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TCSS 422: OPERATING SYSTEMS

 Assignment 0 / Linux Tutorial
 C Tutorial
 Assignment 1
 Feedback 1/28

 CPU Scheduling:
 Chapter 9 – Proportional Share Scheduler 

Linux Completely Fair Scheduler (CFS)

 Parallel programming with P-threads:
 Chapter 26 – Intro to concurrency
 Chapter 27 – Linux Thread API
 Chapter 28 – Intro to locks
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OBJECTIVES

 What are t ickets in proportional share schedulers? 
(e.g. lottery)

 Goal: model CPU job scheduling as a ticket system

 Jobs with more tickets have higher priority to run

 They can obtain a greater share of the CPU time

 Can think of a ROUND-ROBIN scheduler as a lottery scheduler 
where everyone has same number of tickets
 Time proportions are all equal

 Lottery scheduler rotates among jobs in a run queue similar to 
RR, but jobs have different runtime proportions based on their 
share of tickets
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FEEDBACK FROM 1/28

 Does the lottery scheduler cause overhead?

 Rate overhead of lottery scheduler tasks:
HIGH, MEDIUM, LOW

 Consider a lottery scheduler with 1 user, having 100 jobs

 User has 1000 tickets, system has 10,000:

 Task 1 . A context switch occurs and the scheduler chooses a 
job to run 

 Task 2. Perform currency conversion between user tickets and 
system tickets

 Task 3. A new job arrives in the scheduler.  User redistributed 
tickets to give new job 100 tickets.  
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FEEDBACK - 2

 Could the lottery scheduler evenly distribute tickets based on 
a priority metric to reduce starvation?

 Yes, assuming job priority information is available

 A new job arrives in the system, how do we assign priority?

 Do we ask the user?

 MLFQ approach- place in the high priority queue, observe 
behavior, and slowly adjust priority

 How should the OS assign tickets upon job arrival?

 What do we know about incoming jobs a pr iori ?

 Runtime? Behavior - I/O bound? Batch? Pr iority?

 Ticket assignment is an open problem… 
(no optimal one size fits all approach)
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FEEDBACK - 3

 Incorporating I/O, 
how does overlap work?

 Within a single CPU core
during I/O Job A moves from 
RUNNING  BLOCKED while
I/O is performed

 During these IDLE CPU 
times,Job B moves from 
READY RUNNING
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FEEDBACK - 4

CPU
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CPU
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CHAPTER 9 -
PROPORTIONAL SHARE 

SCHEDULER
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 Also called fair-share scheduler
or lottery scheduler

 Guarantees each job receives some percentage of CPU 
time based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory
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PROPORTIONAL SHARE SCHEDULER

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed
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LOTTERY SCHEDULER

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS
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TICKET MECHANISMS

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of 
tickets it owns

 If a process needs more CPU time, it can boost tickets.
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TICKET MECHANISMS - 2
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 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?
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LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!
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COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.
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LOTTERY FAIRNESS

 With two jobs 
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as 
desired
 System performs currency conversion

 How should the OS automatically distribute tickets upon 
job arrival?

What do we know about incoming jobs a priori ?
 Runtime? Behavior - I/O bound? Batch? Priority?

 Ticket assignment is really an open problem…
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LOTTERY SCHEDULING CHALLENGES

Addresses statistical probability issues with 
lottery scheduling

 Instead of guessing a random number to select a 
job, simply count…
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STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should 

give up the CPU

 Stride value is inverse in proportion to the job’s number of 
tickets  (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100 stride

 Job B has 50 tickets  Bstride = 10000/50 = 200 stride

 Job C has 250 tickets  Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.18

STRIDE SCHEDULER - 2
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 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 
new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value, 
the scheduler passes on to the next job…
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STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200
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STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie
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STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection 
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

 Randomly choose B

 C has the lowest counter for next 3 rounds
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STRIDE SCHEDULER EXAMPLE - 3

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next 

 Over time jobs are scheduled to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority
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STRIDE SCHEDULER EXAMPLE - 4

Tickets
C  = 250
A  = 100
B  =   50

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1), O(n) schedulers

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE, 
SCHED_BATCH
 TS = Time Sharing

 Real-t ime classes: SCHED_FIFO (FF), SCHED_RR (RR)

 Show scheduling class and priority:

 ps –elfc

 ps ax -o pid,ni,cls,pri,cmd
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)
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 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority (class) 

receive exactly 1/nth of the CPU time

 Can compare with ideal fair scheduling
 Divide processor equally among processes
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COMPLETELY FAIR SCHEDULER - 2

Each process receives
(100/n)% CPU time

 Scheduling classes each have a runqueue
 Groups process of same priority 

 Process priority groups use different sets of runqueues for 
priorities

 Scheduler chooses job with lowest accumulative runtime to run

 Time quantum varies based on how many jobs in shared 
runqueue
 Time quantum is proportional to system CPU load in the runqueue

 No fixed time quantum (e.g. 10 ms)
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COMPLETELY FAIR SCHEDULER - 3
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COMPLETELY FAIR SCHEDULER – 4

 Runqueues are stored using a linux red-black tree
 Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest 
vruntime (approx execution time)

 Walking tree to find left 
most node is ~O(log N)
for N nodes

 Completed processes 
removed

 CFS tracks vir tual run time in vruntime variable
 The task on a given runqueue with the lowest vruntime is 

scheduled next
 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Value is not pure runtime, but weighted based on priority

 Perfect scheduler 
achieve equal vruntime for all processes of same priority

Key takeaway:
identifying the next job to schedule is really fast!

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

COMPLETELY FAIR SCHEDULER - 5

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values

 Process command (nice & priority):  
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Vruntime is a weighted time measurement

 Priority weights the calculation of vruntime within a 
runqueue to give high priority jobs a boost.
 Influences job’s position in rb-tree
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CFS: JOB PRIORITY

 Scheduling quantum is calculated at runtime based 
on targeted latency and total number of running 
processes 

 Will vary between:
 cat /proc/sys/kernel/sched_min_granularity_ns

(3 ms – minimum quantum)
 cat /proc/sys/kernel/sched_latency_ns

(24 ms – target quantum)

 Target quantum (latency): 
 Interval during which task should run at least once
Automatically increases as number of jobs increase
January 30, 2019 TCSS422: Operating Systems [Winter 2019]
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CFS: TIME QUANTUM
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 How do we map a nice value to an actual CPU time 
quantum (timeslice) (ms)?  What is the best mapping?

O(1) scheduler (< 2.6.23) 
 tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
Nice value suggests priority to assign runqueue for job

 Time proportion varies based on # of jobs in runqueue

With fewer jobs in runqueue, time proportion is larger
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CFS: TIME QUANTUM - 2

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.
7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
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COMPLETELY FAIR SCHEDULER 
REFERENCES

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION
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 Introduction to threads

 Race condition

 Critical section

 Thread API
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OBJECTIVES
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THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”
 This is parallel programming…

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is  an embarrassingly parallel program?
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THREADS - 2
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 Thread Control Block vs. Process Control Block
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PROCESS AND THREAD METADATA
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SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC
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THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?
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 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?
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COUNTER EXAMPLE

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads
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PROCESSES VS. THREADS

 What is happening with our counter? 
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52
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RACE CONDITION

 Code that accesses a shared variable must not be 
concurrently executed by more than one thread

 Multiple active threads inside a cr it ical  section produce a 
race condition .

 Atomic execution (all code executed as a unit) must be 
ensured in cr itical sections
 These sections must be mutually exclusive
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited
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LOCKS

CHAPTER 27 -
LINUX

THREAD API
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 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority…  (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)
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THREAD CREATION
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PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??
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WAITING FOR THREADS TO FINISH
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?
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 Casting 

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);
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ADDING CASTS

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;
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ADDING CASTS - 2

QUESTIONS


