TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Limited Direct Execution, 3
Introduction to CPU Schedullng%

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

lanuayplogz0ls School of Engineering and Technology, University of Washington il Tacoma

FEEDBACK 1/14

® fork() - will a modification to the data of a forked process
trigger Copy-and-Write to duplicate all process data?, or
only that which was modified... ?

= Only modified data - saves memory and time
= How can this be tested?

® Example: exec.c revisited - example using wait()
= Recompiled exec.c
= Unable to reproduce bug (parent existing before child)

= Old version was compiled with previous Linux kernel, suspect
changes may have caused different behavior

= Check out: waitpid() and capturing return code from wait()

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L4-2

January 16, 2019

Lioyd

1/16/2019

L4.1

TCSS 422 A — Winter 2019 1/16/2019
School of Engineering and Technology

FEEDBACK - 2

= Why exec, instead of just calling another function like in Java?
= Fork(), exec(), and wait() allow fine grained control over processes
= Goal: remotely invoke another executable program, from an existing
C program
= Can fork() a new processes to delegate to run an external program
= Can redirect input, output, stderr of processes

® Exec.. is still a little complex
= 6 versions: execl(), execlp(), execle(), execv(), execvp(), execvpe()
= “p” - duplicates the PATH of the shell

U ”

= “e” — allows the environment (variables) to be passed in as an array
of pointers to NULL-terminated strings, list is NULL terminated

= “y” - provide cmmd & args as array (vector)

= “|” - provide cmd & args as (list) of individual params sent to the
function (see execl.c example)

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

exec()

® Supports running an external program
m 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

m execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argl, .. argn)

® Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.2

TCSS 422 A — Winter 2019 1/16/2019
School of Engineering and Technology

FEEDBACK - 3

® What is the (too much / too little) control tradeoff for
Operating System designhs?
= Who (what) has too much/little control?
= What are consequences of too much control?
= ... consequences of too little control?

® What is direct vs. limited direct execution with respect to
operating systems?
_8’, = Direct - code runs directly on HW, OS can not intervene, processes
can “run away’...

= Limited direct - code runs on HW, but can not directly access
protected resources (memory, devices), OS can intervene and
preempt a process

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L5

January 16, 2019

FEEDBACK - 4

® How do we identify system processes?

® All kernel processes (threads) are children of process
(pid==2)

= “ps” command to display processes owhed by the kernel:
pPs --ppid 2 -p 2 -o

uname ,pid,ppid,pcpu,pmem,vsz,rssize,start,time,cmd |
more

" “ps” command to display non-kernel processes:

pPs --ppid 2 -p 2 -o

uname ,pid,ppid,pcpu,pmem,vsz,rssize,start,time,cmd -
-deselect | more

B What is significant regarding the output?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L6

January 16, 2019

Slides by Wes J. Lloyd L4.3

TCSS 422 A — Winter 2019 1/16/2019
School of Engineering and Technology

FEEDBACK - 5

® Hard time following along. Overwhelming amount of
information. Can’t seem to find guideline/direction
= AFTER CLASS - :
= (1) Review Slides
= (2) Read chapters (in this case Ch. 5 & 6)
= (3) While reviewing/reading, make list of confusing topics
= (4) Formulate questions about these topics

= THEN

= (1) Visit professor after class, during office hours, or make an
appointment --or--

= (2) Email list of questions to professor

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L7

January 16, 2019

OBJECTIVES

® Active Reading Quiz 1
B Assighment O / Linux Tutorial
® C Tutorial

® Chapter 6 - Limited Direct Execution

= CPU Scheduling:
®m Chapter 7 - Scheduling Introduction
® Chapter 8 - Multi-level Feedback Queue (MLFQ)

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L8

January 16, 2019

Slides by Wes J. Lloyd L4.4

TCSS 422 A — Winter 2019
School of Engineering and Technology

January 16, 2019

CH. 6:
LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

VIRTUALIZING THE CPU

® How does the CPU support
simultaneously?

= Time Sharing

= Tradeoffs:
= Performance
= Excessive overhead
= Control

= Fairness
= Security

® Both HW and OS support
is used

running so many jobs

[top - 18:25:07 up 430 days, 1:03, 3 users, load average: 0.32, 0.28, 0.29
[Tasks: 652 total, 1 running, 653 sleeping. 0 stopped, 0 zombic

(Gpu(s): 7.6%s, 0.5%sy, 0.08ni, 91.8%ig, 0. 0051, 0731,
Nen: ™ 74237736k total, 73498280k Used, G, Se413T6K butfers

a 0.0t
7isasek free,
‘Swap: 21835772k total, 72252k used, 21763520k free, 55283536k cached

15276 eucalypt 20
2

o
0 som
o
5286 cucalypt 20 0 600n 18n lem S
540 eucalypt 20 0 603 27a 20m S
8529 cucalypt 20 0 603 258 20m S
10829 eucalypt 20 O 600w 20m 16u S
11017 eucalypt 20 0 G0da 28a 20m S
15153 eucalypt 20 O 600w 18a 16m S
17718 eucalypt 20 O G00m 20m 16m S
30829 cucalypt 20 O 600w 15n 14m S
31711 eucalypt 20 0 600m 18a 16m S
ZBroot 20 0 0 0 05
1069 cucalypt 20 0 GO 20m 16m S
3504 eucalypt 20 0 600m 10 8420 S
8121 eucalypt 20 0 603m 27m 2m S
7050 eucalypt 20 0 603m 258 20m S
7089 eucalypt 20 0 603m 25m 20m S
8526 eucalypt 20 0 G0dm 25a 20m S
8528 eucalypt 20 0 603n 258 2w S
12914 eucalypt 20 0 603m 25n 20m S
14287 eucalypt 20 0 603 27m 20mS
15755 eucalypt 20 0 G03m 25a 20mS 0.3
16122 eucalypt 20 0 600m 18a l6mS 0.3
16406 eucalypt 20 0 600m 6n s 0.3
16539 eucalypt 20 0 2091m 156m 15595 0.3
root 024,65 502m TomS 0.3
30740 eucalypt 20 0 603 23n 18mS 0.3
31530 eucalypt 20 0 602m 24a 20mS 0.3
Troot | 20 0193561208 9485 0.0
Zrot 2 0 0 0 0500
3ret RO 0 0 05 00
Grot 2 0 0 0 0500
Sret R 0 0 0 05 00
Grot R 0 0 0 0500
Jret R 0 0 0 05 00
Brot R 0 0 0 0500
Sret 2 0 0 0 05
Wrot R 0 0 0 05 00
Mrot R 0 0 0 05 00
i2rot RT 0 0 0 0S 0.0 0.0 0:00.00 stopper/2

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

Slides by Wes J. Lloyd

1/16/2019

L4.5

TCSS 422 A — Winter 2019
School of Engineering and Technology

LIMITED DIRECT EXECUTION

® OS implements LDE to support time/resource sharing

can execute DIRECTLY on the CPU in trusted mode

® TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

®= Enabled by protected (safe) control transfer
® CPU supported context switch

®m Provides data isolation

® Limited direct execution means “only limited” processes

TCSS422: Operating Systems [Winter 2019]

lanuanviio2028 School of Engineering and Technology, University of Washington - Tacoma

L4.11

CPU MODES

m Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access €———o NO access

= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
OS kernel is running performing restricted operations

TCSS422: Operating Systems [Winter 2019]

(IR 113, AT School of Engineering and Technology, University of Washington - Tacoma

L4.12

Slides by Wes J. Lloyd

1/16/2019

L4.6

TCSS 422 A — Winter 2019

School of Engineering and Technology

CPU MODES

= User mode: ring 3 - untrusted

= Some instructions and registers are disabled by the CPU

= Exception registers
= HALT instruction
= MMU instructions

= 0S memory access

=|/0 device access

= Kernel mode: ring O - trusted

= All instructions and registers enabled

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

SYSTEM CALLS

E Implement restricted “OS” operations
®m Kernel exposes key functions through an API:

" Device I/0 (e.g. file 1/0)

= Task swapping: context switching between processes

= Memory management/allocation: malloc()
= Creating/destroying processes

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

Slides by Wes J. Lloyd

1/16/2019

L4.7

TCSS 422 A — Winter 2019 1/16/2019
School of Engineering and Technology

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code & Interrupt Service Routine
Interrupt
— T f k I d loop() { * ISR {
. instruction 1 instruction 1

rap: any transfer to kernel mode inatrustion 1 tnatwusiar, 1
instruction 3 naruction &
instruction 4 !
instruction &

® Three kinds of traps)

= System call: (planned) user 2> kernel
SYSCALL for 1/0, etc.

= Exception: (error) user 2> kernel
Div by zero, page fault, page protection error

= Interrupt: (event) user - kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCSS422: Operating Systems [Winter 2019]

lanuanviio2028 School of Engineering and Technology, University of Washington - Tacoma

L4.15

EXCEPTION TYPES

Exceptiont Synchronous vs. rrequest vs. User maskable vs. Wi between | @ evs.terminate
i asynchronous coerced nonmaskable ctions .

/0 device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume
Tracing Instruction execution Synchronous User request User maskable Between Resume

Synchronous User request User maskable Between Resume
Integer arlthmetic overflow Synchronous Coerced User maskable Within Resume
fcating contaskhmeticererion Synchronous Coerced User maskable Within Resume
or underflow

Synchronous Coerced Nonmaskable Within Resume
Misaligned memory accesses Synchronous Coerced User maskable Within Resume
Memory protection violation Synchronous Coerced Nonmaskable Within Resume
UsIng undefined Instruction Synchronous Coerced Nonmaskable Within Terminate
Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate
Powerfallure Asynchronous Coerced Nonmaskable Within Terminate

TCSS422: Operating Systems [Winter 2019]

(IR 113, AT School of Engineering and Technology, University of Washington - Tacoma

L4.16

Slides by Wes J. Lloyd L4.8

TCSS 422 A — Winter 2019

School of Engineering and Technology

0S @ boot Hardware
(kernel mode)

- initialize trap table
remember address of ...
syscall handler

0OS @ run Hardware Program
(kernel mode) (user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC

return-from -trap
restore regs from kernel stack
- move to user mode
jump to main
I Run main()
Call system
trap into OS
save regs to kernel stack
- move to kernel mode

jump to trap handler

Handle trap
‘ Do work of syscall

return-from-trap

restore regs from kernel stack
‘ move to user mode
Jjump to PC after trap
‘ return from main
trap (via exit())
‘ Free memory of process
Remove from process list

TCSS422: Operating Systems [Winter 2019]

Santapalegeats) School of Engineering and Technology, University of Washington - Tacoma L4.17
0S @ boot Hardware
(kernel mode)
‘ initialize trap table
remember address of ...
syscall handler
05 @ run Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Computer BOOT Sequence:
OS with Limited Direct E ti
move to kernel mode
jump to trap handler
Handle trap
‘ Do work of syscall
turn-fi -t
eSO AR restore regs from kernel stack
‘ move to user mode
jump to PC after trap
‘ return from main
trap (via exit())
‘ Free memory of process
Remove from process list
January 16, 2019 TCSS422: Operating Systems [Winter 2019] A

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

1/16/2019

L4.9

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MULTITASKING

® How/when should the OS regain control of the CPU to
switch between processes?

® Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yield system call

When performing 1/0
lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCSS422: Operating Systems [Winter 2019]

lanuanviio2028 School of Engineering and Technology, University of Washington - Tacoma

L4.19

MULTITASKING

® How/when should the OS regain control of the CPU to
switch between processes?

B Coops

lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCSS422: Operating Systems [Winter 2019]

(IR 113, AT School of Engineering and Technology, University of Washington - Tacoma

L4.20

Lioyd

1/16/2019

L4.10

TCSS 422 A — Winter 2019 1/16/2019
School of Engineering and Technology

What problems exist for regaining the control

W of the CPU with cooperative multitasking
OSes?

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

QUESTION: MULTITASKING

= What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1422

January 16, 2019

Slides by Wes J. Lloyd L4.11

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MULTITASKING - 2

® Preemptive multitasking (32 & 64 bit OSes)
® >= Mac OSX, Windows 95+

®ETimer interrupt

= Raised at some regular interval (in ms)
= [nterrupt handling
Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

(PollEV) What is a good interval for the timer interrupt?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L4.23

January 16, 2019

MULTITASKING - 2

® Preemptive multitasking (32 & 64 bit 0Ses)
®>= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?
TCSS422: O ting Syst [Winter 2019]
(IR 113, AT School of Er?gei:]aelel:'igngy:nedm'lfechr:glsgy, University of Washington - Tacoma L4.24
Lloyd

1/16/2019

L4.12

TCSS 422 A — Winter 2019 1/16/2019

School of Engineering and Technology

For an OS that uses a system timer to force
arbitrary context switches to share the CPU,

what is a good value (in seconds) for the timer

interrupt?

TCSS422: Operating Systems [Winter 2019]
.. January 16, 2019 151t tne presgpissie < HiraEhSTARE TEEHHOR SRR RISV ASHRHEXSAT FiBoma '-4-2!.

QUESTION: TIME SLICE

= For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TCSS422: Operating Systems [Winter 2019]
(IR 113, AT School of Engineering and Technology, University of Washington - Tacoma L4.26

Slides by Wes J. Lloyd L4.13

TCSS 422 A — Winter 2019 1/16/2019
School of Engineering and Technology

CONTEXT SWITCH

® Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

TCSS422: Operating Systems [Winter 2019]
Lanuapvilen20ts School of Engineering and Technology, University of Washington - Tacoma w27

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack
= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack
3. Switch to the kernel stack for the soon-to-be-executing
process
TCSS422: Operating Systems [Winter 2019]
(IR 113, AT School of Er?;i;ae;r:igngy:nedm‘lfechr:glséy, University of Washington - Tacoma L4.28

Slides by Wes J. Lloyd L4.14

TCSS 422 A — Winter 2019
School of Engineering and Technology

0S @ boot
(kernel mode)

Hardware

‘ initialize trap table
‘ start interrupt timer

remember address of ...

‘ syscall handler
timer handler

‘ start timer
interrupt CPU in X ms

0S @ run
(kernel mode)

Hardware Program

(user mode)

Handle the trap
Call switch() routine

Process A

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

‘ save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(B)

jump to B's PC

January 16, 2019

move to user mode
- Process B

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L4.29
0S @ boot
Hard
(kernel mode) Agare
‘ initialize trap table
remember address of ...
syscall handler
timer handler
‘start interrupt timer
‘ start timer
interrupt CPU in X ms
g Hardware sl
Context Switch
Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mede
jump to B's PC
‘ Process B
TCSS422: Operating Systems [Winter 2019]
Januaryal6a2019 School of Engineering and Technology, University of Washington - Tacoma L4.30

Slides by Wes J. Lloyd

1/16/2019

L4.15

TCSS 422 A — Winter 2019 1/16/2019
School of Engineering and Technology

INTERRUPTED INTERRUPTS

® What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

E Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L4-31

January 16, 2019

PREEMPTIVE KERNEL

m Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero
= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

® Interrupt can be interrupted when preempt count=0
= |t is safe to preempt (maskable interrupt)
= the interrupt is more important

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L4-32

January 16, 2019

Slides by Wes J. Lloyd L4.16

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

CHAPTER 7-
SCHEDULING:
INTRODUCTION

TCSS422: Operating Systems [Winter 2019]

JanuaryalG2019 School of Engineering and Technology, University of Washington -

= Metrics: A standard measure to quantify to what degree a

SCHEDULING METRICS

system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

= Measurements are the numbers derived from the application
of metrics

®m Scheduling Metric #1: Turnaround time

® The time at which the job completes minus the time at which
the job arrived in the system

® How is turnaround time different than execution time?

Tturnaround = Tcompletion - Tarrival

TCSS422: Operating Systems [Winter 2019]

LEITIENR) 5, oAV School of Engineering and Technology, University of Washington - Tacoma

L4.34

Lioyd

1/16/2019

L4.17

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

SCHEDULING METRICS - 2

Scheduling Metric #2: Fairness
= Jain’s fairness index
= Quantifies if jobs receive a fair share of system resources

(X =)’
J(:rl,s:g,...,:):n) = —
n >0 ol
® n processes i=1 %
m X; is time share of each process
= worst case = 1/n
® best case = 1

® Consider n=3, worst case = .333, best case=1
® With n=3 and x,=.2, x,=.7, x3=.1, fairness=.62
® With n=3 and x,=.33, x,=.33, x3=.33, fairness=1

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

L4.35

SCHEDULERS

® FIFO: first in, first out
= Very simple, easy to implement

® Consider
= 3 x 10sec jobs, arrival: A B C, duration 10 sec each

T T T T 1
40 60 80 100 120

Time (Second)

10 +20 + 30

Average turnaround time = — 3 = 20 sec

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

L4.36

Lloyd

1/16/2019

L4.18

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

SJF: SHORTEST JOB FIRST

® Given that we know execution times in advance:
= Run in order of duration, shortest to longest
= Non preemptive scheduler
= This is not realistic
= Arrival: A B C, duration a=100 sec, b/c=10sec
B .G A

- 1 1 1 1T 1
0 20 40 60 80 100 120

Time (Second)

. 10 +20 + 120
Average turnaround time = ——— = 50 sec

3

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

L4.37

SJF: WITH RANDOM ARRIVAL

® |f jobs arrive at any time: duration a=100s, b/c=10s
EA@t=0sec,B@t=10sec, C @ t=10sec

[B,C arrive]

0 20 40 60 20 100 120

Time (Second)

100 + (110 — 10) + (120 — 10)

Average turnaround time = 3

TCSS422: Operating Systems [Winter 2019]

(IR 113, AT School of Engineering and Technology, University of Washington - Tacoma

L4.38

Lloyd

1/16/2019

L4.19

TCSS 422 A — Winter 2019
School of Engineering and Technology

Average turnaround time =

® Consider: duration a=100sec, b/c=10sec
" Alen=100 Aarrival=o
" BIen=10! Barrival=10! CIen=10! Carrival=10

[B,C arrive]
A+LB C A

- r r _—r T T 1
0 20 40 60 80 100 120

Time (Second)

(120 — 0) + (20 — 10) + (30 — 10)

3

= 50 sec

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

SCHEDULING METRICS - 3

®m Scheduling Metric #3: Response Time
® Time from when job arrives until it starts execution

‘ Tresponse = Tfirstrun - Tarrival

®m STCF, SJF, FIFO
= can perform poorly with respect to response time

response time?

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

Slides by Wes J. Lloyd

1/16/2019

L4.20

TCSS 422 A — Winter 2019
School of Engineering and Technology

RR: ROUND ROBIN

® Run each job awhile, then switch to another distributing the
CPU evenly (fairly)

® Scheduling Quantum
is called a time slice

RR is fair, but performs poorly on metrics

Process Burst Time
P1 12

such as turnaround time

am
time P5 5
period
Round Robin scheduling algorithm
Gantt chart
Sefieauii [PL[P2[P3[P4[P5 |PL[P2[P4] P1]
Quantum =5 seconds 0 5 10 14 19 24 29 32 37 ?&9

L4.41

TCSS422: Operating Systems [Winter 2019]

lanuanviio2028 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J.

RR EXAMPLE

® ABC arrive at time=0, each run for 5 seconds

OVERHEAD not
A B c .
considered
N 0+5+10
0 5 10 15 20 25 30 Toverage response = —3 - 5sec
Time (Second)
SJF (Bad for Response Time]
0+1+2
I T 1 Tuveruge response — T = 1sec

Time (Second)

RR with a time-slice of 1sec (Good for Response Time)

L4.42

TCSS422: Operating Systems [Winter 2019]

(IR 113, AT School of Engineering and Technology, University of Washington - Tacoma

Lloyd

1/16/2019

L4.21

TCSS 422 A — Winter 2019
School of Engineering and Technology

ROUND ROBIN: TRADEOFFS

Short Time Slice Long Time Slice

Fast Response Time Slow Response Time

High overhead from Low overhead from
context switching context switching

®Time slice impact:

=Turnaround time (for earlier example):
ts(1,2,3,4,5)=14,14,13,14,10

= Fairness: round robin is always fair, J=1

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

L4.43

Slides by Wes J.

SCHEDULING WITH I/0

® STCF scheduler
= A: CPU=50ms, I/0=40ms, 10ms intervals
= B: CPU=50ms, I/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)

® Without considering 1/0:
A B B B B B

IEEEE

. . . . [CPU utilization= 100/140=71%
Cli ZIO 4IO 5‘0 8‘0

T T 1
100 120 140
Time (msec)

Poor Use of Resources

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

L4.44

Lloyd

1/16/2019

L4.22

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

SCHEDULING WITH I/0 - 2

® When a job initiates an I/0 request
= A is blocked, waits for I/0 to compute, frees CPU
= STCF scheduler assigns B to CPU

®" When I/0 completes = raise interrupt

= Unblock A, STCF goes back to executing A: (10ms sub-job)
A A B A B A B A B

AR

w

7

. . [Cpu utilization = 100/100=100%

T I T
0 80 100 120

Time (msec)

I T T
0 20 40

o _

Overlap Allows Better Use of Resources

TCSS422: Operating Systems [Winter 2019]

lanuanviio2028 School of Engineering and Technology, University of Washington - Tacoma

L4.45

Which scheduler, thus far, best address fairness

and average response time of jobs?

:l Respond at PollEv.com/wesleylloyd641
D Text WESLEYLLOYD641 to 22333 once to join, then 1, 2, 3, 4, 5...

First In - First Out (FIFO) | 1

Shortest Job First (SJF)

Shortest Time to
Completion First (STCF)

Round Robin
None of the Above

All of the Above

o U b~ W N

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

Lloyd

1/16/2019

L4.23

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

CHAPTER 8 -
MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Winter 2019]

JanuaryalG2019 School of Engineering and Technology, University of Washington -

MULTI-LEVEL FEEDBACK QUEUE

®Objectives:

=" Improve turnaround time:
Run shorter jobs first

= Minimize response time:
Important for interactive jobs (Ul)

m Achieve without a priori knowledge of job length

TCSS422: Operating Systems [Winter 2019]

. N h . . L4.48
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

Lioyd

1/16/2019

L4.24

TCSS 422 A — Winter 2019
School of Engineering and Technology

® Multiple job queues

® Adjust job priority based on
observed behavior

® Interactive Jobs
= Frequent I/0 > keep priority high
= Interactive jobs require fast
response time (GUI/UI)

= Batch Jobs

= Require long periods of CPU
utilization

= Keep priority low

Round-Robin

within a Queue

[High Priority] Q8 —— @ —

Q2
[Low Priority] Q1 —— @

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

MLFQ: DETERMINING JOB PRIORITY

® New arriving jobs are placed into highest priority queue

= |f a job uses its entire time slice, priority is reduced (])

= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

® |f a job relinquishes the CPU for I/0 priority stays the same

MLFQ approximates SJF

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

Slides by Wes J. Lloyd

1/16/2019

L4.25

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MLFQ: LONG RUNNING JOB

® Three-queue scheduler, time slice=10ms

J
Priority <

Q1

0 50 100 150 200

Long-running Job Over Time (msec)

TCSS422: Operating Systems [Winter 2019]

January 16, 2019 School of Engineering and Technology, University of Washington - Tacoma

L4.51

MLFQ: BATCH AND INTERACTIVE JOBS

=A
=B

=200ms,
=100ms

arrival_time =0ms, A
=20ms, B

run_time

run_time arrival_time

Priority Q2

B:

Ql N

QO

o 50 100 150 200

Scheduling multiple jobs (ms)

TCSS422: Operating Systems [Winter 2019]

LEITIENR) 5, oAV School of Engineering and Technology, University of Washington - Tacoma

L4.52

Lloyd

1/16/2019

L4.26

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MLFQ: BATCH AND INTERACTIVE - 2

® Continuous interactive job (B) with long running batch job (A)
= Low response time is good for B
= A continues to make progress

The MLFQ approach keeps interactive job(s) at the highest priority

Q1 B:
o s 100 150 200

N
PIZZ77 7773
rarrrrrrsi)
IIISITIIS
YFFFIFTTTTA

77777 77]
77777777
[(FZZFZTTIZ]
PILZZF7F7A

N
N
N
N
N
N

277777 7]

N
N
N
N
K

FFFIITFTT]

ZFIZZTITT]

N
R
N
N
N
N
N

ZZFFIZIZA

q
N
N
N
N
y
N

F77FT7772

A

N

A Mixed I/O-intensive and CPU-intensive Workload (msec)

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

= Starvation
[High Priority] Q8
Q7
Q6
Q5
Q4
Q3
Q2
[Low Priority] Q1

MLFQ: ISSUES

dOORdOR OO0

— @ - g @ CPU bound batch job(s)

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

Lloyd

1/16/2019

L4.27

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MLFQ: ISSUES - 2

® Gaming the scheduler

= [ssue I/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

= Job behavioral change

= CPU/batch process becomes an interactive process

[High Priority] Q8 _>®_>_>©_> @_>®_>@

Q7
Q6
Qs
Q4
o]
Q@

Priority becomes stuck » [Low Priority] Q1 — (G)——> () CPU bound batch job(s)

TCSS422: Operating Systems [Winter 2019]

lanuanviio2028 School of Engineering and Technology, University of Washington - Tacoma

L4.55

RESPONDING TO BEHAVIOR CHANGE

@ L

— Starvation

0 50 100 150 200

Without Priority Boost . I B: C%

= Priority Boost

= Reset all jobs to topmost queue after some time interval S

TCSS422: Operating Systems [Winter 2019]

LEGTEETR 13, oAU School of Engineering and Technology, University of Washington - Tacoma

L4.56

Lloyd

1/16/2019

L4.28

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

RESPONDING TO BEHAVIOR CHANGE - 2

® With priority boost
=" Prevents starvation

QO

N
Boost
i Boost

||

Boost
Boost
Lehi
e
I Soost
%
.%

0 50 100 150 200

Without(Left) and With(Right) Priority Boost A: I B: C:%

TCSS422: Operating Systems [Winter 2019]
Lanuapvilen20ts School of Engineering and Technology, University of Washington - Tacoma L4.57

PREVENTING GAMING

® I[mproved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

N
Q2 Q2

|
M
Q Qt N
CLLLLLLLLLLLL, - = 1l
Without(Left) and With(Right) Gaming Tolerance
TCSS422: Operating Systems [Winter 2019]
(IR 113, AT School of Engineering and Technology, University of Washington - Tacoma L4.58

Lloyd

1/16/2019

L4.29

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

\

0 50 100 150 200

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

TCSS422: Operating Systems [Winter 2019]

lanuanviio2028 School of Engineering and Technology, University of Washington - Tacoma

L4.59

PRACTICAL EXAMPLE

® Oracle Solaris MLFQ implementation

= 60 Queues >
w/ slowly increasing time slice (high to low priority)

= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

® Advice
= Provide OS with hints about the process
= Nice command - Linux

TCSS422: Operating Systems [Winter 2019]

(IR 113, AT School of Engineering and Technology, University of Washington - Tacoma

L4.60

Lloyd

1/16/2019

L4.30

TCSS 422 A — Winter 2019
School of Engineering and Technology

MLFQ RULE SUMMARY

® The refined set of MLFQ rules:

highest priority.

system to the topmost queue.

® Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
® Rule 2: If Priority(A) = Priority(B), A & B run in RR.

® Rule 3: When a job enters the system, it is placed at the

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

® Rule 5: After some time period S, move all the jobs in the

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

L4.61

round-robin order.

Job Arrival Time Job Length
A T=0 4

B T=0 16

C T=0 8

Please draw clearly. An unreadable graph will loose points.

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in

Slides by Wes J. Lloyd

1/16/2019

L4.31

TCSS 422 A — Winter 2019

School of Engineering and Technology

QUESTIONS

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

(O

Program

argv

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /

9. Free memory of process
10. Remove from process list

5. Clear registers 7. Run main ()
6. Execute call main () 8. Execute return from main ()

January 16, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

Slides by Wes J. Lloyd

1/16/2019

L4.32

TCSS 422 A — Winter 2019
School of Engineering and Technology

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

® What if programs could directly control the CPU / system?

(O

Program

1. Create entry for process list
2. Allocate memory for

and would

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

Without /imits on running programs,

the OS wouldn’t be in control of anything

7. Run main ()
8. Execute return from main ()

TCSS422: Operating Systems [Winter 2019]
lanuanviio2028 School of Engineering and Technology, University of Washington - Tacoma

L4.65

= With direct execution:

DIRECT EXECUTION - 2

How do programs share disks and perform I/0 if they are
given direct control? Do they know about each other?

How does the OS stop a program from running, and switch
to another to support time sharing?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

January 16, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L4.66

Slides by Wes J. Lloyd

1/16/2019

L4.33

TCSS 422 A — Winter 2019 1/16/2019
School of Engineering and Technology

CONTROL TRADEOFF

= Too little control:
= No security

= No time sharing

®EToo much control:
= Too much OS overhead

= Poor performance for compute & 1I/0
= Complex APIls (system calls), difficult to use

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma La.67

January 16, 2019

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of
context switching
Multitasking :

.8

vs. Multitasking with context switching
Sequential

Overhead .
|

Time

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L4.68

January 16, 2019

Slides by Wes J. Lloyd L4.34

