
TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.1Slides by Wes J. Lloyd

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

INTRODUCTION

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Avg: 5.737

 Median 6.0

 Mode 5.0

 Min 2.0

 Max 8.0

 1st quartile 5

 2nd quartile 6

 3rd quartile 7

 4th quartile 8

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

C QUIZ SCORES

 PCB Structures:
What does the process control block (PCB) do?
 C-structure that contains information about each process

 Process data, registers, process state info

 When a process is in the READY state, is its data already
loaded (in the CPU) or is loading (the data) part of
(moving) the (process to the) running state?
 In the READY state, process information is stored in the PCB

block data structure

 When a CONTEXT SWITCH occurs, data is moved from the PCB
to the CPU. The time to transfer this data is “overhead”. When
complete the process can go from READY RUNNING

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

FEEDBACK 1/9

Unsure about “context switching” and “overhead”

Define:

Context switch

Overhead

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

FEEDBACK - 2

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

CONTEXT SWITCHING OVERHEAD

Time

Overhead

 Since memory is v ir tualized, when a process is forked, will the
pointers be pointing to dif ferent parts (of memory)?

 YES, all of the data of the process wil l be cloned, as a DEEP copy

 However, the OS, as an optimization only performs a SHALLOW
copy, and defers copying elements until they actually change.

 This is known as Copy -on-Write (COW)

 Resource-management technique to efficiently create a "copy"
operation of modifiable resources. If a resource is duplicated but
not modified, it is not necessary to create a new resource; the
resource can be shared between the copy and the original.
Modifications trigger the copy. The copy operation is deferred unti l
the first write. This approach significantly reduces the resource
consumption for unmodified copies, while also limiting copy
overhead to only resource-modifying operations.

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

FEEDBACK - 3

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.2Slides by Wes J. Lloyd

 Assignment 0

 C Tutorial

 Linux Tutorial

 Chapter 5 – Process API

 Chapter 6 – Limited Direct Execution

 Chapter 7 – Scheduling Introduction

 Chapter 8 – Multi-level Feedback Queue (MLFQ)

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

OBJECTIVES

CHAPTER 5:
C PROCESS API

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.8

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of

 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

fork()

 p1.c

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

:(){ :|: & };:

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.3Slides by Wes J. Lloyd

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

wait()

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}

 Deterministic ordering of execution

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

 Linux example

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

FORK EXAMPLE

 Supports running an external program

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments… (arg0, arg1, .. argn)

 Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

exec()

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

EXEC() - 2

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.4Slides by Wes J. Lloyd

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.24

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.5Slides by Wes J. Lloyd

 Which Process API call is used to launch a different
program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

QUESTION: PROCESS API

CH. 6:
LIMITED DIRECT

EXECUTION

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.26

 How does the CPU support running so many jobs
simultaneously?

 Time Sharing

 Tradeoffs:

 Performance
 Excessive overhead

 Control
 Fairness

 Security

 Both HW and OS support
is used

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

VIRTUALIZING THE CPU

 What if programs could directly control the CPU / system?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 What if programs could directly control the CPU / system?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

 With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/O if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

DIRECT EXECUTION - 2

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.6Slides by Wes J. Lloyd

 Too little control:
 No security

 No time sharing

 Too much control:
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

CONTROL TRADEOFF

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

CONTEXT SWITCHING OVERHEAD

Time

Overhead

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

LIMITED DIRECT EXECUTION

 Utilize CPU Privilege Rings (Intel x86)
 rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:
Application is running, but w/o direct I/O access

 Kernel mode:
OS kernel is running performing restricted operations

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

CPU MODES

access no access

 User mode: r ing 3 - untrusted

 Some instructions and registers are disabled by the CPU

 Exception registers

 HALT instruction

MMU instructions

 OS memory access

 I/O device access

 Kernel mode: r ing 0 – trusted

 All instructions and registers enabled

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

CPU MODES

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation: malloc()

 Creating/destroying processes

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

SYSTEM CALLS

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.7Slides by Wes J. Lloyd

 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned) user kernel
 SYSCALL for I/O, etc.

 Exception: (error) user kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs.

asynchronous

User request vs.

coerced

User maskable vs.

nonmaskable

Within vs. between

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow

or underflow
Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

EXCEPTION TYPES

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.39 January 14, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L3.40

Computer BOOT Sequence:
OS with Limited Direct Execution

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

MULTITASKING

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

MULTITASKING

A process gets stuck in an infinite loop.
 Reboot the machine

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.8Slides by Wes J. Lloyd

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.43

What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.47

 For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

QUESTION: TIME SLICE

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.9Slides by Wes J. Lloyd

 Preemptive multitasking initiates “trap”
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

CONTEXT SWITCH

1. Save register values of the current process to its kernel
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

CONTEXT SWITCH - 2

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.51 January 14, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L3.52

Context Switch

 What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

INTERRUPTED INTERRUPTS

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt)

 the interrupt is more important

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

PREEMPTIVE KERNEL

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.10Slides by Wes J. Lloyd

CHAPTER 7-
SCHEDULING:

INTRODUCTION

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.55

 Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application
of metrics

 Scheduling Metric #1: Turnaround time

 The time at which the job completes minus the time at which
the job arrived in the system

 How is turnaround time different than execution time?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

 Scheduling Metric #2: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is time share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

SCHEDULING METRICS - 2

 FIFO: first in, first out
 Very simple, easy to implement

 Consider
 3 x 10sec jobs, arrival: A B C

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

SCHEDULERS

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎

𝟑
= 𝟐𝟎 𝒔𝒆𝒄

 Given that we know execution times in advance:
 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

SJF: SHORTEST JOB FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 If jobs arrive at any time:

 A @ t=0sec, B @ t=10sec, C @ t=10sec

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

SJF: WITH RANDOM ARRIVAL

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 − 𝟏𝟎 + (𝟏𝟐𝟎 − 𝟏𝟎)

𝟑
= 𝟏𝟎𝟑. 𝟑𝟑 𝒔𝒆𝒄

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.11Slides by Wes J. Lloyd

 Consider:
 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

STCF - 2

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎 − 𝟎) + 𝟐𝟎 − 𝟏𝟎 + (𝟑𝟎 − 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 Scheduling Metric #3: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO
 can perform poorly with respect to response time

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help
minimize response time?

 Run each job awhile, then switch to another distributing the
CPU evenly (fairly)

 Scheduling Quantum
is called a time slice

 Time slice must be
a multiple of the
timer interrupt
period.

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

RR: ROUND ROBIN

Scheduling
Quantum = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not
considered

 Time slice impact:
Turnaround time (for earlier example):

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.65

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from
context switching

Low overhead from
context switching

Short Time Slice Long Time Slice STCF scheduler
 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.12Slides by Wes J. Lloyd

 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.68

CHAPTER 8 –
MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.69

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.70

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.71

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.72

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.13Slides by Wes J. Lloyd

 Three-queue scheduler, time slice=10ms

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.73

MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, Arun_time=200ms,

 Brun_time =20ms, Barrival_time =100ms

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.74

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

 Continuous interactive job (B) with long running batch job (A)

 Low response time is good for B

 A continues to make progress

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.75

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

Starvation

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.76

MLFQ: ISSUES

 Gaming the scheduler

 Issue I/O operation at 99% completion of the time slice

 Keeps job priority fixed – never lowered

 Job behavioral change

 CPU/batch process becomes an interactive process

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.77

MLFQ: ISSUES - 2

Priority becomes stuck

 Priority Boost

 Reset all jobs to topmost queue after some time interval S

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.78

RESPONDING TO BEHAVIOR CHANGE

Starvation

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.14Slides by Wes J. Lloyd

 With priority boost

 Prevents starvation

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.79

RESPONDING TO BEHAVIOR CHANGE - 2

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.80

PREVENTING GAMING

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.81

MLFQ: TUNING

 Oracle Solaris MLFQ implementation

 60 Queues
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command Linux

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.82

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the
highest priority.

 Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.83

MLFQ RULE SUMMARY

January 14, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L6.84

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/13/2019

L3.15Slides by Wes J. Lloyd

QUESTIONS

