TCSS 422 A — Winter 2019
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS
| |

Limited Direct Execution,
Introduction to CPU Scheduling

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

panuanviieazaly School of Engineering and Technology, University of Washington

1/16/2019

FEEDBACK 1/14

= fork() - will a modification to the data of a forked process
trigger Copy-and-Write to duplicate all process data?, or
only that which was modified... ?
= Only modified data - saves memory and time
= How can this be tested?

= Example: exec.c revisited - example using wait()
= Recompiled exec.c
= Unable to reproduce bug (parent existing before child)

= Old version was compiled with previous Linux kernel, suspect
changes may have caused different behavior

= Check out: waitpid() and capturing return code from wait()

TCS$422: Operating Systems [Winter 2019] | 2 |

TG) e T T T o ey A S T = TPy

FEEDBACK - 2

= Why exec, instead of just calling another function like in Java?
= Fork(), exec(), and wait() allow fine grained control over processes
= Goal: remotely invoke another executable program, from an existing
C program
= Can fork() a new processes to delegate to run an external program
= Can redirect input, output, stderr of processes

= Exec.. is still a little complex
= 6 versions: execl(), execlp(), execle(), execv(), execvp(), execvpe()
= “p” - duplicates the PATH of the shell
= “e” - allows the environment (variables) to be passed in as an array
of pointers to NULL-terminated strings, list is NULL terminated

= “v” - provide cmd & args as array (vector)

= “|” - provide cmd & args as (lIst) of individual params sent to the
function (see execl.c example)

TCS5422: Operating Systems [Winter 2019]
School of Engineeri chnology, University i - Tacoma

January 16, 2019

| u3 ‘

exec()

= Supports running an external program
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argi, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

January 16, 2019 TCSS422: Operating Systems [Winter 2019] | s |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 3

= What is the (too much / too little) control tradeoff for
Operating System designs?
= Who (what) has too much/little control?
= What are consequences of too much control?
= ... consequences of too little control?

= What is direct vs. limited direct execution with respect to
operating systems?
_80 = Direct - code runs directly on HW, OS can not intervene, processes
can “run away’...
= Limited direct - code runs on HW, but can not directly access
protected resources (memory, devices), OS can intervene and
preempt a process

January 16, 2019 TCS3422: Operating Systems [Winter 2019]
School of

chnology, University ington - Tacoma | s ‘

FEEDBACK - 4

= How do we identify system processes?

= All kernel processes (threads) are children of process
(pid==2)

" “ps” command to display processes owned by the kernel:
ps --ppid 2 -p 2 -o
uname,pid,ppid,pcpu,pmem,vsz,rssize,start, time,cmd |
more

= “ps” command to display non-kernel processes:

ps --ppid 2 -p 2 -o
uname,pid,ppid,pcpu,pmem,vsz,rssize,start, time,cmd -
-deselect | more

= What is significant regarding the output?

January 16, 2019 TCSS422: Operating Systems [Winter 2019] | a6 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L4.1

TCSS 422 A — Winter 2019
School of Engineering and Technology

FEEDBACK - 5

= Hard time following along. Overwhelming amount of
information. Can’t seem to find guideline/direction
= AFTER CLASS - :
= (1) Review Slides
= (2) Read chapters (in this case Ch. 5 & 6)
= (3) While reviewing/reading, make list of confusing topics
= (4) Formulate questlons about these topics

= THEN

= (1) Visit professor after class, during office hours, or make an
appointment --or--

= (2) Email list of questions to professor

January 16, 2019 TCS3422: Operating Systems [Winter 2019)
School of

chnology, ity ington - Tacoma

1/16/2019

OBJECTIVES

= Active Reading Quiz 1
= Assignment O / Linux Tutorial
= C Tutorial

= Chapter 6 - Limited Direct Execution

= CPU Scheduling:
= Chapter 7 - Scheduling Introduction

= Chapter 8 - Multi-level Feedback Queue (MLFQ)

January 16, 2019 T(SSMZ; Operating Systems [Winter 2019]

School of Technology, University i - Tacoma

EN

CH. 6:
LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Winter 2019]

SENITER 1 20D School of Engineering and Technology, University of Washington -

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

= Time Sharing

= Tradeoffs:

= Performance
Excessive overhead
= Control
Fairness
Security

= Both HW and OS support
is used

January 16, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University of Washi Tacoma

L4.10

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

=" TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

January 16, 2019 TCS3422: Operating Systems [Winter 2019]
School of

chnology, ity i Tacoma

| a1

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access _ no access
= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
0S kernel is running performing restricted operations

January 16, 2019 TBSMZ; Operating Systems [Winter 2019]

School of Technology, University of Washi Tacoma

.12

Slides by Wes J. Lloyd

L4.2

TCSS 422 A — Winter 2019
School of Engineering and Technology

CPU MODES

= User mode: ring 3 - untrusted

= Exception registers
= HALT instruction

= MMU instructions

= 0S memory access
=1/0 device access

= Kernel mode: ring 0 - trusted
= All instructions and registers enabled

= Some instructions and registers are disabled by the CPU

January 16, 2019 TCS3422: Operating Systems [Winter 2019)
School of

chnology, ity i Tacoma

| 413 ‘

1/16/2019

SYSTEM CALLS

= Implement restricted “OS” operations
= Kernel exposes key functions through an API:
= Device I/0 (e.g.file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

TCS5422: Operating Systems [Winter 2019]

TG) A T T o U e A S T =

La.14

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS
Mainline Code N

Interrupt Service Routine:

loop() {
= Trap: any transfer to kernel mode

instruction 3
instruction 4
instruction

= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

EXCEPTION TYPES

Nonmaskable. Between

Asynchronous

Resume

School of Engineering and Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2019]
January 16, 2019 Ll ey M ’ Tacoma 115
0S @ boot Hardware
(kernel mode)
‘ nitialize trap table
remenber address of
syscall handler
Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argy
Fill kernel stack with reg/PC
return-from -trap
restore regs from kernel stack
‘ move to user mode
jump to main
‘ Run main()
Call system
trap into OS.
save regs to kemel stack
q move to kernel mode
jump to trap handler
Handle trap
‘ Do work of syscall
return-fi -t
eRmaomne restore regs from kernel stack
B rrove o user moce
Jump to PC after trap
q return from main
trap (via exit ()
Free memory of process
Remove from process ist
January 16, 2018 TCSS422: Operating Systems [Winter 2019] e

Slides by Wes J. Lloyd

Synehvonous User request Nonmaskable Botween Resume
Synehvonous User request User maskable Botween Resume
Synehvonous User request User maskable Botween Resume
Synchronous Coerced Usor maskable winin Rosume
Synehvonous Coerced User maskable witin Resume
Synchronous Coerced Nonmasiabie witin Rosume
coonses Synehvonous Coerced User maskable witin Resume
{Memory protection violation Synchronous Coerced Nonmaskable Within Resume
Synehronous Cosrcad Nonmaskable winin Torminate
Asynchvonous Coerced Nonmasiable winin Torminate
Asynchronous Coerced Nonmaskable witin Terminate
TCSS422: Operating Systems Winter 2019)
January 16, 2019 PERE Dl 1) Lat6
School of Technology, University of Tacoma
0S @ boot Hardware
(kernel modie)
- initialize trap table
remember address of
syscall handler
Hardware Program

(kernel mode) (user mode)

Create entry for process list
Allocate memory for program
Load program into memory

Setup user stack with argv

Computer BOOT Sequence

OS with Limited Direct Execution

move to kernel mode
jump to trap handler
Handle trap
- Do work of syscall
return-from-traj
e restore regs from kernel stack

move to user mode
jump to PC after trap
‘ return from main
trap (via exit ()
Free memory of process

Remove from process list

TCSS422: Operating Systems [Winter 2019]

TR 1 200 School of Engineering and Technology, University of Washington - Tacoma

L4.18

L4.3

TCSS 422 A — Winter 2019 1/16/2019
School of Engineering and Technology

MULTITASKING MULTITASKING
= How/when should the OS regain control of the CPU to = How/when should the OS regain control of the CPU to
switch between processes? switch between processes?
= Cooperative multitasking (mostly pre 32-bit) = Coopa

= < Windows 95, Mac 0SX

= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0

Illegal operations lllegal operations
= (POLLEV) = (POLLEV)
What problems could you for see with this approach? What problems could you for see with this approach?
TCSS422: Of ting Syste [Winter 2019] TCSS422: O ting Systs [Winter 2019]
LR 28 2D School of Engineering and Technology, University f T | 119 TG) Schoolof Engineering and Technology, University of Washington - Tacoma .20

What problems exist for regaining the control

W of the CPU with cooperative multitasking QUSSIONE WS 6

OSes?

= What problems exist for regaining the control of
the CPU with cooperative multitasking 0Ses?

u n January 16, 2019 TCSS422: Operating Systems [Winter 2019]

.
- - School of Engineering and Technology, University of Washington - Tacoma .22

MULTITASKING - 2 MULTITASKING - 2
= Preemptive multitasking (32 & 64 bit OSes) = Preemptive multitasking (32 & 64 bit 0Ses)
= >= Mac 0SX, Windows 95+ = >= Mac 0SX, Windows 95+

=Timer interrupt . -
= Raised at some regular interval (in ms) i gives OS the ability to
= Interrupt handling

run again on a CPU.

Current program is halted Current program is halted
Program states are saved Program states are saved
OS Interrupt handler is run (kernel mode) 0OS Interrupt handler is run (kernel mode)
= (PollEV) What is a good interval for the timer interrupt? = (PollEV) What is a good interval for the timer interrupt?
TCSS422: Of ting Syste [Winter 2019] TCS5422: Of ting Systs [Winter 2019]
LRy 28, 2 School of Engineeting and Technology, University q Tacoma | 23 TG) Schoolof Engineering and Technology, Unversity of Washington - Tacoma L4

Slides by Wes J. Lloyd L4.4

TCSS 422 A — Winter 2019
School of Engineering and Technology

1/16/2019

For an OS that uses a system timer to force
arbitrary context switches to share the CPU,

what is a good value (in seconds) for the timer

interrupt?

January 16, 2019 TCS$422: Operating Systems [Winter 2019] i 2!.
fosy:

QUESTION: TIME SLICE

®For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TCS5422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

14.26

CONTEXT SWITCH

= Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

TCS5422: Operating Systems [Winter 2019]
School of Engineeri i

chnology, University ington - Tacoma | 27 ‘

January 16, 2019

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack
= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

TCS5422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019

L4.28 |

05 @ boot
(kernel mode) Hardware

ize trap table

- start interrupt timer

remember address of ...

syscall handler
timer handler
- start timer

interrupt CPU in X ms

Hardware Prooram
(user mode)

Process A

(kernel mode)

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Handle the trap
Call switch() routine
q save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8)
switch to k-stack(B)

return-from-trap (into B)
restore regs(B) from k-stack(B)

move to user mode
‘ Process B

jump to B's PC
"TCSS422: Operating Systems [Winter 2019]
perating Systems [W] eSS

TRy Sh R School of Engineering and Technology, University of Washington - Tacoma

05 @ boot
(kernel mode) Hardware

‘ initialize trap table
‘ start interrupt timer

remember address of ...

q syscall handler

timer handler

‘ start timer
interrupt CPU in X ms

Program

Hardware

Context Switch

Call switch() routine
- save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(3)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(8)

move to user mode
- Process B

jump to B's PC

TCSS422: Operating Systems [Winter 2019]

TR 1 200 School of Engineering and Technology, University of Washington - Tacoma

L4.30

Slides by Wes J. Lloyd

L4.5

TCSS 422 A — Winter 2019
School of Engineering and Technology

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

January 16, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri chnology, University i Tacoma

| 1431 ‘

1/16/2019

PREEMPTIVE KERNEL

mUse “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero
= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= |nterrupt can be interrupted when preempt_count=0
= It is safe to preempt (maskable interrupt)
=the interrupt is more important

January 16, 2019 14.32

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University i Tacoma

CHAPTER 7-
SCHEDULING:
INTRODUCTION

TCSS422: Operating Systems [Winter 2019]

SENITER 1 20D School of Engineering and Technology, University of Washington -

SCHEDULING METRICS

= Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

= Measurements are the numbers derived from the application
of metrics

= Scheduling Metric #1: Turnaround time

= The time at which the job completes minus the time at which
the job arrived in the system

‘ Turnaround = T compietion — Tarrival 1
)

= How is turnaround time different than execution time?

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University of Washi Tacoma

January 16, 2019 14.34

SCHEDULING METRICS - 2

= Scheduling Metric #2: Falrness
= Jain’s fairness index
= Quantifies if jobs receive a fair share of system resources
3 2
T(@1, %2500 ,80) = 7(2'1 i
= n processes n- Yy wt
= x; is time share of each process
= worst case = 1/n
® best case = 1

= Consider n=3, worst case = .333, best case=1
= With n=3 and x;=.2, x,=.7, x3=.1, fairness=.62
= With n=3 and x;=.33, x,=.33, x3=.33, fairness=1

January 16, 2019 TCS3422: Operating Systems [Winter 2019]
School of

chnology, ity i Tacoma

| u3s ‘

SCHEDULERS

= FIFO: first in, first out
= Very simple, easy to implement

= Consider
= 3 x 10sec jobs, arrival: A B C, duration 10 sec each

A B C

T T T T 1
40 60 80 100 120

Time (Second)

. 10 + 20 + 30
Average turnaround time = — = 20 sec

January 16, 2019 14.36

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University of Washi Tacoma

Slides by Wes J. Lloyd

L4.6

1/16/2019

TCSS 422 A — Winter 2019
School of Engineering and Technology

SJF: WITH RANDOM ARRIVAL

SJF: SHORTEST JOB FIRST

= |f jobs arrive at any time: duration a=100s, b/c=10s

= Given that we know execution times in advance:
= A @ t=0sec, B @ t=10sec, C @ t=10sec

= Run in order of duration, shortest to longest
[B,C arrive]

= Non preemptive scheduler

= This is not realistic
= Arrival: A B C, duration a=100 sec, b/c=10sec

B C A

O D N
60 80 100 120

0 20 40

Time (Second)

0 20 40 60 80 100 120

Time (Second)
100 + (110 — 10) + (120
Average turnaround time

10 +20 + 120
——————="50sec

Average turnaround ti

1438

TCS5422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

‘ January 16, 2019

TCS5422: Operating Systems [Winter 2019] | sy ‘

LR 28 2D | School of Technology, ity Tacoma

SCHEDULING METRICS - 3

STCF - 2

= Scheduling Metric #3: Response Time

= Consider: duration a=100sec, b/c=10sec
= Time from when job arrives until it starts execution

* A1en=100 A,y jva =0
® Byn=10, Byyriva=10, Cieq=10, Cypriya=10

‘ Trespunse = Tfirstrun - Turrival

[B,C arrive]
AlB C A

= STCF, SJF, FIFO
= can perform poorly with respect to response time

| VT T " TR T
o 20 40 60 80 100 120
response time?

TCS5422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

‘ January 16, 2019

Tacoma

TCS5422: Operating Systems [Winter 2019]
0ol of Engineeri chnology, University

January 16, 2019

RR EXAMPLE

RR: ROUND ROBIN

= Run each job awhile, then switch to another distributing the = ABC arrive at time=0, each run for 5 seconds
OVERHEAD not

CPU evenly (fairly)
= Scheduling Quantum Process Burst Time consldered
is called a time slice [zl 12
= Time RR is fair, but performs poorly on metrics T Ok ST
average response sec
am such as turnaround time Ok B0 o0 58S geresp: 3
d m.e P5 5 SJF (Bad for Response Time
period
Round Robin scheduling algorithm
Gantt chart
r 0+1+2
averageresponse — o — LS€C
Scheduling [PL[P2[P3]P4[P5|[PL[P2)P4a] P1] . 3
t -5 " ime (Secon
Cusiiuy seconds g 5 10 14 19 24 29 32 37 3[}9 RR with a time-slice of 1sec (Good for Response Time)
TCSS422: O ing S\ (Wi 2019]
[un] 16215 | T St e 0yt waingon T

Tacoma

January 16, 2019 TechnoloayiUnversity

TCS5422: Operating Systems [Winter 2019]
School of Engineeri

Slides by Wes J. Lloyd L4.7

TCSS 422 A — Winter 2019
School of Engineering and Technology

1/16/2019

ROUND ROBIN: TRADEOFFS

Short Time Slice
Fast Response Time

High overhead from
context switching

=Time slice impact:
=Turnaround time (for earlier example):
ts(1,2,3,4,5)=14,14,13,14,10
=Fairness: round robin is always fair, J=1

Long Time Slice

Slow Response Time

Low overhead from
context switching

TCS5422: Operating Systems [Winter 2019]

| January 16, 2019 | i ey ity i Tacoma

.43

SCHEDULING WITH 1I/0

= STCF scheduler
= A: CPU=50ms, I/0=40ms, 10ms intervals
= B: CPU=50ms, |/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)

= Without considering 1/0:
A B B B B

@

4

| CPU utilization=100/140=71%

i.i.i.i. e

T T T T T 1
0 20 40 60 80 100 120 140

Time (msec)

Poor Use of Resources

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University i Tacoma

La.44

January 16, 2019

SCHEDULING WITH I/0 - 2

= When a job initiates an I/0 request
= A is blocked, waits for I/0 to compute, frees CPU
= STCF scheduler assigns B to CPU

= When I/0 completes - raise interrupt

A B AB A B AB A B

N

=Unblock A, STCF goes back to executing A: (10ms sub-job)

i

[Cpu utilization = 100/100=100%

T T T T T T
0 20 40 60 80 100 120

Time (msec)

Overlap Allows Better Use of Resources

January 16, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University i Tacoma

.45

Which scheduler, thus far, best address fairness

and average response time of jobs?

|;| Respond at PollEv.com/wesleylloyd641
D Text WESLEYLLOYD641 to 22333 once to join, then 1, 2, 3, 4, 5...

First In - First Out (FIFO) | 1

Shortest Job First (SJF)

Shortest Time to
Completion First (STCF)

Round Robin

None of the Above

o U~ W N

All of the Above

CHAPTER 8 -

MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Winter 2019]

SENITET 12 20D School of Engineering and Technology, University of Washington -

MULTI-LEVEL FEEDBACK QUEUE

= QObjectives:

=*Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

La.48

January 16, 2019 TBSMZ; Operating Systems [Winter 2019]

School o Technology, University of Washi Tacoma

Slides by Wes J. Lloyd

L4.8

TCSS 422 A — Winter 2019
School of Engineering and Technology

Round-Robin
within a Queue

[High Priority] Q8 —— @ —5

= Multiple job queues

= Adjust job priority based on
observed behavior

Q7
= [nteractive Jobs Q6
= Frequent 1/0 > keep priority high Qs

= Interactive jobs require fast
response time (GUI/UI)

Q4—>©

= Batch Jobs Q3
= Require long periods of CPU Q2
utilization

= Keep priority low

[Low Priority] Ql —— @

TC55422: Operating Systems [Winter 2019]

LR 28 2D AT o T o e s oy ATt A T T

| .49

1/16/2019

MLFQ: DETERMINING JOB PRIORITY

= New arriving jobs are placed into highest priority queue

= If a job uses its entire time slice, priority is reduced (|)
= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

= |f a job relinquishes the CPU for I/0O priority stays the same

MLFQ approximates SJF

TCSS422: Operating Systems [Winter 2019]

TG) A T T o U e A S T =

1450

MLFQ: LONG RUNNING JOB

= Three-queue scheduler, time slice=10ms

Priority g

Q1

Qo

o so 100 150 200

Long-running Job Over Time (msec)

TCS5422: Operating Systems [Winter 2019]

LR 28 2D e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

| 151 ‘

MLFQ: BATCH AND INTERACTIVE JOBS

" Aarrival_time =0MS, Ay 4ime=200ms,

® B un_time =20mS, B, jya1_time =100ms
Priority A I
N
N
N

150
Scheduling multiple jobs (ms)
TCSS422: Operating Systems [Winter 2019]
TG) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma L2

MLFQ: BATCH AND INTERACTIVE - 2

= Continuous interactive job (B) with long running batch job (A)
= Low response time is good for B
= A continues to make progress

The MLFQ approach keeps interactive job(s) at the highest priority

HIHIHH I

N

Q1 EN
o s 100 150 200

A Mixed I/O-intensive and CPU-intensive Workload (msec)

Q2

722777772)
pzzzz77271
pzzzz7227)
rzzzz72273
rzzzzz7772)
bzzzz22223

TCSS422: Operating Systems [Winter 2019]

LRy 28, 2 | Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

| 1453

MLFQ: ISSUES

= Starvation
[High Priority] Q8 —> @ _, _,@_, @_, ®_,®
Q7
Q6
Qs
o2
@3
Q

[Low Priority] Q1 — > ®_> @ CPU bound batch job(s)

TCSS422: Operating Systems [Winter 2019]

TG) I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma

Las4

Slides by Wes J. Lloyd

L4.9

TCSS 422 A — Winter 2019
School of Engineering and Technology

MLFQ: ISSUES - 2

® Gaming the scheduler
= |ssue I/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

= Job behavioral change
= CPU/batch process becomes an interactive process

thigh Pioiv] @8 —>(3) — () —(O—©)—©O—®
Q7
o
o
Q4
@
@
Priority becomes stuck W) toverieinl 1 —(Q)—s (5} crummassenions

TCS5422: Operating Systems [Winter 2019]

LR 28 2D AT o T o e s oy ATt A T T

55

1/16/2019

RESPONDING TO BEHAVIOR CHANGE

@, i i

Starvation
0 50 100 150 200

Without Priority Boost A:l B: c:g

= Priority Boost
= Reset all jobs to topmost queue after some time interval S

TCSS422: Operating Systems [Winter 2019]

ATy A, 2 School of Engineering and Technology, University of Washington - Tacoma

| 1456

RESPONDING TO BEHAVIOR CHANGE - 2

= With priority boost
= Prevents starvation

Boost
Bogst

100 150 200

Without(Left) and With(Right) Priority Boost A] B:Y B

TCS5422: Operating Systems [Winter 2019]

LR 28 2D e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

| 57

PREVENTING GAMING

= Improved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

\

vz

Q0 Qo 5
(ARRNNRRRNRRRRUNT T] | |
0 50 100 150 200 [

Without(Left) and With(Right) Gaming Tolerance

TCSS422: Operating Systems [Winter 2019]

‘ TG) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

L4.58 |

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

od

QL

o 50 00150 200

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

TCSS422: Operating Systems [Winter 2019]

LRy 28, 2 Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

| 1459 ‘

PRACTICAL EXAMPLE

= Oracle Solaris MLFQ implementation
=60 Queues >
w/ slowly increasing time slice (high to low priority)
= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

= Advice
= Provide OS with hints about the process
= Nice command - Linux

TCSS422: Operating Systems [Winter 2019]

TG) I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma

1460

Slides by Wes J. Lloyd

L4.10

TCSS 422 A — Winter 2019
School of Engineering and Technology

MLFQ RULE SUMMARY

= The refined set of MLFQ rules:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

January 16, 2019 TCS3422: Operating Systems [Winter 2019)
School of

chnology, ity i Tacoma

| 61 ‘

1/16/2019

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in
round-robin order.

Job Arrival Time Job Length
A T=0 4

B T=0 16

C T=0 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

HIGH |
|
|

MED |
|
|

Low

QUESTIONS

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0os Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()
8. Execute return from main ()

9. Free memory of process
10. Remove from process list

January 16, 2019 TBSMZ; Operating Systems [Winter 2019]

School of Technology, University of Washi Tacoma

La64

COMPUTER BOOT SEQUENCE:
0OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0s Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn't be in control of anything
and would

7. Run main ()
8. Execute return from main ()

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

January 16, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri i

chnology, ity i Tacoma | 1465

Slides by Wes J. Lloyd

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

January 16, 2019 14.66

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University of Washi Tacoma

L4.11

TCSS 422 A — Winter 2019
School of Engineering and Technology

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

=Too much control:
=Too much OS overhead
= Poor performance for compute & 1I/0
= Complex APls (system calls), difficult to use

1/16/2019

January 16, 2019 TCS3422: Operating Systems [Winter 2019)
School of

Technology, ity i Tacoma

.67

Slides by Wes J. Lloyd

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching

Multitasking

W R W -

vs. Multitasking with context switching

Sequential

Overhead
|

Time

TCSS422: Operating Systems [Winter 2019]

TG) A T T o U e A S T =

1468

L4.12

