TCSS 422 A — Winter 2019 1/13/2019

School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS
| |

INTRODUCTION

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

panuanvitizaly School of Engineering and Technology, University of Washington

C QUIZ SCORES

January 14, 2019

= Avg: 5.737 12
= Median 6.0 10
= Mode 5.0 & B # of quiz scores
= Min 2.0 5
= Max 8.0 g 6

4

5
= 1st quartile 5 ® 4
= 2nd quartile 6 5
= 31 quartile 7 = u
= 4th quartile 8 0

8 7 6 5 4 3 2 1
Quiz Score
TCSS422: Operating Systems [Winter 2019] | B2 |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK 1/9

= PCB Structures:
What does the process control block (PCB) do?
= C-structure that contains information about each process
= Process data, registers, process state info

= When a process is in the READY state, is its data already

loaded (in the CPU) or is loading (the data) part of

(moving) the (process to the) running state?

= In the READY state, process information is stored in the PCB
block data structure

= When a CONTEXT SWITCH occurs, data is moved from the PCB
to the CPU. The time to transfer this data is “overhead”. When
complete the process can go from READY - RUNNING

TCS5422: Operating Systems [Winter 2019]
o 4

School of hnology, ity ington - Tacoma | 133 ‘

January 14, 2019

FEEDBACK - 2

= Unsure about “context switching” and “overhead”

= Define:
= Context switch

= Qverhead

TCS$422: Operating Systems [Winter 2019] | 5.4 |

T) Sehoollof Erineering andTech nolosyjUnversity oWashinaton ik Teconta

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching

Multitasking

@ W W

vs. Multitasking with context switching

Sequential

Overhead = -
|

Time

TCS5422: Operating Systems [Winter 2019]
January 14, 2019 e e chnology, University . - 35

FEEDBACK - 3

= Since memory Is virtuallzed, when a process Is forked, wlll the
polnters be pointing to different parts (of memory)?

= YES, all of the data of the process will be cloned, as a DEEP copy

= However, the 0S, as an optimization only performs a SHALLOW
copy, and defers copying elements until they actually change.

= This is known as Copy-on-Write (COW)

= Resource-management technique to efficiently create a "copy"
operation of modifiable resources. If a resource is duplicated but
not modified, it is not necessary to create a new resource; the
resource can be shared between the copy and the original.
Modifications trigger the copy. The copy operation is deferred until
the first write. This approach significantly reduces the resource
consumption for unmodified copies, while also limiting copy
overhead to only resource-modifying operations.

TCSS422: Operating Systems [Winter 2019]

T) Sehoollof echnolosyjUniversity ofWashinatoniSecoma

| 36

Slides by Wes J. Lloyd

L3.1

TCSS 422 A — Winter 2019
School of Engineering and Technology

OBJECTIVES

= Assignment O
= C Tutorial
= Linux Tutorial

= Chapter 5 - Process API

= Chapter 6 - Limited Direct Execution

= Chapter 7 - Scheduling Introduction

= Chapter 8 - Multi-level Feedback Queue (MLFQ)

TCS5422: Operating Systems [Winter 2019]
L2, 2D e o Ty o e s oy Uty T - TR

fork()

= Creates a new process - think of “a fork in the road”
= ‘Parent” process is the original

executlon polnt
= Book says “pretty odd”

= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

= Creates “child” process of the program from the current

= Creates a duplicate program instance (these are processes!)

TCS5422: Operating Systems [Winter 2019]
LR 2, 2D e oolol Enginearins erdiechnolosyiUnNe Bty f Tacoms

1/13/2019

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Winter 2019]
LI 15 2 School of Engineering and Technology, University of Washington -

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int arge, char *argv[]){
printf(“hello world (pid:3d)\n", (int) getpid());
- int re = fork();
if (re < 0) { fork f
fprintf (stderr, "fork faile
exit(1);
} £ (rc == 0) { c W pr

=

printf("hello, I am child (p. d)\n", (int) getpid());
{ ent nthis path (main)
d:%d) \n",

printf("hello, I am parent of &
re, (int) getpid());

0;

January 14, 2019 T(SSMZ; Operating Systems [Winter 2019]

School of Technology, Universi i Tacoma .10

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

® CPU scheduler determines which to run first

TCS5422: Operating Systems [Winter 2019]
L e, 2 SeFoo[of Enginearing andiechnolosyiUnVe sty q Tacoma

| [EXT ‘

Slides by Wes J. Lloyd

TCS5422; Operating Systems [Winter 2019]
parbayil 2ot ‘Schoolol ineeri Technology, University i Tacoma .12

L3.2

TCSS 422 A — Winter 2019
School of Engineering and Technology

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCSS422: Operating Systems [Winter 2019]
L2, 2D AT o T o e s oy ATt A T T

1/13/2019

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.n>

int main(int arge, char *argv(]){
printf("hello world (pid:%d)\n", (int) getpid());
nt rc = fork();

(re < 0) { Y ;
fprintf (stderr, "fork failed\n");
exit(1);
(re == 0) {
printf("hello, I am child (pid:%d)\n", (int) getpid());

{
‘ int we = wait (WULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
o, we, (int) getpid());

0;

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCSS422: Operating Systems [Winter 2019]
LR 2, 2D e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

| 315 ‘

TCSS422: Operating Systems [Winter 2019]
ALY) A T T o U e A S T = B
® Linux example
TCSS422: Operating Systems [Winter 2019]
T) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma 16

exec()

® Supports running an external program

= execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)

to strings provided as arguments... (arg0, argi, .. argn)
= Execv(), execvp(), execvpe()

Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

TCSS422: Operating Systems [Winter 2019]
L e, 2 Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

| 317 ‘

EXEC() - 2

= Common use case:

= Write a new program which wraps a legacy one

= Provide a new interface to an old system: Web services
= Legacy program thought of as a “black box”

= We don’t want to know what is inside... ©

Qutput
nout ———]

Internal behovior ofthe code is unkrown

January 14, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma .18

Slides by Wes J. Lloyd

L3.3

TCSS 422 A —Win

ter 2019

School of Engineering and Technology

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

nt main(int arge, char *argv(l){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
(re < 0) {
fprintf (stderr, "fork failed\n");
exit(1);
} (rc {
printf("hello, I am child (pid:%d)\n", (int) getpid()):
q char *myargs[3];
myargs[0] = strdup ("wc"); e
myargs[1] = strdup("p3.c");
1 = NULL;

nyargs (2

January 14, 2019

TC55422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

| 319 ‘

1/13/2019

EXEC EXAMPLE - 2

- execvp (myargs (0], myargs);

printf("this shouldn’t print out");
} {
int wc wait (NULL) ;
printf("hello, I am parent of %d (wc:®d) (pid:%d)\n",
re, we, (int) getpid());

0;

prompt> ./p3
hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCSS422: Operating Systems [Winter 2019]

ALY) A T T o U e A S T =

13.20

EXEC WITH FILE REDIRECTION (OUTPUT)

#include
#include
#include
#include
#include
#include

nt
main (int
in

(

i

[

<stdio.h>
<stdlib.h>
<unistd.h>
<string.n>
<fcntl.h>
<sys/wait.h>

arge, char *argv(])(

rc = fork();

re < 0) {

fprintf (stderr, "fork failed\n");

exit (1)
(rc =

close (STDOUT_FILENO) ;

open ("./p4.output”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

0)

| January 14, 2019

TC55422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

| 1321 ‘

FILE MODE BITS

‘ S_IRWXU

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner
S_IRWXG

read, write, execute/search by group
S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH

read permission, others

S_IWOTH

write permission, others

TCSS422: Operating Systems [Winter 2019]

T) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

B2

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

char *myargs(3];

myargs([0] = strdup("wc");

myargs [1 trdup ("pd.c");
myargs[2] = NULL;

execvp (myargs (0], myargs);

int we = wait (NULL);

prompt>
prompt>
32 109

prompt>

./p4
cat pd.output
846 pd.c

January 14, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

| 1323 ‘

Which Process API call is used to launch a

different program from the current program?

Slides by Wes J. Lloyd

Fork() Exec() Wait() None of
the
above

All of
the
above

L3.4

TCSS 422 A — Winter 2019
School of Engineering and Technology

1/13/2019

QUESTION: PROCESS API

program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

= Which Process API call is used to launch a different

January 14, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri chnology, University i Tacoma

| 325

CH. 6:

LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Winter 2019]

LI 15 2 School of Engineering and Technology, University of Washington -

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

=Time Sharing

" Tradeoffs:
= Performance
= Excessive overhead
= Control
= Fairness
= Security

= Both HW and OS support
is used

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0os Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()
8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Winter 2019]
School of Engineeri i

January 14, 2019 S ity i Tacoma

| 1327

TCS5422: Operating Systems [Winter 2019]
e

School of Technology, Universi i Tacoma 13.28

January 14, 2019

COMPUTER BOOT SEQUENCE:
0OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0s Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn't be in control of anything
and would

7. Run main ()
8. Execute return from main ()

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

TCS5422: Operating Systems [Winter 2019]
School of Engineeri i

January 14, 2019 i ity i Tacoma

| 329

TCS5422: Operating Systems [Winter 2019]
e

School of Technology, University of Washi Tacoma 1330

January 14, 2019

Slides by Wes J. Lloyd

L3.5

TCSS 422 A — Winter 2019
School of Engineering and Technology

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

=Too much control:
=Too much OS overhead
= Poor performance for compute & 1I/0
= Complex APls (system calls), difficult to use

1/13/2019

TC55422: Operating Systems [Winter 2019]

L2, 2D AT o T o e s oy ATt A T T

| 1331

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching
vs. Multitasking with context switching

Sequential

Overhead
|

Multitasking

Time

TCSS422: Operating Systems [Winter 2019]

ALY) A T T o U e A S T =

1332

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

TCS5422: Operating Systems [Winter 2019]

LR 2, 2D e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

| 1333

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access _ no access
= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
0S kernel is running performing restricted operations

TCSS422: Operating Systems [Winter 2019]

T) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

1334

CPU MODES

= User mode: ring 3 - untrusted
= Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions
= 0S memory access
=1/0 device access

= Kernel mode: ring 0 - trusted
= All instructions and registers enabled

TCSS422: Operating Systems [Winter 2019]

L e, 2 Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

| 335

Slides by Wes J. Lloyd

SYSTEM CALLS

= Implement restricted “OS” operations
= Kernel exposes key functions through an API:
= Device I/0 (e.g.file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

TCSS422: Operating Systems [Winter 2019]

T) I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma

1336

L3.6

TCSS 422 A — Winter 2019
School of Engineering and Technology

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code AN internupt service Routine
loop() {

= Trap: any transfer to kernel mode
Instruction 4
instruotion 5

= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

1/13/2019

EXCEPTION TYPES

Synohwonousve. Usormaskablevs.
‘asynohwonaus. roed nmaskable

Asynchronous Coerced Nonmaskable Botween Resume

Synchronous Nonmaskable

User request Between Resume

Synchronous User request User maskable Between Resume
Synchronous User request User maskable Between Resume

‘Synchronous. Coerced User maskable Within Resume

Synchronous Coerced User maskable Within Resume

‘Synchronous. Coerced Nonmaskable. Within Resume

cossses Synchronous Coerced User maskable Within Resume

[Memory protection violation Synchronous Coerced Nonmaskable Within Resume
Synchronous Coerced Nonmaskable Within Terminate

Asynchronous Coerced Nonmaskable. Within Terminate.

Asynchronous Coerced Nonmaskable Within Terminate

TC55422; Operating Systems [Winter 2019]
‘ ALY) e BT T e Uy f T 1338
0S @ boot Hardware
(kernel mode)
B iniialize trap table
remember address of
syscall handler
Hardware Program
(kernel mode) (user mode)
Create entry for process lst
Allocate memory for program
Load program into memory
Setup user stack with argy.
OS with Limited Direct Execution
move to kernel mode
jump to trap handler
Handle trap
- Do work of syscall
turn-from-tre
e omne restore regs from kernel stack
move to user mode
jump to PC after trap
‘ return from main
trap (via exit ()
Free memory of process
Remove from process st
TCSS422: Operating Systems [Winter 2019]
TR 00 School of Engineering and Technology, University of Washington - Tacoma L3.40

TCSS422: Operating Systems [Winter 2019]
January 14, 2019 School of Engii b T e Rty . T | 1337 ‘
0S @ boot Hardware
(kernel mode)
‘ ialize trap table
remember address of
syscall handler
Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv.
Fill kernel stack with reg/PC
return-from -trap
restore regs from kernel stack
‘ move to user mode
jump to main
Run main()
' Call system
trap into OS5
save regs to kernel stack
q move to kernel mode
jump to trap handler
Handle trap
‘ Do work of syscall
fetlm; fionvtrap) restore regs from kernel stack
B rrove o user moce
jump to PC after trap
‘ return from main
trap (via exit ()
Free memory of process
Remove from process list
TCSS422: Operating Systems [Winter 2019]
Ranuenjid ey School of Engineering and Technology, University of Washington - Tacoma L339
= How/when should the OS regain control of the CPU to
switch between processes?
= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0
Illegal operations
= (POLLEV)
What problems could you for see with this approach?
TCSS422: Operating Systems [Winter 2019]
January 14, 2019 e b TechnoloayiUnversity . T | 1341 ‘

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

lllegal operations

= (POLLEV)
What problems could you for see with this approach?

January 14, 2019 TBSMZ; Operating Systems [Winter 2019]

4
School of Technology, University of Washi Tacoma 142

Slides by Wes J. Lloyd

L3.7

TCSS 422 A — Winter 2019 1/13/2019
School of Engineering and Technology

What problems exist for regaining the control

QUESTION: MULTITASKING

W of the CPU with cooperative multitasking
OSes?

= What problems exist for regaining the control of
the CPU with cooperative multitasking 0Ses?

TCSS422: Operating Systems [Winter 2019]

4
School of Engineering and Technology, University of Washington - Tacoma 1344

|| | January 14, 2019

MULTITASKING - 2 MULTITASKING - 2
= Preemptive multitasking (32 & 64 bit OSes) = Preemptive multitasking (32 & 64 bit 0Ses)
= >= Mac 0SX, Windows 95+ = >= Mac 0SX, Windows 95+

=Timer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling

gives OS the ability to

run again on a CPU.

Current program is halted Current program is halted
Program states are saved Program states are saved
OS Interrupt handler is run (kernel mode) 0OS Interrupt handler is run (kernel mode)
= (PollEV) What is a good interval for the timer interrupt? = (PollEV) What is a good interval for the timer interrupt?

TCSS422: Operating Systems [Winter 2019] TCSS422: Operating Systems [Winter 2019]
LR 2, 2D 1345 T) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma 1346

School of Engineering and Technology, University of Washington - Tacoma

For an OS that uses a system timer to force
arbitrary context switches to share the CPU,

QUESTION: TIME SLICE

what is a good value (in seconds) for the timer
interrupt?

" For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TCSS422: Operating Systems [Winter 2019]

4
School of Engineering and Technology, University of Washington - Tacoma 148

January 14, 2019

W January 14,2019 TCSS422: Operating Systems [Winter 2019
u : B!

L3, 4-.

Slides by Wes J. Lloyd L3.8

TCSS 422 A — Winter 2019

1/13/2019
School of Engineering and Technology

CONTEXT SWITCH

= Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a dIfferent one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack

= General purpose registers

= PC: program counter (instruction pointer)
= kernel stack pointer

Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

January 14, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1350

TC55422: Operating Systems [Winter 2019

January 14, 2019 o ot pberatne o e : Tacoma 13.49
05 @ boot
(kernel mode) s

ize trap table

- start interrupt timer

remember address of ...

syscall handler
timer handler
- start timer

interrupt CPU in X ms

Program
(kernel mode) Hardware (user mode)

Process A

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap
Call switch() routine
q save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(®)
move to user mode
jump to B's PC

‘ Process B

TCSS422: Operating Systems [Winter 2019]
Ranuenjid ey School of Engineering and Technology, University of Washington - Tacoma L351

05 @ boot
(kernel mode) Hardware

‘ initialize trap table
‘ start interrupt timer

remember address of ...

q syscall handler

timer handler

‘ start timer
interrupt CPU in X ms

Hardware Program

Context Switch

Call switch() routine

- save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(3)
switch to k-stack(B)

return-from-trap (into B)

restore regs(B) from k-stack(8)
move to user mode
jump to B's PC

- Process B

TCSS422: Operating Systems [Winter 2019]
TR 00 School of Engineering and Technology, University of Washington - Tacoma L3.52

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

= Linux

= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCS5422: Operating Systems [Winter 2019]
January 14, 2019 e e Technology, University . - 1353

PREEMPTIVE KERNEL

mUse “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero

= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= |nterrupt can be interrupted when preempt_count=0
= It is safe to preempt (maskable interrupt)
=the interrupt is more important

Slides by Wes J. Lloyd

TCSS422: Operating Systems [Winter 2019]
T) Sehool of Ergineening andTechnoloey Universia

1354

f i Tacoma

L3.9

TCSS 422 A — Winter 2019 1/13/2019
School of Engineering and Technology

SCHEDULING METRICS

= Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

CHAPTER 7 \ = Measurements are the numbers derived from the application

of metrics
SCHEDULING: = Scheduling Metric #1: Turnaround time
INTRODUCTION = The time at which the job completes minus the time at which

the job arrived in the system

‘ Trurnaround = T compietion — Tarrival 1
)

= How is turnaround time different than execution time?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]

TC55422: Operating Systems [Winter 2019
School of Engineering and Technology, University of Washington - a ALY) f Engineeri

School of Technology, University i Tacoma 1356

SCHEDULING METRICS - 2 SCHEDULERS

= Scheduling Metric #2: Falrness = FIFO: first in, first out
= Jain’s fairness index

= Very simple, easy to implement
= Quantifies if jobs receive a fair share of system resources

= Consider
. (Z:i: @)’ = 3 x 10sec jobs, arrival: AB C
® n processes n- it A B C
= x; is time share of each process
= worst case = 1/n
= best case =1 0 20 Py P 0 100 120
Time (Second)
= Consider n=3, worst case = .333, best case=1
= With n=3 and x;=.2, x,=.7, x3=.1, fairness=.62 Average turnaround time :10+ 20+30: 20 sec
= With n=3 and x;=.33, x,=.33, x3=.33, fairness=1 S

January 14, 2019 TCS3422: Operating Systems [Winter 2019]
School of

chnology, ity i Tacoma | 1357

January 14, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University of Washi Tacoma

1358

SJF: SHORTEST JOB FIRST SJF: WITH RANDOM ARRIVAL

= Given that we know execution times in advance: = |f jobs arrive at any time:
= Run in order of duration, shortest to longest = A @ t=0Osec, B @ t=10sec, C @ t=10sec
= Non preemptive scheduler
= This is not realistic
= Arrival: AB C

[B,C arrive]

O D N
0 20 40 60 80 100 120

Time (Second)
0 20 40 60 80 100 120

Time (Second)

Y 10 + 20 + 120 . 100 + (110 — 10) + (120 — 10)
Average turnaround time = —s = 50 sec Average turnaround time = — % = sec
TCSS422: Operating Systems [Winter 2019] TCS$422: Operating Systems [Winter 2019
LERRETA, 2T | Sehoo[efEnginest K holosy University q Tacoma 1359 T) Sehool of Engineering and Technolosy University ot Washi Tacoma 1360

Slides by Wes J. Lloyd L3.10

TCSS 422 A — Winter 2019 1/13/2019
School of Engineering and Technology

STCF - 2 SCHEDULING METRICS - 3

= Consider: = Scheduling Metric #3: Response Time
" Aen=100 A, i\ =0 = Time from when job arrives until it starts execution

® Byn=10, Byyriva=10, Cieq=10, Cyrriya=10

‘ Trespnnse = Tfirstrun - Turrival

[B,C arrive]

AlB C A
= STCF, SJF, FIFO
| VT T " TR T . i i
s 3 s & - e can perform poorly with respect to response time
Time (Second)
response time?
. (¢) + (2
Average turnaround time = 50 sec
TCSS422: Operating Systems [Winter 2019] TCSS422: Operating Systems [Winter 2019]
| L2, 2D | AT o T o e s oy ATt A T T 1361 ALY) A T T o U e A S T = 62

RR: ROUND ROBIN e RR EXAMPLE

= Run each job awhile, then switch to another distributing the = ABC arrive at time=0, each run for 5 seconds
CPU evenly (fairly) OVERHEAD not
= Scheduling Quantum | Process \ Burst Time consldered
is called a time slice [zl 12

0+5+10

= Time| RR is fair, but performs poorly on metrics Taverage response = o = Ssec

am such as turnaround time C 5 40 - (1: i 20 25 3

) ime (Secon

ti m.e P5 SJF (Bad for Response Time

period

Round Robin scheduling algorithm
Gantt chart
T 0+1+2
= ——F]—= 1sec
Scheduling [Pi]P2[P3[P4 Ps[PL[P2]Pa] P1] S S A ST average response 5
Quantum = 5 seconds e Cecon)
2 5 10 14 19 24 29 32 37 3[}9 RR with a time-slice of 1sec (Good for Response Time)
TCSS422: Of ting Syste [Winter 2019] TCSS422: O ting Systs [Winter 2019]
iy 14209 [1S St e e 20y ot ashngton T [ss] oy 10,2019 [1SSBEpenn e W 208) o Tocoms

ROUND ROBIN: TRADEOFFS SCHEDULING WITH I/0

= STCF scheduler
= A: CPU=50ms, I/0=40ms, 10ms intervals

Fast Response Time Slow Response Time * B: CPU=50ms, I/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)

Short Time Slice Long Time Slice

High overhead from Low overhead from = Without considering 1/0:
context switching context switching :
A A A A A B B B B B
\
=Time slice impact: &\\\\\
s) . . l [CPU utilization=100/140=71%
=Turnaround time (for earlier example):) - . : X
ts(1,2,3,4,5)=14,14,13,14,10 R i "“) o a2 o
=Fairness: round robin is always fair, J=1 Poor Use of Resources

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1366

| 13.65 ‘ January 14, 2019

January 14, 2019 TCS3422: Operating Systems [Winter 2019]
School of

chnology, ity i Tacoma

Slides by Wes J. Lloyd L3.11

TCSS 422 A — Winter 2019
School of Engineering and Technology

= When a job initiates an 1/0 request

= STCF scheduler assigns B to CPU
= When I/0 completes - raise interrupt

A A A A B A B

@
@
@

2.
Y

SCHEDULING WITH I/0 - 2

= A is blocked, waits for I/0 to compute, frees CPU

= Unblock A, STCF goes back to executing A: (10ms sub-job)

Il
2

. [Cpu utilization = 100/100=100%

°
3

5
2

Time (msec)

Overlap Allows Better Use of Resources

T T
80 100 120

January 14, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University

— | 1367

1/13/2019

Which scheduler, thus far, best address fairness

and average response time of jobs?

|;| Respond at PollEv.com/wesleylloyd641
D Text WESLEYLLOYD641 to 22333 once to join, then 1, 2, 3, 4, 5...

First In - First Out (FIFO) | 1
Shortest Job First (SJF) | 2
Shortest Time to

Completion First (STCF) | 3
Round Robin |4
None of the Above | §
All of the Above |

] n

January 14, 2019 TCSS422: Operating Systems [Winter 2019]

CHAPTER 8 -
MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

School of Engineering and Technology, University of Washington -

MULTI-LEVEL FEEDBACK QUEUE

= QObjectives:

=*Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

January 14, 2019

TCS5422: Operating Systems [Winter 2019] 570
e . 5

School o Technology, Uni i Tacoma

= Multiple job queues

= Adjust job priority based on
observed behavior

= Interactive Jobs
= Frequent 1/0 > keep priority high
= Interactive jobs require fast
response time (GUI/UI)

= Batch Jobs
= Require long periods of CPU
utilization

= Keep priority low [Low Priority]

Round-Robin
within a Queue

[High Priority] Q8 —> @ —

Q7
Q6

January 14, 2019 TCS3422: Operating Systems [Winter 2019]
School of

Technology, ity

Slides by Wes J. Lloyd

MLFQ: DETERMINING JOB PRIORITY

= New arriving jobs are placed into highest priority queue

= If a job uses its entire time slice, priority is reduced (|)
= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

= |f a job relinquishes the CPU for I/0 priority stays the same

MLFQ approximates SJF

January 14, 2019 T(SSMZ; Operating Systems [Winter 2019]

School of Technology, University of Washi Tacoma

B72

L3.12

TCSS 422 A — Winter 2019
School of Engineering and Technology

MLFQ: LONG RUNNING JOB

= Three-queue scheduler, time slice=10ms

Priority g

Q1

Qo

o so 100 150 200

Long-running Job Over Time (msec)

1/13/2019

TCS5422: Operating Systems [Winter 2019]

L2, 2D AT o T o e s oy ATt A T T

E

MLFQ: BATCH AND INTERACTIVE JOBS

" Aarrival_time =0MS, Ay 4ime=200ms,

" B, un_time =20mS, B, jya1_time =100ms
Priority A I
N
N
N

150
Scheduling multiple jobs (ms)
TCSS422: Operating Systems [Winter 2019]
ALY) A T T o U e A S T = 74

MLFQ: BATCH AND INTERACTIVE - 2

= Continuous interactive job (B) with long running batch job (A)
= Low response time is good for B
= A continues to make progress

The MLFQ approach keeps interactive job(s) at the highest priority

E 1

N
Q1 BA
o s0 100 1% 200

A Mixed I/O-intensive and CPU-intensive Workload (msec)

Q2

rzzzzzz77)
zzzz77772)
pzzzz77771
bzzzzzzzz
722777272)
pzzzz77271
pzzzz2227)
zzzzzz222)
rzzzz72273
rzzzzz7772)
bzzzz22223
rzzzzz77772)
rzzzzz7772)

TCS5422: Operating Systems [Winter 2019]

LR 2, 2D | e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

[s

MLFQ: ISSUES

= Starvation
[High Priority] Q8 —> @ _, _,@_, @_, ®_,®
Q7
Q6
Qs
o2
@3
Q

[Low Priority] Q1 — > ®_> @ CPU bound batch job(s)

TCSS422: Operating Systems [Winter 2019]

T) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

1376

MLFQ: ISSUES - 2

® Gaming the scheduler
= |ssue I/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

= Job behavioral change
= CPU/batch process becomes an interactive process

(O—{o)— (1) —(F
Od Oand Ond ()

High Priority] Q8 —> () —> (8
Q7
@
o
Q4
@
@
Priority becomes stuck ‘ Wow Pricrityl Q1 ——>(G)—— (1) CPU boundbatch jobrs)

TCSS422: Operating Systems [Winter 2019]

L e, 2 Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

377

RESPONDING TO BEHAVIOR CHANGE

@, Vi

B

Starvation
0 50 100 150 200

Without Priority Boost A:l B: c:g

4

= Priority Boost
= Reset all jobs to topmost queue after some time interval S

TCSS422: Operating Systems [Winter 2019]

Sanuanvi UL School of Engineering and Technology, University of Washington - Tacoma

[o

Slides by Wes J. Lloyd

L3.13

TCSS 422 A — Winter 2019 1/13/2019
School of Engineering and Technology

RESPONDING TO BEHAVIOR CHANGE - 2 PREVENTING GAMING
= With priority boost = Improved time accounting:
= Prevents starvation = Track total job execution time in the queue

= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

3 ™|,

Boost
Bogst

100 150 200

Q0 Qo 5
(ARRNNRRRUNNRRRUNTT] | |
0 50 100 150 200 0

Without(Left) and With(Right) Gaming Tolerance

Without(Left) and With(Right) Priority Boost A] B:Y B

TCSS422: Operating Systems [Winter 2019]

TCSS422: Operating Systems [Winter 2019]
L2, 2D 1379 A T T o U e A S T =

AT o T o e s oy ATt A T T ALY)

13.80

MLFQ: TUNING PRACTICAL EXAMPLE
= Consider the tradeoffs: = Oracle Solaris MLFQ implementation
= How many queues? =60 Queues >
= What is a good time slice? w/ slowly increasing time slice (high to low priority)
= How often should we “Boost” priority of jobs? = Provides sys admins with set of editable table(s)

= What about different time slices to different queues? = Supports adjusting time slices, boost intervals, priority

o l§ changes, etc.

Sk = Advice

- - = Provide OS with hints about the process
— — = Nice command -> Linux
] 50 100 150 200

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

TCS5422: Operating Systems [Winter 2019]

TCSS422: Operating Systems [Winter 2019]
LR 2, 2D e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms | 1381 ‘ T) 82

School of Engineering and Technology, University of Washington - Tacoma

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in

ML FQ RULE SUMMARY round-robin order.
Job Arrival Time Job Length
A T=0 4
: . B T=0 16
= The refined set of MLFQ rules: c Too 3

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t). (11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.

. - _ Ampof ; Draw vertical lines for key events and be sure to label the X-axis times as in the example.
" Rule 2: If Priority(A) = Priority(B), A & B run in RR. Please draw clearly. An unreadable graph will loose points.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the

. NN . . HIGH |
CPU), its priority is reduced(i.e., it moves down on queue). |
. . . . |
= Rule 5: After some time period S, move all the jobs in the MED |
system to the topmost queue. I
LOW |

TCSS422: Of ting Syste [Winter 2019]
oy 14,2019 [IS0 S WO 200 non T X .

Slides by Wes J. Lloyd L3.14

TCSS 422 A — Winter 2019 1/13/2019
School of Engineering and Technology

QUESTIONS

Slides by Wes J. Lloyd L3.15

