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C QUIZ SCORES

 PCB Structures:
What does the process control block (PCB) do?
 C-structure that contains information about each process

 Process data, registers, process state info

 When a process is in the READY state, is its data already 
loaded (in the CPU) or is loading (the data) part of 
(moving) the (process to the) running state?
 In the READY state, process information is stored in the PCB 

block data structure

 When a CONTEXT SWITCH occurs, data is moved from the PCB 
to the CPU.  The time to transfer this data is “overhead”.  When 
complete the process can go from READY  RUNNING
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FEEDBACK 1/9

Unsure about “context switching” and “overhead”

Define:

Context switch

Overhead

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington  - Tacoma

L3.4

FEEDBACK - 2
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CONTEXT SWITCHING OVERHEAD

Time

Overhead

 Since memory is  v ir tualized, when a process is  forked, will  the 
pointers be pointing to dif ferent parts (of memory)?

 YES, all  of the data of the process wil l be cloned, as a DEEP copy

 However,  the OS, as an optimization only performs a SHALLOW 
copy, and defers copying elements until  they actually change.

 This is known as Copy -on-Write (COW)

 Resource-management technique to efficiently create a "copy" 
operation of modifiable resources.  If a resource is duplicated but 
not modified, it  is not necessary to create a new resource; the 
resource can be shared between the copy and the original.  
Modifications trigger the copy. The copy operation is deferred unti l 
the first write. This approach significantly reduces the resource 
consumption for unmodified copies,  while also limiting copy 
overhead to only resource-modifying operations.
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 Assignment 0

 C Tutorial

 Linux Tutorial

 Chapter 5 – Process API

 Chapter 6 – Limited Direct Execution

 Chapter 7 – Scheduling Introduction

 Chapter 8 – Multi-level Feedback Queue (MLFQ)
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OBJECTIVES

CHAPTER 5:
C PROCESS API
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 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current 

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of

 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns 
 child PID to parent
 0 to child
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fork()

 p1.c
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FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first
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FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>
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 wait(),  waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution
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wait()
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FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}

 Deterministic ordering of execution
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FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

 Linux example
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FORK EXAMPLE

 Supports running an external program

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe() 

 execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments… (arg0, arg1, ..  argn)

 Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed
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exec()

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…  
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EXEC() - 2
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EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…
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EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>
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EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…
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FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others
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EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>
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 Which Process API call is used to launch a different 
program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above
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QUESTION: PROCESS API

CH. 6:
LIMITED DIRECT 

EXECUTION
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 How does the CPU support running so many jobs 
simultaneously?

 Time Sharing

 Tradeoffs:

 Performance
 Excessive overhead

 Control
 Fairness

 Security

 Both HW and OS support
is used
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VIRTUALIZING THE CPU

 What if programs could directly control the CPU / system?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for 
program
3. Load program into memory
4. Set up stack with argc / 
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 What if programs could directly control the CPU / system?
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COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for 
program
3. Load program into memory
4. Set up stack with argc / 
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything 

and would “just be a library”

 With direct execution: 

How does the OS stop a program from running, and switch 
to another to support time sharing?

How do programs share disks and perform I/O if they are 
given direct control?  Do they know about each other?

With direct execution, how can dynamic memory structures 
such as linked lists grow over time?
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DIRECT EXECUTION - 2
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 Too little control: 
 No security

 No time sharing

 Too much control: 
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use
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CONTROL TRADEOFF

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

CONTEXT SWITCHING OVERHEAD

Time

Overhead

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes 
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do 
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation
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LIMITED DIRECT EXECUTION

 Utilize CPU Privilege Rings (Intel x86)
 rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode: 
Application is running, but w/o direct I/O access

 Kernel mode: 
OS kernel is running performing restricted operations
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CPU MODES

access no access

 User mode: r ing 3 - untrusted

 Some instructions and registers are disabled by the CPU

 Exception registers

 HALT instruction

MMU instructions

 OS memory access

 I/O device access

 Kernel mode: r ing 0 – trusted

 All instructions and registers enabled
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CPU MODES

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O  (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation:  malloc()

 Creating/destroying processes
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SYSTEM CALLS
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 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned)  user  kernel
 SYSCALL for I/O, etc.

 Exception: (error) user  kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user  kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure
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TRAPS: 
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs. 

asynchronous

User request vs. 

coerced

User maskable vs. 

nonmaskable

Within vs. between 

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow 

or underflow
Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate
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EXCEPTION TYPES
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Computer BOOT Sequence: 
OS with Limited Direct Execution

 How/when should the OS regain control of the CPU to 
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV) 
What problems could you for see with this approach?
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MULTITASKING

 How/when should the OS regain control of the CPU to 
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV) 
What problems could you for see with this approach?
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MULTITASKING

A process gets stuck in an infinite loop. 
 Reboot the machine
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What problems exist for regaining the control of 
the CPU with cooperative multitasking OSes?
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QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?
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MULTITASKING - 2

A timer interrupt gives OS the ability to 
run again on a CPU.
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 For an OS that uses a system timer to force 
arbitrary context switches to share the CPU, what 
is a good value (in seconds) for the timer 
interrupt?
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QUESTION: TIME SLICE
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 Preemptive multitasking initiates “trap” 
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context 
switch swapping out the current process for a new one.
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CONTEXT SWITCH

1. Save register values of the current process to its kernel 
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel 
stack

3. Switch to the kernel stack for the soon-to-be-executing 
process 
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CONTEXT SWITCH - 2

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.51 January 14, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L3.52

Context Switch

 What happens if during an interrupt (trap to kernel 
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel
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INTERRUPTED INTERRUPTS

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt) 

 the interrupt is more important
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PREEMPTIVE KERNEL
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CHAPTER 7-
SCHEDULING:

INTRODUCTION
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 Metrics: A standard measure to quantify to what degree a 
system possesses some property.  Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application 
of metrics

 Scheduling Metric #1: Turnaround time

 The time at which the job completes minus the time at which 
the job arrived in the system

 How is turnaround time different than execution time?
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SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

 Scheduling Metric #2: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is time share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1
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SCHEDULING METRICS - 2

 FIFO: first in, first out
 Very simple, easy to implement

 Consider
 3 x 10sec jobs, arrival: A B C
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SCHEDULERS

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎

𝟑
= 𝟐𝟎 𝒔𝒆𝒄

 Given that we know execution times in advance:
 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C
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SJF: SHORTEST JOB FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 If jobs arrive at any time:

 A @ t=0sec, B @ t=10sec, C @ t=10sec
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SJF: WITH RANDOM ARRIVAL

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 − 𝟏𝟎 + (𝟏𝟐𝟎 − 𝟏𝟎)

𝟑
= 𝟏𝟎𝟑. 𝟑𝟑 𝒔𝒆𝒄
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 Consider:
 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10
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STCF - 2

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎 − 𝟎) + 𝟐𝟎 − 𝟏𝟎 + (𝟑𝟎 − 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 Scheduling Metric #3: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO 
 can perform poorly with respect to response time

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help 
minimize response time?

 Run each job awhile, then switch to another distributing the 
CPU evenly (fairly)

 Scheduling Quantum
is called a time slice

 Time slice must be
a multiple of the
timer interrupt
period.
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RR: ROUND ROBIN

Scheduling 
Quantum    = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds
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RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not 
considered

 Time slice impact:
Turnaround time (for earlier example): 

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1
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ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from 
context switching

Low overhead from 
context switching

Short Time Slice Long Time Slice  STCF scheduler
 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:
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SCHEDULING WITH I/O

CPU utilization= 100/140=71%
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 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes  raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)
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SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%
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CHAPTER 8 –
MULTI-LEVEL FEEDBACK 

QUEUE (MLFQ) SCHEDULER
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Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length
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MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low
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MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound ( “batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same
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MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF
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 Three-queue scheduler, time slice=10ms
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MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, Arun_time=200ms, 

 Brun_time =20ms, Barrival_time =100ms
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MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

 Continuous interactive job (B) with long running batch job (A)

 Low response time is good for B

 A continues to make progress
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MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

Starvation
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MLFQ: ISSUES

 Gaming the scheduler

 Issue I/O operation at 99% completion of the time slice

 Keeps job priority fixed – never lowered

 Job behavioral change

 CPU/batch process becomes an interactive process

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.77

MLFQ: ISSUES - 2

Priority becomes stuck

 Priority Boost

 Reset all jobs to topmost queue after some time interval S
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RESPONDING TO BEHAVIOR CHANGE

Starvation
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 With priority boost

 Prevents starvation
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RESPONDING TO BEHAVIOR CHANGE - 2

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered
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PREVENTING GAMING

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?
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MLFQ: TUNING

 Oracle Solaris MLFQ implementation

 60 Queues 
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority 
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command  Linux
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PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the 
highest priority.

 Rule 4: Once a job uses up its time allotment at a given 
level (regardless of how many times it has given up the 
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the 
system to the topmost queue.
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MLFQ RULE SUMMARY
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QUESTIONS


