
TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.1Slides by Wes J. Lloyd

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

Proportional Share Scheduling,
Linux Completely Fair Scheduler,

Introduction to Concurrency

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 0 / Linux Tutorial
 C Tutorial
 Assignment 1
 Feedback 1/28

 CPU Scheduling:
 Chapter 9 – Proportional Share Scheduler

Linux Completely Fair Scheduler (CFS)

 Parallel programming with P-threads:
 Chapter 26 – Intro to concurrency
 Chapter 27 – Linux Thread API
 Chapter 28 – Intro to locks

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.2

OBJECTIVES

 What are t ickets in proportional share schedulers?
(e.g. lottery)

 Goal: model CPU job scheduling as a ticket system

 Jobs with more tickets have higher priority to run

 They can obtain a greater share of the CPU time

 Can think of a ROUND-ROBIN scheduler as a lottery scheduler
where everyone has same number of tickets
 Time proportions are all equal

 Lottery scheduler rotates among jobs in a run queue similar to
RR, but jobs have different runtime proportions based on their
share of tickets

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

FEEDBACK FROM 1/28

 Does the lottery scheduler cause overhead?

 Rate overhead of lottery scheduler tasks:
HIGH, MEDIUM, LOW

 Consider a lottery scheduler with 1 user, having 100 jobs

 User has 1000 tickets, system has 10,000:

 Task 1 . A context switch occurs and the scheduler chooses a
job to run

 Task 2. Perform currency conversion between user tickets and
system tickets

 Task 3. A new job arrives in the scheduler. User redistributed
tickets to give new job 100 tickets.

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.4

FEEDBACK - 2

 Could the lottery scheduler evenly distribute tickets based on
a priority metric to reduce starvation?

 Yes, assuming job priority information is available

 A new job arrives in the system, how do we assign priority?

 Do we ask the user?

 MLFQ approach- place in the high priority queue, observe
behavior, and slowly adjust priority

 How should the OS assign tickets upon job arrival?

 What do we know about incoming jobs a pr iori ?

 Runtime? Behavior - I/O bound? Batch? Pr iority?

 Ticket assignment is an open problem…
(no optimal one size fits all approach)

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

FEEDBACK - 3

 Incorporating I/O,
how does overlap work?

 Within a single CPU core
during I/O Job A moves from
RUNNING BLOCKED while
I/O is performed

 During these IDLE CPU
times,Job B moves from
READY RUNNING

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

FEEDBACK - 4

CPU

I/O

CPU

I/O

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.2Slides by Wes J. Lloyd

CHAPTER 9 -
PROPORTIONAL SHARE

SCHEDULER

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.7

 Also called fair-share scheduler
or lottery scheduler

 Guarantees each job receives some percentage of CPU
time based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.8

PROPORTIONAL SHARE SCHEDULER

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.9

LOTTERY SCHEDULER

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.11

TICKET MECHANISMS

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of
tickets it owns

 If a process needs more CPU time, it can boost tickets.

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.12

TICKET MECHANISMS - 2

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.3Slides by Wes J. Lloyd

 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.13

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

LOTTERY FAIRNESS

 With two jobs
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as
desired
 System performs currency conversion

 How should the OS automatically distribute tickets upon
job arrival?

What do we know about incoming jobs a priori ?
 Runtime? Behavior - I/O bound? Batch? Priority?

 Ticket assignment is really an open problem…

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.16

LOTTERY SCHEDULING CHALLENGES

Addresses statistical probability issues with
lottery scheduling

 Instead of guessing a random number to select a
job, simply count…

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.17

STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should

give up the CPU

 Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets Astride = 10000/100 = 100 stride

 Job B has 50 tickets Bstride = 10000/50 = 200 stride

 Job C has 250 tickets Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.18

STRIDE SCHEDULER - 2

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.4Slides by Wes J. Lloyd

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job…

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.19

STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

 Randomly choose B

 C has the lowest counter for next 3 rounds

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next

 Over time jobs are scheduled to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1), O(n) schedulers

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
 TS = Time Sharing

 Real-t ime classes: SCHED_FIFO (FF), SCHED_RR (RR)

 Show scheduling class and priority:

 ps –elfc

 ps ax -o pid,ni,cls,pri,cmd

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.5Slides by Wes J. Lloyd

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority (class)

receive exactly 1/nth of the CPU time

 Can compare with ideal fair scheduling
 Divide processor equally among processes

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

COMPLETELY FAIR SCHEDULER - 2

Each process receives
(100/n)% CPU time

 Scheduling classes each have a runqueue
 Groups process of same priority

 Process priority groups use different sets of runqueues for
priorities

 Scheduler chooses job with lowest accumulative runtime to run

 Time quantum varies based on how many jobs in shared
runqueue
 Time quantum is proportional to system CPU load in the runqueue

 No fixed time quantum (e.g. 10 ms)

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

COMPLETELY FAIR SCHEDULER - 3

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.27

COMPLETELY FAIR SCHEDULER – 4

 Runqueues are stored using a linux red-black tree
 Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest
vruntime (approx execution time)

 Walking tree to find left
most node is ~O(log N)
for N nodes

 Completed processes
removed

 CFS tracks vir tual run time in vruntime variable
 The task on a given runqueue with the lowest vruntime is

scheduled next
 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Value is not pure runtime, but weighted based on priority

 Perfect scheduler
achieve equal vruntime for all processes of same priority

Key takeaway:
identifying the next job to schedule is really fast!

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

COMPLETELY FAIR SCHEDULER - 5

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values

 Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Vruntime is a weighted time measurement

 Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
 Influences job’s position in rb-tree

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

CFS: JOB PRIORITY

 Scheduling quantum is calculated at runtime based
on targeted latency and total number of running
processes

 Will vary between:
 cat /proc/sys/kernel/sched_min_granularity_ns

(3 ms – minimum quantum)
 cat /proc/sys/kernel/sched_latency_ns

(24 ms – target quantum)

 Target quantum (latency):
 Interval during which task should run at least once
Automatically increases as number of jobs increase
January 30, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L7.30

CFS: TIME QUANTUM

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.6Slides by Wes J. Lloyd

 How do we map a nice value to an actual CPU time
quantum (timeslice) (ms)? What is the best mapping?

O(1) scheduler (< 2.6.23)
 tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
Nice value suggests priority to assign runqueue for job

 Time proportion varies based on # of jobs in runqueue

With fewer jobs in runqueue, time proportion is larger

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

CFS: TIME QUANTUM - 2

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.
7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

COMPLETELY FAIR SCHEDULER
REFERENCES

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.33

 Introduction to threads

 Race condition

 Critical section

 Thread API

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

OBJECTIVES

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”
 This is parallel programming…

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

THREADS - 2

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.7Slides by Wes J. Lloyd

 Thread Control Block vs. Process Control Block

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.37

PROCESS AND THREAD METADATA

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.38

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.41

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.8Slides by Wes J. Lloyd

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

COUNTER EXAMPLE

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.44

PROCESSES VS. THREADS

 What is happening with our counter?
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.45

RACE CONDITION

 Code that accesses a shared variable must not be
concurrently executed by more than one thread

 Multiple active threads inside a cr it ical section produce a
race condition .

 Atomic execution (all code executed as a unit) must be
ensured in cr itical sections
 These sections must be mutually exclusive

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.46

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.47

LOCKS

CHAPTER 27 -
LINUX

THREAD API

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.48

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.9Slides by Wes J. Lloyd

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.49

THREAD CREATION

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.52

WAITING FOR THREADS TO FINISH

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.53

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.54

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/31/2019

L7.10Slides by Wes J. Lloyd

 Casting

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.55

ADDING CASTS

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

January 30, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.56

ADDING CASTS - 2

QUESTIONS

