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TCSS 422: OPERATING SYSTEMS

 What are batch jobs?

 “Batch jobs” originates from the legacy concept of 
“batch processing” in computer systems

 Batch processing involves scripted running of one or more 
programs that run sequentially with no human interaction

 Examples include general data processing, system 
“housekeeping” tasks, report generation

 Tasks may be high-volume and repetitive

 Batch jobs are long-running tasks where most of the 
execution time requires long interrupted access to run 
code on the CPU
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 How does MLFQ priority switching work again?

 Rule 3: When a job enters the system, it  is placed at the highest 
priority.

 Rule 4: Once a job uses up its  t ime allotment at a given level 
(regardless of how many times it  has given up the CPU),  its priority 
is reduced (i .e .,  it  moves down on queue).

 Address gaming the scheduler through job accounting to track 
to execution time

 Rule 5: After some time period S, move all the jobs in the system to 
the topmost queue.

 Priority boost

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
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 Is priority for processes scheduled using the MLFQ 
scheduler determined solely based on use of a time 
quantum (for each queue)?

 For the classic MLFQ described in Ch. 8: YES
 For actual implementations of MLFQ, priority (which 

queue a job is in) could be influenced by the job’s 
nice value
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 Given a system with a quantum length of 10 ms in its highest 
queue, how often would you have to boost jobs back to the highest 
priority level to guarantee that a single long-running (and 
potentially starving) job (let’s say job A ) gets at least 5% of the 
CPU?

 Key is:  “guarantee” and “starving”  assume worst case scenario

 “Single long-running”  implies “BATCH” job

 WORST CASE: some combination of n short jobs consumes al l
remaining time of the 10ms quantum without relinquishing the CPU
 2 jobs=5ms ea; 3 jobs=3.33ms ea;.. *does it matter how many jobs?*

 The quantum is gone! n jobs ALWAYS uses full time quantum (10 ms)

 Batch job A starts, runs for full quantum of 10ms

 If 10ms is 5% of the CPU, when must the priority boost be ???

 ANSWER  Priority boost should occur every 200ms

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington  - Tacoma
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FEEDBACK: 
EXPLAIN THE SECOND EXAMPLE AGAIN

 I ’m confused about how to do a scheduling graph.

 From the in class example, at T=3 C disappears

Where does it go?

 Then there are two A’s

When do letters repeat?
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 Quiz 2: Chapter 7 Schedulers
 Assignment 0 / Linux Tutorial
 C Tutorial
 Assignment 1 Posted

 CPU Scheduling:
 Chapter 9 – Proportional Share Scheduler 

Linux Completely Fair Scheduler (CFS)

 Parallel programming with P-threads:
 Chapter 26 – Intro to concurrency
 Chapter 27 – Linux Thread API
 Chapter 28 – Intro to locks

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington  - Tacoma
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CHAPTER 9 -
PROPORTIONAL SHARE 

SCHEDULER

January 28, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L6.9

 Also called fair-share scheduler
or lottery scheduler

 Guarantees each job receives some percentage of CPU 
time based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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LOTTERY SCHEDULER
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LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...
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 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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TICKET MECHANISMS

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of 
tickets it owns

 If a process needs more CPU time, it can boost tickets.

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of fl ips!

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.
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January 28, 2019 TCSS422: Operating Systems [Winter 2019]
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LOTTERY FAIRNESS

 With two jobs 
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as 
desired

 How should the OS automatically distribute tickets upon 
job arrival?

What do we know about incoming jobs a priori ?

 Ticket assignment is really an open problem…

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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Addresses statistical probability issues with 
lottery scheduling

 Instead of guessing a random number to select a 
job, simply count…

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should 

give up the CPU

 Stride value is inverse in proportion to the job’s number of 
tickets  (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100 stride

 Job B has 50 tickets  Bstride = 10000/50 = 200 stride

 Job C has 250 tickets  Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 
new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value, 
the scheduler passes on to the next job…

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 Three-way tie: randomly pick job A (all  pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until  > 100

 Pick a new job: two-way tie

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection 
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

 Randomly choose B

 C has the lowest counter for next 3 rounds

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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STRIDE SCHEDULER EXAMPLE - 3

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and is selected to run
more often …
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 Job counters support determining which job to run next 

 Over t ime jobs are scheduled to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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STRIDE SCHEDULER EXAMPLE - 4

Tickets
C  = 250
A  = 100
B  =   50

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE, 
SCHED_BATCH
 TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 Show scheduling class and priority:

 ps –elfc

 ps ax -o pid,ni,cls,pri,cmd

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington  - Tacoma
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 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority (class) 

receive exactly 1/nth of the CPU time

 Scheduling classes each have a runqueue
 Groups process of same priority 
 Process priority groups use different sets of runqueues for 

priorities
 Scheduler picks task with lowest accumulative runtime to run
 Time quantum varies based on how many jobs in shared 

runqueue
 Time quantum is proportional to system CPU load in the runqueue
 No fixed time quantum (e.g. 10 ms)

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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COMPLETELY FAIR SCHEDULER - 2
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COMPLETELY FAIR SCHEDULER – 3

 Runqueues are stored using a linux red-black tree
 Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest 
vruntime (approx execution time)

 Walking tree to find left 
most node is ~O(log N)
for N nodes

 Completed processes 
removed
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 CFS tracks virtual run time in vruntime variable
 The task on a given runqueue with the lowest vruntime is 

scheduled next
 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Value is not pure runtime, but weighted based on priority

 Perfect scheduler 
achieve equal vruntime for all processes of same priority

Key takeaway:
identifying the next job to schedule is really fast!

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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COMPLETELY FAIR SCHEDULER - 4

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values

 Process command (nice & priority):  
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Vruntime is a weighted time measurement

 Priority weights the calculation of vruntime within a 
runqueue to give high priority jobs a boost.
 Influences job’s position in rb-tree

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 Scheduling quantum is calculated at runtime based 
on targeted latency and total number of running 
processes 

 Will vary between:
 cat /proc/sys/kernel/sched_min_granularity_ns

(3 ms – minimum quantum)
 cat /proc/sys/kernel/sched_latency_ns

(24 ms – target quantum)

 Target quantum (latency): 
 Interval during which task should run at least once
Automatically increases as number of jobs increase
January 28, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington  - Tacoma
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CFS: TIME QUANTUM

 How do we map a nice value to an actual CPU time 
quantum (timeslice) (ms)?  What is the best mapping?

O(1) scheduler (< 2.6.23) 
 tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
Nice value suggests priority to assign runqueue for job

 Time proportion varies based on # of jobs in runqueue

With fewer jobs in runqueue, time proportion is larger

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

CFS: TIME QUANTUM - 2



TCSS 422 A – Winter 2019
School of Engineering and Technology

1/28/2019

L6.17Slides by Wes J. Lloyd

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.
7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington  - Tacoma
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CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION

January 28, 2019
TCSS422: Operating Systems [Winter 2019]
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 Introduction to threads

 Race condition

 Critical section

 Thread API

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L6.36

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED
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 Enables a single process (program) to have multiple “workers”
 This is parallel programming…

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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THREADS - 2

 Thread Control Block vs. Process Control Block

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L6.43

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L6.45

PROCESSES VS. THREADS

 What is happening with our counter? 
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 Code that accesses a shared variable must not be 
concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a 
race condition .

 Atomic execution (all code executed as a unit) must be 
ensured in critical sections
 These sections must be mutually exclusive

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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TCSS 422 A – Winter 2019
School of Engineering and Technology

1/28/2019

L6.25Slides by Wes J. Lloyd

CHAPTER 27 -
LINUX

THREAD API

January 28, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L6.49

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority…  (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L6.52

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?
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 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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WAITING FOR THREADS TO FINISH

January 28, 2019
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting 

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
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ADDING CASTS
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 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;
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ADDING CASTS - 2

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h
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LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++)  {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}
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 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock
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LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked
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LOCK INITIALIZATION
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 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration
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LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits)    (THREAD is BLOCKED)
 Threads added to FIFO queue, lock is released 
 Waits (l istens) for a “signal”   (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread
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CONDITIONS AND SIGNALS
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 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the 
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()
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CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);
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CONDITIONS AND SIGNALS - 3

State variable set, 
Enables other thread(s) 

to proceed above.
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pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may 

have not been met.  **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to 
execute when it should not.  (e.g. too early)

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.65

CONDITION AND SIGNALS - 4

 Compilation
 gcc –pthread pthread.c –o pthread

 Requires explicitly linking the library with compiler flag

 Use makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread
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PTHREADS LIBRARY
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 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target
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SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

CHAPTER 28 –
LOCKS

January 28, 2019
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TCSS 422 A – Winter 2019
School of Engineering and Technology

1/28/2019

L6.35Slides by Wes J. Lloyd

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given 

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked  (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock
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LOCKS - 2
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 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner 
releases it.

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.71

LOCKS - 3

 Program can have many mutex (lock) variables to 
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data 
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an 

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table, 

row, field
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LOCKS - 4
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 Is this code a good example of “f ine grained parallelism”?
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FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {

node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock); 

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.74

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b); 
pthread_mutex_unlock(&lock_a); 

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b); 

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d); 

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e); 

ListNode *node = mylist->head;
int i=0 . . .
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 Correctness

 Does the lock work?  

 Are critical sections mutually exclusive?  
(atomic-as a unit?)

 Fairness

 Are threads competing for a lock have a fair chance of 
acquiring it?

 Overhead
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EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock 
implementation

 Atomic-as a unit exchange instruction 
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B
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BUILDING LOCKS
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 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its  own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…
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HISTORICAL IMPLEMENTATION
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SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation:  Correct?  Fair?  Per formant?
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 Correctness requires luck…  (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously 
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DIY: CORRECT?

 What is wrong with while(<cond>);  ?

 Spin-waiting wastes t ime actively waiting for another thread

 while (1); will  “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…
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DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}
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 C implementation: not atomic
 Adds a simple check to basic spin lock

 One a single core CPU system with preemptive scheduler:

 Try this…

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Single core systems are becoming scarce

 Try on a one-core VM
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TEST-AND-SET INSTRUCTION

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will  deadlock, doesn’t miscount
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DIY: TEST-AND-SET - 2



TCSS 422 A – Winter 2019
School of Engineering and Technology

1/28/2019

L6.42Slides by Wes J. Lloyd

 Correctness:
 Spin locks guarantee: critical sections won’t be executed 

simultaneously by (2) threads

 Fairness:
 No fairness guarantee.  Once a thread has a lock, nothing forces it to 

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting

 Performance is slow when multiple threads share a CPU
 Especially for long periods 
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SPIN LOCK EVALUATION

 Checks that the lock variable has the expected value FIRST, 
before changing its value
 If so, make assignment

 Return value at location

 Adds a comparison to TestAndSet

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be 

updated atomically (as a unit) using the HW support 
CompareAndSwap instruction

 Shared data structure updates become “wait-free” 

 Upcoming in Chapter 32
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COMPARE AND SWAP
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 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b
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COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock

 Cooperative instructions used together to support 
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value
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TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS



TCSS 422 A – Winter 2019
School of Engineering and Technology

1/28/2019

L6.44Slides by Wes J. Lloyd

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code
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LL/SC LOCK

 Two instruction lock
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LL/SC LOCK - 2
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QUESTIONS

 What if programs could directly control the CPU / system?

January 28, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.90

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for 
program
3. Load program into memory
4. Set up stack with argc / 
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()
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 What if programs could directly control the CPU / system?
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COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for 
program
3. Load program into memory
4. Set up stack with argc / 
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything 

and would “just be a library”

 With direct execution: 

How does the OS stop a program from running, and switch 
to another to support time sharing?

How do programs share disks and perform I/O if they are 
given direct control?  Do they know about each other?

With direct execution, how can dynamic memory structures 
such as linked lists grow over time?
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DIRECT EXECUTION - 2
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 Too little control: 
 No security

 No time sharing

 Too much control: 
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use
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CONTROL TRADEOFF
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CONTEXT SWITCHING OVERHEAD

Time

Overhead


