unlock(&lock);

Enables other thread(s)

February 6, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L8.23

CONDITION AND SIGNALS - 4

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond_t cond = PTHREAD COND_ INITIALIZER;

thread mutex lock (&lock) ;

while (initialized == 0)
pthread cond wait(&cond, &lock);

// Perform work that requires lock
a=a+ b;
pthread mutex_ unlock (&lock) ;

® Why do we wait inside a while loop?

have not been met. **MUST CHECK STATE VARIABLE* *

= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

® The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may

February 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.24

Slides by Wes J. Lloyd

2/9/2019

L8.12

TCSS 422 A — Winter 2019 2/9/2019
School of Engineering and Technology

PTHREADS LIBRARY

® Compilation
= gcc -pthread pthread.c -o pthread
= Requires explicitly linking the library with compiler flag
= Use makefile to provide compiler arguments

m List of pthread manpages
= man -k pthread

TCSS422: Operating Systems [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.25

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cc) $(cFLAGS) $A -0 S@

clean:
$(RM) -f $(binaries) *.o

® Example builds multiple single file programs

= All target
® pthread_mult

= Example if multiple source files should produce a single executable
® clean target

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.26

Slides by Wes J. Lloyd L8.13

TCSS 422 A — Winter 2019

School of Engineering and Technology

February 6, 2019

CHAPTER 28 -

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

= Ensure critical section(s) are executed atomically-as a unit

= Only one thread is allowed to execute a critical section at any given

time

= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

| balance = balance + 1;

m A “critical section”:

’

i lock t mutex; // some globally-allocated lock ‘mutex
2 -
3 lock (&mutex) ;
4 balance = balance + 1;
5 unlock (émutex) ;
February 6, 2019 TCSS422: Operating Systems [Winter 2019] 18.28

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

2/9/2019

L8.14

TCSS 422 A — Winter 2019
School of Engineering and Technology

LOCKS - 2

® Lock variables are called “MUTEX”
= Short for mutual exclusion (that’s what they guarantee)

® Lock variables store the state of the lock
m States
= Locked (acquired or held)

= Unlocked (available or free)

®= Only 1 thread can hold a lock

TCSS422: Operating Systems [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.29

LOCKS -3

"pthread mutex_ lock (&lock)
= Try to acquire lock
= If lock is free, calling thread will acquire the lock

= Thread with lock enters critical section
Thread “owns” the lock

B No other thread can acquire the lock before the owner
releases it.

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.30

Slides by Wes J. Lloyd

2/9/2019

L8.15

TCSS 422 A — Winter 2019 2/9/2019
School of Engineering and Technology

LOCKS - 4

® Program can have many mutex (lock) variables to
“serialize” many critical sections

®m Locks are also used to protect data structures
= Prevent multiple threads from changing the same data
simultaneously

= Programmer can make sections of code “granular”

Fine grained - means just one grain of sand at a time through an
hour glass

= Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

TCSS422: Operating Systems [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.31

FINE GRAINED?

® |s this code a good example of “fine grained parallelism”?

pthread_mutex_Tlock(&lock);

a = b++;

b =a*c;

*d = a + b +c;

FILE * fp = fopen ("file.txt", “r");

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);

ListNode *node = mylist->head;

Int i=0

while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;

node->end = *e;
node = node->next;
i++

} -

e=¢e-1i;

pthread_matex_un1ock(&1ock);

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.32

Slides by Wes J. Lloyd L8.16

TCSS 422 A — Winter 2019 2/9/2019
School of Engineering and Technology

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b=a*c;
pthread_mutex_unTock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a+ b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 .

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1833

February 6, 2019

EVALUATING LOCK IMPLEMENTATIONS

®E Correctness
=" Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

E Fairness

= Are threads competing for a lock have a fair chance of
acquiring it?

® Overhead

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.34

Slides by Wes J. Lloyd L8.17

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

BUILDING LOCKS

® Locks require hardware support
= To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction
CMPXCHG
CMPXCHGSB
CMPXCHG16B

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

L8.35

HISTORICAL IMPLEMENTATION

® To implement mutual exclusion
= Disable interrupts upon entering critical sections

void lock() {
DisableInterrupts();

}

void unlock() {

EnableInterrupts();

a1 WD

}

Any thread could disable system-wide interrupt
= What if lock is never released?

® On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

While interrupts are disabled, they could be lost
= |f not queued...

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.36

Lloyd

2/9/2019

L8.18

TCSS 422 A — Winter 2019
School of Engineering and Technology

SPIN

= “Do-it-yourself”
® |s this lock imp

LOCK IMPLEMENTATION

® Operate without atomic-as a unit assembly instructions

Locks

lementation: (1)Correct? (2)Fair? (3)Performant?

\n\"“g”um
) % ,,

Wil
\\“3;‘0 eé”%

0 0
‘ru., ""g“‘“‘\

}

[R R R e I S

124 |3

6%, 4]

typec

void init(lock_t *mutex) |

void lock(lock t *mutex) {

14 void unlock(lock t *mutex) {

def struct _ lock t { int flagr } lock t:

// 0 2 lock is available, 1 = held
mutex->flag = 07

(mutex— >flag == 1) // TEST the flag
. {do nothing)

mutex7>flag = 1 H

mutex->flag = 07

February 6, 2019

L8.37

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

® Correctness requires luck...

DIY: CORRECT?

(e.g. DIY lock is incorrect)

flag =

Threadl Thread2

call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2
call lock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1

1; // set flag to 1 (too!)

® Here both threads have “acquired” the lock simultaneously

February 6, 2019

TCSS422: Operating Systems [Winter 2019] 18.38

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

2/9/2019

L8.19

TCSS 422 A — Winter 2019
School of Engineering and Technology

DIY: PERFORMANT?

{

mutex->flag = 1;

}

void Tock(lock_t *mutex)

// while Tock is unavailable, wait..

® What is wrong with while(<cond>); ?

® Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%
= Continuously loops, and evaluates mutex->flag value...
= Generates heat...

February 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.39

TEST-AND-SET INSTRUCTION

® Hardware support required for working locks

® Book presents pseudo code of C implementation
= TEST-and-SET adds a simple check to the basic spin lock
= Assumption is this “C code” runs atomically on CPU:

i int TestAndSet (int #*ptr, int new) {

2 int old = *ptr; // fetch old value at ptr
3 *ptr = new; D

4 old;

3 }

® lock() method

checks that TestAndSet doesn’t return 1

® Comparison is in the caller

® Can implement the C version (hon-atomic) and have some
success on a single-core VM

February 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.40

Slides by Wes J. Lloyd

2/9/2019

L8.20

TCSS 422 A — Winter 2019
School of Engineering and Technology

DIY: TEST-AND-SET - 2

typedef struct _ lock t {

}

}

Vo

oid lock(lock_t *lock) {

}

int flag:
lock t;

void init(lock_t *lock) {

// 0 ¥ that lock is available,
// 1 that 1 held

lock->flag = 07

(TestAndset (&lock->flag, 1) == 1)

// spin-wait

void unlock(lock t *lock) {

}

lock->flag = 07

m C version: requires preemptive scheduler onsingle core system
® Lock is never released without a context switch
® single-core VM: occasionally will deadlock, doesn’t miscount

February 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.41

= Fairness:

= Correctness:

= Spin locks with atomic Test-and-Set:
Critical sections won’t be executed simultaneously by (2) threads

SPIN LOCK EVALUATION

= Performance:
= Spin locks perform “busy waiting”
= Spin locks are best for short periods of waiting (< 1 time quantum)
= Performance is slow when multiple threads share a CPU
Especially if “spinning” for long periods

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it...

February 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.42

Slides by Wes J. Lloyd

2/9/2019

L8.21

TCSS 422 A — Winter 2019
School of Engineering and Technology

COMPARE AND SWAP

® Checks that the lock variable has the expected value FIRST,
before changing its value
= |If so, make assignment
= Return value at location

® Adds a comparison to TestAndSet

= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

m Useful for wait-free synchronization
= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction
= Shared data structure updates become “wait-free”

= Upcoming in Chapter 32

TCSS422: Operating Systems [Winter 2019]
(R (3 2 School of Engineering and Technology, University of Washington - Tacoma L8.43

Slides by Wes J.

COMPARE AND SWAP

® Compare and Swap

al int CompareAndSwap(int *ptr, int expected, int new) {
2 int actual = *ptr;

3 (actual == expected)
4
5

*ptr = new;
actual;

C implementation 1-core VM:

® Spin loc "
Count is correct, no deadlock

g o

m X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
" cmpxchgléb

TCSS422: Operating Systems [Winter 2019]
February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma LB.44

Lloyd

2/9/2019

L8.22

TCSS 422 A — Winter 2019

School of Engineering and Technology

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

® Cooperative instructions used together to support
synchronization on RISC systems

® No support on x86 processors

= Supported by RISC: Alpha, PowerPC, ARM

= Load-linked (LL)

= Loads value into register
= Same as typical load
= Used as a mechanism to track competition

® Store-conditional (SC)

= Performs “mutually exclusive” store
= Allows only one thread to store value

TCSS422: Operating Systems [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.45

LL/SC LOCK

1 int LoadLinked (int *ptr) {

2 Tpirs

3 }

4

5 int StoreConditional (int *ptr, int wvalue) {
[3 (no one has updated *ptr since the LoadLinked to this address) {
7 *ptr = value;

8 ¥: #F success!

9 } {

10 0; // failed to update
11 1

T2

m LL instruction loads pointer value (ptr)
B SC only stores if the load link pointer has not changed
® Requires HW support

= C code is psuedo code

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.46

Slides by Wes J. Lloyd

2/9/2019

L8.23

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

LL/SC LOCK - 2

1 void lock(lock t *lock) {

2 while (1) {

3 while (LoadLinked(&lock->flag) == 1)

4 ¢ // spin until it's zero

L 1T (storeConditional (&lock->flag, 1) == 1)

[3 return; // if set-it-to-1 was a success:
7 otherwise: try it all owver again
8 }

9 }

10

11 wvoid unlock(lock t *lock) {

3124 lock->flag = 0;

13 3}

all done

® Two instruction lock

TCSS422: Operating Systems [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.47

CHAPTER 29 -

LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Winter 2019]

RELmavie2 s School of Engineering and Technology, University of Washington -

Lioyd

2/9/2019

L8.24

TCSS 422 A — Winter 2019
School of Engineering and Technology

OBJECTIVES

= Chapter 29
= Concurrent Data Structures
= Performance
= Lock Granularity

TCSS422: Operating Systems [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.49

LOCK-BASED

CONCURRENT DATA STRUCTURES

m Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
= Performance
= Lock granularity

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.50

Slides by Wes J. Lloyd

2/9/2019

L8.25

TCSS 422 A — Winter 2019

School of Engineering and Technology

COUNTER STRUCTURE W/0 LOCK

®m Synchronization weary --- not thread safe

1 typedef struct _ counter t {

2 int value:

3 } counter t;

4

o void init (counter t *c) {

& c->value = 0;

g/ }

8

9 void increment (counter t *c) {

10 c->vValue++;

1 1

12

13 void decrement (counter t *c) {

14 c->value--;

15 1

16

17 int get(counter t *c) {

18 return c->value;

19 1

TCSS422: Operating Systems [Winter 2019

February'6, 2019 School of Er’:gineerigngyand Te«EhnoIogy, Uni]versity of Washington - Tacoma L8.51

CONCURRENT COUNTER

1 typedef struct _ counter t {

2 int value;

3 pthread lock t lock;

4 } counter_t;

5

& void init (counter_t *c) {

7 c->value = 0;

g Pthread mutex init (sc->lock, NULL);
9 1

10

11 void increment (counter t *c) {

12 Pthread mutex lock(&c->lock):
13 c->value++;

14 Pthread mutex unlock(&c->lock);
15 1

1€

= Add lock to the counter
®m Require lock to change data

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.52

Slides by Wes J. Lloyd

2/9/2019

L8.26

TCSS 422 A — Winter 2019
School of Engineering and Technolog

y

® Decrease
® Get value

CONCURRENT COUNTER - 2

counter

{Cont.)

17 void decrement (counter t *c) {

18 Pthread mutex lock(&c->lock);

19 c->»value--;

20 Pthread mutex unlock(&c->lock);

21 1

22

23 int get(counter_t *c) {

24 Pthread mutex lock(&c->lock);

25 int rc = c-»value;

26 Pthread mutex unlock(&c->lock):

27 return rc:

28 1

TCSS422: Operating Systems [Winter 2019

(R (3 2 School of Er:)gineerigngyand Te£hno|ogy, Uni]versity of Washington - Tacoma 18.53

® iMac: fou

154

o
L

Time (seconds)
(4]
1

r core Intel 2.7 GHz i5 CPU

® Each thread increments counter 1,000,000 times

X Precise
© Sloppy

gl g 5 5 Traditional vs. sloppy counter

o

2 3
Threads

Sloppy Threshold (S) = 1024

scales poorly

CONCURRENT COUNTERS - PERFORMANCE

February 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.54

Slides by Wes J. Lloyd

2/9/2019

L8.27

TCSS 422 A — Winter 2019 2/9/2019
School of Engineering and Technology

PERFECT SCALING

®m Achieve (N) performance gain with (N) additional resources

® Throughput:
® Transactions per second

= 1 core
= N=100 tps

® 10 core
=N =1000 tps

TCSS422: Operating Systems [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.55

SLOPPY COUNTER

® Provides single logical shared counter

=" Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks

= Global counter is updated periodically

Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.56

Slides by Wes J. Lloyd L8.28

TCSS 422 A — Winter 2019 2/9/2019
School of Engineering and Technology

QUESTIONS

Slides by Wes J. Lloyd L8.29

