
TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.1Slides by Wes J. Lloyd

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

Introduction to Concurrency,
Locks, Lock-based Data Structures,

Condition Variables

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 C Tutorial

 Assignment 1

 Midterm 2/13

 Feedback 1/30

 Parallel programming with P-threads cont’d

 Chapter 27 – Linux Thread API

 Chapter 28 – Intro to locks

 Chapter 29 – Lock-Based Data Structures

 Chapter 30 – Condition Variables

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.2

OBJECTIVES

 Ticket Distribution – Proportional Share Schedulers:

 Can nice values be used to determine t icket distribution?

 Linux nice values:

 Range from: -20 (highest priority) to 19 (lowest priority)

 Can’t directly use the nice value to assign tickets

 Job with -20 tickets !! !

 CAN use nice value to identify jobs with the same priority
 Assign tickets proportionally for jobs with same priority

 Need to determine how many tickets each priority level should
receive to share amongst its jobs
 Will vary based on # of jobs at the priority level

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.3

FEEDBACK FROM 1/30

 Didn’t qui te understand parallel programming and locks

 What is parallel programming?
 Parallel programming – use of multiple threads to execute over the

same program code at the same time sharing memory
 What data is shared by threads?

 Heap segment, data segment (global variables), code segment
 What do locks do?

 Locks BLOCK multiple threads from executing critical sections of code
at the same time, making execution atomic within these sections

 What is a blocking API cal l?
 A kernel function that “hibernates” the user thread to wait for a

resource to become available. The users thread goes from
RUNNINGBLOCKED. When the resource is available, the OS generates
an interrupt, and the user thread is awoken to process the interrupt.

 Is pthread_mutex_lock() a blocking API cal l?
 YES – Note that if multiple threads are sleeping for the lock, only one

gets woken up – this is chosen by the kernel – fairness can be an issue

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.4

FEEDBACK - 2

 Can you run an entire program with atomic execution?

 Good question!, SURE, there is no reason this wouldn’t be
allowed, --BUT– this scenario may have little value as
essentially the program would become sequential, and
operate as if “single threaded”

-- nothing can happen in paral lel!

 Does C or any other high level programming language
automatically create multiple threads for a process?

 SURE, high level languages may include functions or
classes that automatically create worker threads to
complete tasks in parallel

 Example: Java Array.parallelSort() -- added in Java 8

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.5

FEEDBACK - 3

import java.util.Arrays;

public class Example

{

public static void main(String[] args)

{

int numbers[] = {22, 89, 1, 32, 19, 5};

//Parallel Sort method for sorting int array

Arrays.parallelSort(numbers);

//convert array to stream and display w/
forEach

Arrays.stream(numbers).forEach(n-
>System.out.print(n+" "));

}

}

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.6

JAVA ARRAY PARALLEL SORT EXAMPLE

TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.2Slides by Wes J. Lloyd

 What chapters / subjects wi l l the midterm cover?

 Midterm Wednesday February 13th

 Inclusive of content covered in class through February 11th

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.7

FEEDBACK - 4

CHAPTER 27 -
LINUX

THREAD API

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.8

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.9

THREAD CREATION

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.10

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.11

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.12

WAITING FOR THREADS TO FINISH

TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.3Slides by Wes J. Lloyd

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.13

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.14

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.15

ADDING CASTS

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.16

ADDING CASTS - 2

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.17

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;i++) {

int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.18

LOCKS - 2

TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.4Slides by Wes J. Lloyd

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.19

LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.20

LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits) (THREAD is BLOCKED)
 Threads added to FIFO queue, lock is released
 Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.21

CONDITIONS AND SIGNALS

 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.22

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.23

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

(&cond);

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.24

CONDITION AND SIGNALS - 4

TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.5Slides by Wes J. Lloyd

 Compilation
 gcc –pthread pthread.c –o pthread

 Requires explicitly linking the library with compiler flag

 Use makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.25

PTHREADS LIBRARY

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.26

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

CHAPTER 28 –
LOCKS

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.27

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.28

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.29

LOCKS - 2

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner
releases it.

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.30

LOCKS - 3

TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.6Slides by Wes J. Lloyd

 Program can have many mutex (lock) variables to
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table,

row, field

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.31

LOCKS - 4

 Is this code a good example of “fine grained parallelism”?

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.32

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.33

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

 Correctness

 Does the lock work?

 Are critical sections mutually exclusive?
(atomic-as a unit?)

 Fairness

 Are threads competing for a lock have a fair chance of
acquiring it?

 Overhead

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.34

EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock
implementation

 Atomic-as a unit exchange instruction
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.35

BUILDING LOCKS

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.36

HISTORICAL IMPLEMENTATION

TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.7Slides by Wes J. Lloyd

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.37

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.38

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.39

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

 Hardware support required for working locks
 Book presents pseudo code of C implementation
 TEST-and-SET adds a simple check to the basic spin lock
 Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1
 Comparison is in the caller

 Can implement the C version (non-atomic) and have some
success on a single-core VM

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.40

TEST-AND-SET INSTRUCTION

 C version: requires preemptive scheduler on single core system

 Lock is never released without a context switch

 single-core VM: occasionally will deadlock, doesn’t miscount

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.41

DIY: TEST-AND-SET - 2

 Correctness:
 Spin locks with atomic Test-and-Set:

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:
 No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting (< 1 time quantum)

 Performance is slow when multiple threads share a CPU

 Especially if “spinning” for long periods

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.42

SPIN LOCK EVALUATION

TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.8Slides by Wes J. Lloyd

 Checks that the lock variable has the expected value FIRST,
before changing its value
 If so, make assignment
 Return value at location

 Adds a comparison to TestAndSet
 Textbook presents C pseudo code
 Assumption is that the compare-and-swap method runs atomically

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be

updated atomically (as a unit) using the HW support
CompareAndSwap instruction

 Shared data structure updates become “wait-free”
 Upcoming in Chapter 32

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.43

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.44

COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.45

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.46

LL/SC LOCK

 Two instruction lock

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.47

LL/SC LOCK - 2

CHAPTER 29 –
LOCK BASED

DATA STRUCTURES

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.48

TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.9Slides by Wes J. Lloyd

Chapter 29
Concurrent Data Structures

Performance

 Lock Granularity

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.49

OBJECTIVES

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.50

LOCK-BASED
CONCURRENT DATA STRUCTURES

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.51

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.52

CONCURRENT COUNTER

 Decrease counter

 Get value

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.53

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.54

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

TCSS 422 A – Winter 2019
School of Engineering and Technology

2/9/2019

L8.10Slides by Wes J. Lloyd

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core

 N = 1000 tps

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.55

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

February 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.56

SLOPPY COUNTER

QUESTIONS

