TCSS 422 A — Winter 2019
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS
| |

Proportional Share Scheduling,
Linux Completely Fair Scheduler,
Introduction to Concurrency

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

panuanvEoszaly School of Engineering and Technology, University of Washington [liTacoma

1/31/2019

OBJECTIVES

= Assignment O / Linux Tutorial
= C Tutorial

= Assignment 1

= Feedback 1/28

= CPU Schedullng:
= Chapter 9 - Proportional Share Scheduler
Linux Completely Fair Scheduler (CFS)
= Parallel programming with P-threads:
= Chapter 26 - Intro to concurrency
= Chapter 27 - Linux Thread API
= Chapter 28 - Intro to locks

January 30, 2019 TCS5422: Operating Systems [Winter 2019] | 72 |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 1/28

= What are tickets In proportlonal share schedulers?
(e.g. lottery)

= Goal: model CPU job scheduling as a ticket system
= Jobs with more tickets have higher priority to run
= They can obtain a greater share of the CPU time

= Can think of a ROUND-ROBIN scheduler as a lottery scheduler
where everyone has same number of tickets
= Time proportions are all equal

= Lottery scheduler rotates among jobs in a run queue similar to
RR, but jobs have different runtime proportions based on their
share of tickets

January 30, 2019 TCS3422: Operating Systems [Winter 2019]
School of

7
chnology, University ington - Tacoma | 73 ‘

FEEDBACK - 2

= Does the lottery scheduler cause overhead?

= Rate overhead of lottery scheduler tasks:
HIGH, MEDIUM, LOW

= Consider a lottery scheduler with 1 user, having 100 jobs
= User has 1000 tickets, system has 10,000:

= Task 1. A context switch occurs and the scheduler chooses a
job to run

= Task 2. Perform currency conversion between user tickets and
system tickets

= Task 3. A new job arrives in the scheduler. User redistributed
tickets to give new job 100 tickets.

TCS$422: Operating Systems [Winter 2019] | w4 |

Ry Sehoollof Erineering andTech nolosyjUnversity oWashinaton ik Teconta

FEEDBACK - 3

= Could the lottery scheduler evenly distribute tickets based on
a priority metric to reduce starvation?

= Yes, assuming job priority information is available
= A new job arrives in the system, how do we assign priority?
= Do we ask the user?

= MLFQ approach- place in the high priority queue, observe
behavior, and slowly adjust priority

= How should the OS assign tickets upon job arrival?

= What do we know about incoming jobs a priori ?
= Runtime? Behavlor - I/0 bound? Batch? Priority?

= Ticket assignment is an open problem...
(no optimal one size fits all approach)

January 30, 2019 TcssAzcz‘: Operating Systems [Winter 2019]

7
School of Technology, University ington - Tacoma | e ‘

FEEDBACK - 4

= Incorporating 1/0, A B B B B

how does overlap work? CPU Ali ili.

= Within a single CPU core

during I/0 Job A moves from ° * ® @ % w0 im0
RUNNING > BLOCKED while Poor Use of Resources
1/0 is performed R 7 A A B A B

B

N\

cru N
= During these IDLE CPU §
times,Job B moves from //O l
READY-> RUNNING

Time (msec)

Overlap Allows Better Use of Resources

January 30, 2019 TCS5422: Operating Systems [Winter 2019] | 6 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L7.1

TCSS 422 A — Winter 2019
School of Engineering and Technology

CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Winter 2019]

SENITETR) ST 20D School of Engineering and Technology, University of Washington -

1/31/2019

PROPORTIONAL SHARE SCHEDULER

= Also called fair-share scheduler
or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

January 30, 2019 T(SSMZ; Operating Systems [Winter 2019]

School of Technology, University i Tacoma | 178 |

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

January 30, 2019 TCS3422: Operating Systems [Winter 2019]
School of

chnology, ity i Tacoma

LOTTERY SCHEDULER IMPLEMENTATION

JobiA JobB JobiC
head Tix:100 Tix:250 NULL

counter = 0;

winner = getrandom(0, totaltickets);

9 node_t *current = head;

10

11

12 (current) {

13 counter = counter + current->tickets;
14 (counter > winner)

15 ;

16 current = current->next;

January 30, 2019 TBSMZ; Operating Systems [Winter 2019]

School of Technology, University of Washi Tacoma L7.10

TICKET MECHANISMS

= Ticket currency / exchange
= User allocates tickets in any desired way
= 0S converts user currency into global currency

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to Al > 50 (global currency)
> 500 (A's currency) to A2 > 50 (global currency)

User B > 10(B’s currency) to B1 > 100(global currency)

January 30, 2019 TCS3422: Operating Systems [Winter 2019]
School of

chnology, ity i Tacoma

| 7.11

Slides by Wes J. Lloyd

TICKET MECHANISMS - 2

= Ticket transfer
= Temporarily hand off tickets to another process

= Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= If a process needs more CPU time, it can boost tickets.

January 30, 2019 TBSMZ; Operating Systems [Winter 2019]

School of Technology, University of Washi Tacoma L712

L7.2

TCSS 422 A — Winter 2019
School of Engineering and Technology

LOTTERY SCHEDULING

= Scheduler picks a winnlng ticket
= Load the job with the winning ticket and run it

= Example:
= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

1/31/2019

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A A AB AB A

= But what do we know about probability of a coin flip?

TCS5422: Operating Systems [Winter 2019]

LR £, 2D AT o T o e s oy ATt A T T

COIN FLIPPING

= Equality of distribution (fairness) requires a lot of flips!

100
0
80
70
60 Jil
50
40

" Allheads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

|

-
Increasing number of coin tosses

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1714

January 30, 2019

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

1.0

Unfairess (Average)

10 10 1000
Job Length

When the job length is not very long,
average unfairness can be

TCS5422: Operating Systems [Winter 2019]
LR £, 2D e oolol Enginearins erdiechnolosyiUnNe Bty f Tacoms

LOTTERY SCHEDULING CHALLENGES

= What is the best approach to assign tickets to jobs?
=Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

System performs currency conversion

= How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
Runtime? Behavior - I/0 bound? Batch? Priority?

= Ticket assignment is really an open problem...

TCSS422: Operating Systems [Winter 2019]

Ry ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

17.16

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

job, simply count...

= |nstead of guessing a random number to select a

January 30, 2019 TCS3422: Operating Systems [Winter 2019]
School of

chnology, ity i Tacoma

STRIDE SCHEDULER - 2

= Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

= Total system tickets = 10,000
= Job A has 100 tickets > Aqe = 10000/100 = 100 stride
= Job B has 50 tickets > B4 = 10000/50 = 200 stride
= Job C has 250 tickets > Cg,;q = 10000/250 = 40 stride

= Stride scheduler tracks “pass” values for each job (A, B, C)

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1718

January 30, 2019

Slides by Wes J. Lloyd

L7.3

TCSS 422 A — Winter 2019
School of Engineering and Technology

STRIDE SCHEDULER - 3

= Basic algorithm:
1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

January 30, 2019 TC55422: Operating Systems [Winter 2019]

7.
School of Engineering and Technology, University of Washington - Tacoma | L9

1/31/2019

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

January 30, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1720

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100

. Tickets
= Increment counter until > 100 C =250
= Pick a new job: two-way tie A =100
Pass(A) Pass(?) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
o o " x 4 Initial job selection
100 0 0 is random.All @ 0
100 200 0 c
100 200 40 c 4 C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 (
200 200 200
January 30, 2019 TCSS422: Operating Systems [Winter 2019]

7.
School of Engineering and Technology, University of Washington - Tacoma | L2 ‘

STRIDE SCHEDULER EXAMPLE - 3

= We set A’s counter (pass value) to A’s stride = 100
= Next scheduling decision between B (pass=0) and C (pass=0)
= Randomly choose B

Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(2) Pass(C) Who Runs? A =100
(stride=100) (stride=200) (stride=40) B = 50
0 0 0 A
100 0 0
100 200 0 c
100 200 40 (= « C has the most tickets
100 200 80 € and is selected to run
100 200 120 A more often ...
200 200 120 €
200 200 160 C
200 200 200
January 30, 2019 TCSS422: Operating Systems [Winter 2019] .22

School of Engineering and Technology, University of Washington - Tacoma

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next
= Qver time jobs are scheduled to run based on their

priority represented as their share of tickets... Tickets
= Tickets are analogous to job priority 2 = i(s)g
Pass(A) Pass(B) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0

100 200 0 c

100 200 40 c

100 200 80 €

100 200 120 A

200 200 120 c

200 200 160 c

200 200 200

January 30, 2019 TCSS422: Operating Systems [Winter 2019]

7.
School of Engineering and Technology, University of Washington - Tacoma | 1723

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Linux > 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1), O(n) schedulers

= Every thread/process has a scheduling class (policy):
= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
=TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

= Show scheduling class and priority:
"ps -elfc
"ps ax -o pid,ni,cls,pri,cmd

January 30, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1724

Slides by Wes J. Lloyd

L7.4

TCSS 422 A — Winter 2019
School of Engineering and Technology

1/31/2019

COMPLETELY FAIR SCHEDULER - 2

= Loosely based on the stride scheduler
= CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority (class)
receive exactly 1/nth of the CPU time

= Can compare with Ideal falr scheduling g, process receives
= Divide processor equally among processes (100/n)% CPU time

Ideal Fairness

m

Al1]2]a]4a]6 s
A 8ms B[1[2[3 |4
B 4ms c[1[2]3]a e [8 [12]16

execution with respecttotime

TC55422: Operating Systems [Winter 2019] | 1725

COMPLETELY FAIR SCHEDULER - 3

= Scheduling classes each have a runqueue
= Groups process of same priority
= Process priority groups use different sets of runqueues for
priorities
= Scheduler chooses job with lowest accumulative runtime to run
= Time quantum varies based on how many jobs in shared

runqueue
Time quantum is proportional to system CPU load in the runqueue

No fixed time quantum (e.g. 10 ms)

TCSS422: Operating Systems [Winter 2019]

Ry) e T T T o ey A S T = TPy 1726

| LR £, 2D | AT o T o e s oy ATt A T T

COMPLETELY FAIR SCHEDULER - 4

® Runqueues are stored using a linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
= Leftmost node has lowest
vruntime (approxexecution time
= Walking tree to find left
most node is ~O(log N)
for N nodes
= Completed processes

Nodes represent
sched_entity(s)
indexed by their
virlual runtime

removed
Virtual runtime
Most need of CPU Least need of CPU
TCS5422: Operating Systems [Winter 2019]
SanuavEU2ULY School of Engineering and Technology, University of Washington - Tacoma L7.21

COMPLETELY FAIR SCHEDULER - 5

® CFS tracks virtual run time in vruntime variable

= The task on a given runqueue with the lowest vruntime is
scheduled next

" struct sched entity contains vruntime parameter
= Describes process execution time in nanoseconds
=Value is not pure runtime, but weighted based on priority

= Perfect scheduler >
achieve equal vruntime for all processes of same priority

= Key takeaway:
identifying the next job to schedule is really fast!

TCSS422: Operating Systems [Winter 2019]
Ry ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

17.28

CFS: JOB PRIORITY

= Time slice: Linux “Nlce value”
= Nice value predates the CFS scheduler
=Top shows nice values

= Process command (nice & priority):
ps ax -o pid,ni,cmd, %cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
=Vruntime is a weighted time measurement
= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

TCSS422: Operating Systems [Winter 2019]
LR £, 2 Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms 1729

CFS: TIME QUANTUM

= Scheduling quantum is calculated at runtime based
on targeted latency and total number of running
processes

= Will vary between:

" cat /proc/sys/kernel/sched_min_granularity ns
(3 ms - minimum quantum)

" cat /proc/sys/kernel/sched latency_ns
(24 ms - target quantum)

= Target quantum (latency):
= Interval during which task should run at least once
= Automatically increases as number of jobs increase

TCS5422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

1730

January 30, 2019

Slides by Wes J. Lloyd

L7.5

TCSS 422 A — Winter 2019
School of Engineering and Technology

CFS: TIME QUANTUM - 2

= How do we map a nice value to an actual CPU time
quantum (timeslice) (ms)? What is the best mapping?

= 0(1) scheduler (< 2.6.23)
=tried to map nice value to timeslice (fixed allotment)

= Linux completely fair scheduler
= Nice value suggests priority to assign runqueue for job
=Time proportion varies based on # of jobs in runqueue
= With fewer jobs in runqueue, time proportion is larger

January 30, 2019 TCS3422: Operating Systems [Winter 2019)
School of

chnology, ity i Tacoma

[oa]

1/31/2019

COMPLETELY FAIR SCHEDULER

REFERENCES

= More information:

= Man page: “man sched” : Describes Linux scheduling API

= http://manpages.ubuntu.com/manpages/bionic/man7/sched.
Z.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt
= https://en.wikipedia.org/wiki/Completely Fair_Scheduler

= See paper: The Linux Scheduler - a Decade of Wasted Cores
= http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

January 30, 2019 T(SSMZ; Operating Systems [Winter 2019]

School of Technology, University ington - Tacoma 1732

CHAPTER 26 -
CONCURRENCY:
AN INTRODUCTION

TCSS422: Operating Systems [Winter 2019]

SETITETR) £ 20D School of Engineering and Technology, University of Washington -

OBJECTIVES

® Introduction to threads
= Race condition
= Critical section

= Thread API

January 30, 2019 TBSMZ; Operating Systems [Winter 2019]

School of Technology, University of Washi Tacoma

1734

THREADS

Process Multithreaded Process
Process State: PC,
registers, SP, et

Singl = i
ingle At Multiple

Threaded Threaded
Process Process

P

g 00
——)

®Alfred Park, http:/randu.org/tutorials/threads

TCSS422: Operating Systems [Winter 2019]
et 4

. . 1735
School of nology, y Tacoma

| January 30, 2019 |

THREADS - 2

= Enables a single process (program) to have multiple “workers”
= This is parallel programming...

= Supports independent path(s) of execution within a program
with shared memory ...

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Threads share code segment, memory, and heap are shared

= What is an embarrassingly parallel program?

January 30, 2019 17.36

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University of Washi Tacoma

Slides by Wes J. Lloyd

L7.6

TCSS 422 A — Winter 2019
School of Engineering and Technology

PROCESS AND THREAD METADATA

= Thread Control Block vs. Process Control Block

Thread identification Process identification

Thread state Process status
CPU information: Process state:
Program counter Process status word
Register contents $egpub ke
y Main memory
Thread priority Resources
Pointer to process that created this thread Process priority
Pointers to all other threads created by this thread Accounting

January 30, 2019 TCS3422: Operating Systems [Winter 2019)
School of

chnology, ity i Tacoma

[oo]

THREAD CREATION EXAMPLE

#include <stdie.h>
tinclude <assert.h»
tinclude <pthread.h>

void smythread(void sarg) (
printf ("$s\n", (char «) arg);
return NULL;

ad_t pl, p2;

"A"); assert (rc == 0);
pthread_create(6p2, NULL, mythread, "B'); assert (rc == 0);
waits for the thr to finish
hread_join(pl, NULL); assert(rc == 0);
hread_join(p2 assert (rc == 0);
printf("main: end\n");
return 0;

January 30, 2019 TCS3422: Operating Systems [Winter 2019]
School of

7
chnology, University ington - Tacoma | 739 ‘

POSSIBLE ORDERINGS OF EVENTS - 2

Starts running

Prints ‘main: begin’

["Creates Thread 1 7
Runs
Prints ‘A"
Returns
~= Creates Thread 2 p—
Runs
Prints ‘B
Returns
_Walts forT1 Returns immediately n
Waits for T2 Returns immediately
Prints ‘main: end’
snvary 30,2019 | 1SR Operatngsistems Winer 2018 tacoma [oa]

1/31/2019

= Every thread has it’s own stack / PC
OKB The code segment: OKB
Program Code where instructions live Program Code
1KB A x 1KB
e heap segment:
biesp contains mallocd data S Hesp
2kB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15k8 contains local variables 158
Stack (1) arguments to routines, Stack (1)
16k8 return values, etc. 16K8
A single-Threaded Two threaded
Address Space Address Space
TCSS422: Operating Systems [Winter 2019]
Ry) A T T o U e A S T = 1738

POSSIBLE ORDERINGS OF EVENTS

Starts running
Prints ‘main: begin’
»Crea!es Thread 1
Creates Thread 2
Waits for TL
Runs
» Prints ‘A’
Returns

» Waits for T2

Runs
Prints ‘B

Returns

* Prints ‘main: end’

TCSS422: Operating Systems [Winter 2019]

‘ Ry ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

17.40

Slides by Wes J. Lloyd

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running
Prints ‘main: begin’
[Creates Thread 1

Creates Thread 2

What if execution order of
s cvents in the program matters?

Runs

Prints ‘A"

Returns

Prints ‘main: end”

Waits for T2 Immediately returns

January 30, 2019 Tcssnlzg; Operating Systems [Winter 2015]

School and Technology, ity i Tacoma

17.42

L7.7

TCSS 422 A — Winter 2019
School of Engineering and Technology

COUNTER EXAMPLE

= Counter example

= A + B: ordering
= Counter: incrementing global variable by two threads

= |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

January 30, 2019 TCS3422: Operating Systems [Winter 2019)
School of

7.
Technology, University i Tacoma | 1743 ‘

1/31/2019

PROCESSES VS. THREADS

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

Process Process

rogtorssgatorsagetor|

ElEa e

singla-throaded procoss

muttithioadad prozoss

‘ January 30, 2019

TCSS422: Operating Systems [Winter 2019]
e 4

School Technology, ity i Tacoma | L7.44 |

RACE CONDITION

CRITICAL SECTION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
os Thread1 Thread2 PC %eax counter
before critical section 100 o 50
mov 0x8049alc, teax 105 50 50
add $0x1, %eax 108 51 50
save T1’s state
restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, teax 108 51 50
mov %eax, 0x804%alc 113 51 51
save T2's state
restore Tl's state 108 51 50
mov %eax, 0x8049alc 13 51
TCS5422: Operating Systems [Winter 2019]
January 30, 2019 |S€wm ineeting and Technology, University ’ P 1745

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produce a
race condition.

= Atomlic executlon (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually excluslve

TCSS422: Operating Systems [Winter 2019]
e School of Engineering and Technology, Univers ington - Tacoma 1746

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lock (gmntex):
lbalance = balance + 1; | Critical section
unlock (smutex) i

Qs W e

= Counter example revisited

TCS5422: Operating Systems [Winter 2019]
LR £, 2 SeFoo[of Enginearing andiechnolosyiUnVe sty q Tacoma

[oo]

Slides by Wes J. Lloyd

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Winter 2019]

LT h) School of Engineering and Technology, University of Washington -

L7.8

TCSS 422 A — Winter 2019
School of Engineering and Technology

THREAD CREATION

= pthread_create

#include <pthread.h>

int
pthread_create(pthread_t* thread,
const pthread_attr_t* attr,
void#* (*start_routine) (void*),
void* arg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

1/31/2019

| 17.49

January 30, 2019 TCS3422: Operating Systems [Winter 2019)
School of

chnology, ity i Tacoma

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>

typedef st __myarg t {

} myarg_t
void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
» printf(“%d %d\n”, m->a, m->b);
NULL;
)
int main(int argc, char *argv([]) {
pthread t p;
int re;
myarg_t args;
» args.a = 10;
args.b = 20;
rc = pthread create(sp, NULL, mythread, &args);:

}

TCS5422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

‘ January 30, 2019

1750

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bvtes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

int rc, m;

pthread_create (sp, NULL, mythread, (void 2> 100);

pthread_join(p, (void **) &m);

12 printf (“returned ¥d\n”, m);
13 0;
14}

January 30, 2019 1751

TCSS422: Operating Systems [Winter 2019]
0ol of Engineeri nology, University i Tacoma

WAITING FOR THREADS TO FINISH

int pthread join(pthread_t thread, void **value_ptr);

= thread: which thread?

= value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

January 30, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, Uni

ity of i Tacoma

1752

struct myarg { . .
Int & hat will this code do?

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

(S)EESEE":yirg;O“tp“t’ Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
} a=10 b=20

Segmentation fault (core dumped)

int main (int argc, char * argv[])

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 10;

args.b = 20:

pthread_: . .
s#s How can this code be fixed?
return 0.

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.53

January 30, 2019

Slides by Wes J. Lloyd

struct myarg {)
HAS ow about this code?
b

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;

return (void *) &input;

} $.Ipthread_struct

a=10 b=20
returned 1 2

int main (int argc, char * argv[])
{

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b = 20;

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCS8422: Operating Systems [Winter 2019]

SENITETR) £ 20D School of Engineering and Technology, University of Washington - Tacoma

L7.9

TCSS 422 A — Winter 2019
School of Engineering and Technology

ADDING CASTS

= Casting
= Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’

from incompatible pointer type [-Wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return

In file included from pthread_int.c:3:0:
/usr/include/pthread.h:250:12: note: expected ‘void **' but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

1/31/2019

January 30, 2019 TCS3422: Operating Systems [Winter 2019)
School of

Technology, University i Tacoma

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

= return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

EX

January 30, 2019 T(SSMZ; Operating Systems [Winter 2019]

School o Technology, Universi i Tacoma

1756

QUESTIONS

Slides by Wes J. Lloyd

L7.10

