TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

INTRODUCTION

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

fanuavp0ts School of Engineering and Technology, University of Washington il Tacoma

FEEDBACK 1/7

® What is the concept of abstraction, with respect to
operating systems?
*CPU
= Memory
=|/0 (disk, network)

B What is the difference between memory virtualization in
an operating system and “virtual memory” also known as
“swap memory”?

® What is an operating system kernel?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 122

January 9, 2019

Slides by Wes J. Lloyd L2.1

TCSS 422 A — Winter 2019
School of Engineering and Technology

OPE

® The OS kerne

= /boot

RATING SYSTEM KERNEL

® Kernel is the central component of most computer
operating systems

| provides a bridge to manage the

communication between user applications and the
hardware (CPU, memory, I/0 devices)

® When a user process makes a request of the kernel, the
request is called a “system call”.

® Various kernel designs differ in how they manage calls
and resources

® Kernel location in Linux

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

Process State: PC, Thread| | Thread | | Thread
registers, SP, etc...

Process Multithreaded Process

State State State

Single
Threaded

Process

» [T 8

©Alfred Park, http://randu.org/tutorials/threads

FEEDBACK - 3: PROCESS VS THREADS

Multiple
Threaded
Process

¢

October 17, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L7.4

Slides by Wes J. Lloyd

1/8/2019

L2.2

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

FEEDBACK - 4

® What is the difference between a thread and a process?
= Every program runs as a process
= Programs may have O to many threads

® For several threads within a process, what memory
elements are shared?

® For two distinct processes:
consider two instances A and B of the simpleloop.c
sample program

What memory elements are shared?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L25

January 9, 2019

FEEDBACK - 5

® |n multi-threaded programs, how do we
synchronize access to global (shared) variables?

=Chapters 26 - 32

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L26

January 9, 2019

Slides by Wes J. Lloyd L2.3

TCSS 422 A — Winter 2019
School of Engineering and Technology

FEEDBACK - 6

iPad and it doesn’t work.

® What are the requirements needed to do well in TCSS 4227

® The slides do not open. | tried to download the lexture to my

TCSS422: Operating Systems [Winter 2019]

danuaryio204s School of Engineering and Technology, University of Washington - Tacoma

L2.7

OBJECTIVES

= Chapter 2 - Introduction to operating systems
= THREE EASY PIECES:
Virtualizing the CPU
Virtualizing Memory
Virtualizing 1/0

= Operating system design goals
® Chapter 4 - Processes

® Chapter 5 - Process API
® Chapter 6 - Limited Direct Execution

TCSS422: Operating Systems [Winter 2019]

LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma

L2.8

Slides by Wes J. Lloyd

1/8/2019

L2.4

TCSS 422 A — Winter 2019

School of Engineering and Technology

January 9, 2019

INTRODUCTION TO
OPERATING SYSTEMS

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

hosted U

VIRTUAL MACHINE SURVEY

buntu VM

= Please complete the Virtual Machine Survey to request
a “School of Engineering and Technology” remote

®https://go0.gl/forms/SC8GzWAgIUfHZ0g33

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

Slides by Wes J. Lloyd

1/8/2019

L2.5

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

OBJECTIVES

= Chapter 2: Operating Systems - Three Easy Pieces
= Introduction to operating systems

= Management of resources
= Concepts of virtualization/abstraction

= THREE EASY PIECES:

Virtualizing the CPU: simpleloop.c example
pthread.c example

Virtualizing Memory: mem.c example
Virtualizing 1/0

= Operating system designh goals

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 211

January 9, 2019

[Task:| % Windows Task Manager = e
:gg:(‘ File Options View Help
Swop || | Appications | Processes | Services | Performance | Helwerking | Users
< I
1527¢ |lmaquaN< UserName CPU Memory (... Desaiption
lorsill | = SYSTEM.. 89 330,504K_HostProc.]
{3062 shwowsdexe wioyd 00 L4s2K Printdiv.,
4430 toskmgrexe wioyd 00 2,084K Windows...
6280 OSPPSVC.EXE NETWO. 00 2,0%K Mirosoft..
oy Seachlndexe.. SYSTEM 00 3,372K Miosoft..
loazd POWERPNT.E... wlioyd 00 36,964K Microsoft.
h1017 ssscheduer.... wioyd 00 884K McafeeS...
15157 explorer.exe wiloyd 00 15,289K Windows ...
Jiked] Prntisoaton,.. SYSTEM 00 110K Prntisola...
;23% VBoxTray.exe wiloyd 00 L764K virtualBox...
4 taskhostexe wloyd 00 378K HostProc.,
106¢ . exe whoyd 00 1,132K Deskiop ...
3504 GarminService.., SYSTEM 00 18,004K Garmin Se
6121 sdhosters SYSTEM 00 279K HestProc..
i) smsvcexe 2 SISTEM 00 904K Adobe Ac..
s svehostexe LOCAL.. 00 7,156K HostProc..
8524 sodsv.exs SISTEM 00 5200K Spooker 5.,
112914 ExpressTray... whoyd 00 14,860K Garmin Ex.
1428 schostexs SYSTEM 00 LE0OK HostProc
1575 svchostexe LOCAL.. 00 2924K HostProc..
Hak schostexe SYSTEM 00 3052K HestProc..
1653 taskengexe SYSTEM 00 LIS0K TaskSche
2178 svchost.exe LOCAL ... 00 9,264K Host Proc...
3074 svchost.exe NETWO. 00 3,015K HostProc...
13153(VBoxService.... SYSTEM 00 LATEK VirtualBox...
svhostexe SYSTEM 00 2884K HostProc.,
: I\smex: SYSTEM 00 1,204K Local Ses. A
;] 7] Show processes from al users I
{
{ Processes: 37 CPU Usage: 100% Physical Memory: 3%

16 root KT T TIPS oy ULy U0 UI3B.5/ WATCNOOG/ !
11 root RT © 0 0 0S5 0.0 0.0 130:03.04 migration/2
Drooc BT 0 0 0 05 0.0 0.0 0:00.00 sioppers2

TCSS422: Operating Systems [Winter 2019]

LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma

L2.12

Slides by Wes J. Lloyd L2.6

TCSS 422 A — Winter 2019

School of Engineering and Technology

them

CONCURRENCY

® Linux: 654 tasks
® Windows:

37 processes

® Modern multi-threaded programs feature concurrent
threads and processes

® The OS appears to run many programs at once, juggling

® What is a key difference between a process and a thread?

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

CONCURRENCY - 2

O J o) Ul WM

#include <stdio.h>
#include <stdlib.h>
#include "common.h"

1nt counter = 0;
int Toops;

Not the same as Java volatile:

thread.c

Listing continues ...

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

Slides by Wes J. Lloyd

1/8/2019

L2.7

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

CONCURRENCY -3

16 int

17 main(int argc, char *argv([])

18 {

19 if (argc !'= 2) {

20 fprintf (stderr, "usage: threads <value>\n");
21 exit(1l);

22 }

23 loops = atoi(argv[1l]);

24 pthread_t pl, p2;

25 printf ("Initial value : %d\n", counter);
26

27 Pthread create(&pl, NULL, worker, NULL);
28 Pthread create(&p2, NULL, worker, NULL);
29 Pthread join(pl, NULL);

30 Pthread join(p2, NULL);

31 printf ("Final value : %d\n", counter);
32 return 0;

33 }

® Program creates two threads
® Check documentation: “man pthread_create”
= worker() method counts from O to argv[1] (loop)

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019 12.15

PTHREAD_CREATE(3) Linux Programmer's Manual PTHREAD_CREATE(3)

NAME top

pthread_create - create a new thread

SYNOPSIS top
#include <pthread.h>

- int pthread_create(pthread_t *thread, const pthread_attr_t *artr,
Llnux void *(*start_routine) (void *), void *arg);

“man”

Compile and link with -pthread.

DESCRIPTION top

page The pthread_create() function starts a new thread in the calling
process. The new thread starts execution by invoking
start_routine(); arg is passed as the sole argument of
start_routine().

examEIe The new thread terminates in one of the following ways:

* It calls pthread_exit(3), specifying an exit status value that is
available to another thread in the same process that calls
pthread_join(3).

* It returns from start_routine(). This is equivalent to calling
pthread_exit(3) with the value supplied in the return statement.

* It is canceled (see pthread_cancel(3)).

* Any of the threads in the process calls exit(3), or the main thread
performs a return from main(). This causes the termination of all
threads in the process.

The attr argument points to a pthread_attr_t structure whose contents
are used at thread creation time to determine attributes for the new
thread; this structure is initialized using pthread_attr_init(3) and
related functions. If attr is NULL, then the thread is created with
default attributes.

TCSS422: Operating Systems [Winter 2019]

JanuavR2019 School of Engineering and Technology, University of Washington - Tacoma L2.16

Slides by Wes J. Lloyd L2.8

TCSS 422 A — Winter 2019
School of Engineering and Technology

® Command line

Loops: 1000

CONCURRENCY - 4

parameter argv[1] provides loop length

® Defines number of times the shared counter is incremented

prompt> gcc

prompt> ./thread 1000
Initial value : 0
Final value :

-o thread thread.c -Wall -pthread

2000

= Loops 100000

Initial valu

prompt> ./th
Initial valu

prompt> ./thread 100000

Final value :

Final value :

e : 0

143012 // huh??
read 100000

e : 0

137298 // what the??

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

2. Increment it
3. Store the reg

® Some of the in

CONCURRENCY -5

® When loop value is large why do we not achieve 200000 ?

® C code is translated to (3) assembly code operations
1. Load counter variable into register

ister value back in memory

® These instructions happen concurrently and VERY FAST

®m (P11 || P2) write incremented register values back to memory,
While (P1 || P2) read same memory

® Memory access here is unsynchronized (non-atomic)

crements are lost

January 9, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L218

Slides by Wes J. Lloyd

1/8/2019

L2.9

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

W To perform parallel work, a single process may:

Launch Launch Both Aand B None of the
multiple multiple above
threads to processes to
execute code execute code
in parallel in parallel

while sharing without sharing
globaldatain global datain
memory memory

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

PARALLEL PROGRAMMING

= To perform parallel work, a single process may:

® A. Launch multiple threads to execute code in parallel while
sharing global data in memory

® B. Launch multiple processes to execute code in parallel
without sharing global data in memory

= C. Both A and B

® D. None of the above

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2:20

January 9, 2019

Lloyd

1/8/2019

L2.10

TCSS 422 A — Winter 2019
School of Engineering and Technology

VIRTUALIZING 1/0: PERSISTENCE

= DRAM: Dynamic Random Access Memory: DIMMs/SIMMs
= Stores data while power is present
= When power is lost, data is lost (volatile)

® Operating System helps “persist” data more permanently
=|/0 device(s): hard disk drive (HDD), solid state drive (SSD)
= File system(s): “catalog” data for storage and retrieval

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.21

January 9, 2019

VIRTUALIZING 1/0: PERSISTENCE - 2

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file"™, O WRONLY | O CREAT
| O TRUNC, S IRWXU);

11 assert (fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert (rc == 13);

14 close (fd) ;

15 return 0;

16 }

® open(), write(), close(): OS system calls for device I/0

= Note: man page for open(), write() require page number:
“man 2 open”, ”“man 2 write”, “man close”

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.22

January 9, 2019

Slides by Wes J. Lloyd

1/8/2019

L2.11

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

VIRTUALIZING 1/0: PERSISTENCE - 3

® To write to disk, OS must:
= Determine where on disk data should reside

= Perform sys calls to perform 1/0:
Read/write to file system (inode record)
Read/write data to file

® Provide fault tolerance for system crashes
= Journaling: Record disk operations in a journal for replay
= Copy-on-write - replicating shared data - see ZFS
= Carefully order writes on disk

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.23

January 9, 2019

SUMMARY:

OPERATING SYSTEM DESIGN GOALS

= ABSTRACTING THE HARDWARE
= Makes programming code easier to write
= Automate sharing resources - save programmer burden

= PROVIDE HIGH PERFORMANCE

= Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, 1/0)

= Share resources fairly

= Attempt to tradeoff performance vs. fairness = consider
priority

" PROVIDE ISOLATION

= User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.24

January 9, 2019

Slides by Wes J. Lloyd L2.12

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2

= RELIABILITY
= OS must not crash, 24/7 Up-time
= Poor user programs must not bring down the system:

Blue Screen

® Other Issues:
= Energy-efficiency

= Security (of data) a3 e e s e o e,
q a it 1a] 1eTng Sisk For Srash s ..
= Cloud: Virtual Machines T L T e

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.25

January 9, 2019

Process State

ﬁmltted interrupt

scheduler dispatch
lle}
or
event completion

event wait

/proc

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

January 9, 2019

Slides by Wes J. Lloyd L2.13

TCSS 422 A — Winter 2019

School of Engineering and Technology

Slides by Wes J.

CPU VIRTUALIZING

® How should the CPU be shared?

® Time Sharing:
Run one process, pause it, run another

® How do we SWAP processes in and out of the CPU
efficiently?

= Goal is to minimize overhead of the swap

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

running program ‘

PROCESS

® Process comprises of:

= Memory

Instructions (“the code”)
Data (heap)

= Registers

PC: Program counter
Stack pointer

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

Lloyd

1/8/2019

L2.14

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

PROCESS API

Modern OSes provide a Process API for process support

= Create

= Create a new process

Destroy

= Terminate a process (ctrl-c)

= Wait

= Wait for a process to complete/stop

Miscellaneous Control

= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Status

= Obtain process statistics: (top)

TCSS422: Operating Systems [Winter 2019]

danuaryio204s School of Engineering and Technology, University of Washington - Tacoma

L2.29

1.

PROCESS API: CREATE

Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loading: Load entire program before running

= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

Run-time stack creation

= Stack: local variables, function params, return address(es)

TCSS422: Operating Systems [Winter 2019]

LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma

L2.30

Lloyd

1/8/2019

L2.15

TCSS 422 A — Winter 2019
School of Engineering and Technology

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization
= |/0 Setup

Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

CPU

| static data
heap

January 9, 2019

Loading:
Reads program from
disk into the address

space of process

static data

Program

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

Slides by Wes J. Lloyd

1/8/2019

L2.16

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED
= Process is not ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L233

January 9, 2019

PROCESS STATE TRANSITIONS

—
Descheduled /\

Running i, Ready
Scheduled \

1/0: wtmt& //O: done
Blocked)
AN

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2:34

January 9, 2019

Slides by Wes J. Lloyd L2.17

TCSS 422 A — Winter 2019

School of Engineering and Technology

PROCESS DATA STRUCTURES

Process Data
State of process: Ready, Blocked, Running

= Register context

® PCB (Process Control Block)

= A C-structure that contains information about each
process

m OS provides data structures to track process information
= Process list

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington

- Tacoma

L2.35

XV6 KERNEL DATA STRUCTURES

m xv6: pedagogical implementation of Linux
®m Simplified structures

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context ({

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register

int edi; // Destination index register
int ebp; // Stack base pointer register

}i

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington

- Tacoma

L2.36

Slides by Wes J. Lloyd

1/8/2019

L2.18

TCSS 422 A — Winter 2019

School of Engineering and Technology

XV6 KERNEL DATA STRUCTURES - 2

struct proc {
char *mem;
uint sz;
char *kstack;

enum proc_ state state;
int pid;

struct proc *parent;
void *chan;

int killed;

struct inode *cwd;
struct context context;
struct trapframe *tf;

struct file *ofile[NOFILE]

//
//
// //
// //
// //
//
//
// //
// //
;

//
//
// //
// //

// the information xv6 tracks about each process
// including its register context and state

Start of process memory
Size of procs memory
Bottom of kernel stack
for this process
Process state
Process ID
Parent process
If non-z
If non-z

, sleeping on chan
, have been killed

// Open files

Current directory
1 here to run process
Trap frame for the

current interrupt

O

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

LINUX: STRUCTURES

= Provides process description

= Large: 10,000+ bytes

B struct task struct, equivalent to struct proc

= /usr/src/linux-headers-{kernel version}/include/linux/sched.h

1227 - 1587

= thread_info.h is at:

® struct thread info, provides “context”

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

Slides by Wes J. Lloyd

1/8/2019

L2.19

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

LINUX: THREAD_INFO

struct thread_info {

struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
_u32 flags; /* low level flags */
_u32 status; /* thread synchronous flags */
_u32 cpu; /* current CPU */
int preempt count; /* 0 => preemptable,
<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void _ user *sysenter_ return;
#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in
case of nested (IRQ) stacks
*/
u8 supervisor_ stack[0];
#endif
int uaccess_err;

};

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.39

January 9, 2019

LINUX STRUCTURES - 2

® List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

® Description of process data structures:
http://www.makelinux.net/books/lkd2/ch0O3levisecl
2nd edition is online (dated from 2005):
Linux Kernel Development, 2"9 edition
Robert Love
Sams Publishing

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.40

January 9, 2019

Slides by Wes J. Lloyd L2.20

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

When a process is in this state, it is

-w- advantageous for the Operating System to

perform a CONTEXT SWITCH to perform other
work

RUNNING READY BLOCKED All ofthe None of
above theabove

TCSS422: Operating Systems [Winter 2019]
.. January 9, 2019 tart the presgpisslte FE RiFEEHRSIARE TR OISR RISV ASPAHEXSAT FiBoma L2-4-.

QUESTION: WHEN TO CONTEXT SWITCH

® When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

® (a) RUNNING

" (b) READY

® (c) BLOCKED

m (d) All of the above

® (e) None of the above

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.42

Slides by Wes J. Lloyd L2.21

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Winter 2019]

JanuayRa2019 School of Engineering and Technology, University of Washington -

fork()

= Creates a new process - think of “a fork in the road”
= “Parent” process is the original
m Creates “child” process of the program from the current
execution point
= Book says “pretty odd”
= Creates a duplicate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

TCSS422: Operating Systems [Winter 2019]

. N h . . L2.44
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.22

TCSS 422 A — Winter 2019
School of Engineering and Technology

FORK EXAMPLE

®pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
printf ("hello world (pid:%d)\n", (int) getpid());

‘ int rc = fork();
i f

(rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);

} else if (rc == 0) { // child (new proc)
printf("hello, I am child (pid:

} else { // parent goes n this path
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

return 0;

(int) getpid());

January 9, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L2.45

FORK EXAMPLE - 2

® Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

® CPU scheduler determines which to run first

January 9, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L2.46

Slides by Wes J. Lloyd

1/8/2019

L2.23

TCSS 422 A — Winter 2019
School of Engineering and Technology

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.47

= wait(), waitpid()

® Called by parent process

®m Waits for a child process to finish executing

® Not a sleep() function

® Provides some ordering to multi-process execution

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.48

January 9, 2019

Slides by Wes J. Lloyd

1/8/2019

L2.24

TCSS 422 A — Winter 2019
School of Engineering and Technology

FORK WITH WAIT

printf(
int rc
if (rc
fpr
exi
} else
pri
} else
‘ int
pri
rc,

}

return

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]) {

"hello world (pid:%d)\n", (int) getpid());
fork();

< 0) { // fork failed; exit

intf (stderr, "fork failed\n");
t(1);

if (rc == 0) { // child (new proc

ntf("hello, I am child (pid:%d)\n", (int) getpid());
{ // parent goes dc

wc = wait (NULL) ;

ntf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
wc, (int) getpid()):;

own this path (main)

0;

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

® Deterministi

FORK WITH WAIT - 2

c ordering of execution

prompt> ./p2
hello world
hello, I am
hello, I am
prompt>

(pid:29266)
child (pid:29267)
parent of 29267 (wc:29267) (pid:29266)

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.50

Slides by Wes J. Lloyd

1/8/2019

L2.25

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

FORK EXAMPLE

® Linux example

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.51

exec()

® Supports running an external program
m 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments... (arg0, argil, .. argn)

® Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

TCSS422: Operating Systems [Winter 2019]

LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma

L2.52

Slides by Wes J. Lloyd L2.26

TCSS 422 A — Winter 2019

School of Engineering and Technology

EXEC() - 2

= Common use case:

= Write a new program which wraps a legacy one

® Provide a new interface to an old system: Web services
m | egacy program thought of as a “black box”

® We don’t want to know what is inside...

Input Black Box

{nternal behavior of the code is unkrawn

Dutput

TCSS422: Operating Systems [Winter 2019]

danuaryio204s School of Engineering and Technology, University of Washington - Tacoma

L2.53

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf ("hello world (pid:%d)\n", (int) getpid());

int rc = fork():;

if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid()):
‘ char *myargs[3];
myargs[0] = strdup ("wc"); // progre

myargs[1] strdup ("p3.c"); /]
myargs[2] NULL; //

TCSS422: Operating Systems [Winter 2019]

LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma

L2.54

Slides by Wes J. Lloyd

1/8/2019

L2.27

TCSS 422 A — Winter 2019
School of Engineering and Technology

EXEC EXAMPLE - 2

} else {

}

return 0;

‘ execvp (myargs[0], myargs); // runs word count
printf ("this shouldn’t print out");

// parent goes down this path

int wec = wait (NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

(main)

prompt>

./p3

hello world

(pid:29383)

hello, I am child (pid:29384)

prompt>

29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.55

EXEC WITH FILE REDIRECTION (OUTPUT)

#include
#include
#include
#include
#include
#include

int
main (int

=

<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<fcntl.h>
<sys/wait.h>

argc, char *argv[]){

int rc = fork();
it (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;
} else if (rc == 0) { // child: redirect standard output to

close (STDOUT FILENO) ;
open ("./p4.output”, O CREAT|O WRONLY|O TRUNC, S IRWXU);

a file

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.56

Slides by Wes J. Lloyd

1/8/2019

L2.28

TCSS 422 A — Winter 2019

School of Engineering and Technology

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner
S_IRWXG

read, write, execute/search by group
S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH

read permission, others

S_IWOTH

write permission, others

January 9, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L2.57

}

21se { //

" "

// now exec "wc

char *myargs[3];

myargs[0] = strdup("wc"); // program:
myargs[1l] = strdup("p4.c"); // argument:
myargs([2] = NULL;

execvp (myargs[0], myargs);

int wc = wait (NULL) ;

return 0;

prompt> ./p4
prompt> cat p4.output
32 109 846 p4d.c

prompt>

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

January 9, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L2.58

Slides by Wes J. Lloyd

1/8/2019

L2.29

TCSS 422 A — Winter 2019
School of Engineering and Technology

Which Process API call is used to launch a

different program from the current program?

Fork() Exec() Wait() Noneof Allof
the the
above above

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

“u

QUESTION: PROCESS API

® Which Process API call is used to launch a different
program from the current program?

® (a) Fork()

= (b) Exec()

= (¢) Wait()

E (d) None of the above
m (e) All of the above

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.60

Slides by Wes J. Lloyd

1/8/2019

L2.30

TCSS 422 A — Winter 2019

School of Engineering and

Technology

January 9, 2019

CH. 6:
LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington -

® How does the CPU support

VIRTUALIZING THE CPU

simultaneously?

® Tradeoffs:

= Control
= Fairness
= Security

Ly o
5527 mwcanypt 20 0 ‘soae 78 20w
st it 3 0 e
S %o 0 G 3

i oot 30 0 16am 7 o
= Performance G e 3 b oo e e
e B0 o
[ER A
i et B b o i e
. ey et B b e e
e B b e e
= Excessive overhead SR B0 e
Vs St B8 i 1a

HE i S

i

00 et 3§ e 2 1

WEan B0 B man

ah e B0 B

S bt B0 o i

Top bt B0 Bn 3 i

e

f

el o 6 o g

[

a8 e i

= Both HW and OS support = :

is used

= Time Sharing

ICpu(s): 7.6%s,” 0.58sy, i, 91.
Nen: ™ 74237736k total, 73498280k Used,

H
FEFYTIEEEEE

Jtop - 18:25:07 up 430 days, 1:03, 3 wsers,
[Tosks: 654 total, 1 ruming, 653 sleeping, 0 stopped,

0. 030 id,’ 0.0%a, 0.0, 0.73si,
7isask free, SEAT3IEK buffers
‘Swap: 21835772k total, 72252k used, 21763520k fre

6.3
5.2
1.2
86
07
07
07
07
07
07
0.7
07
07
07
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
0o
oo
o0
0o
00
00
0o
0o
00
00
00
00

running so many jobs

1030 average: 0.32, 0.28, 0.23
Zombie
0.0t
55283536k cached

January 9, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L2.62

Slides by Wes J. Lloyd

1/8/2019

L2.31

TCSS 422 A — Winter 2019
School of Engineering and Technology

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

® What if programs could directly control the CPU / system?

oS Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /

argv
5. Clear registers 7. Run main ()
6. Execute call main () 8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.63

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

® What if programs could directly control the CPU / system?

(0 Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn’t be in control of anything
and would

5. Clear registers 7. Run main ()
6. Execute call main () 8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.64

Slides by Wes J. Lloyd

1/8/2019

L2.32

TCSS 422 A — Winter 2019
School of Engineering and Technology

DIRECT EXECUTION - 2

® With direct execution:

How does the OS stop a program from running, and switch

to another to support time sharing?

How do programs share disks and perform 1/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures

such as linked lists grow over time?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
v School of Engineering and Technology, University of Washington - Tacoma

L2.65

Slides by Wes J.

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

= Too much control:
* Too much OS overhead
= Poor performance for compute & I/0
= Complex APIs (system calls), difficult to use

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.66

Lloyd

1/8/2019

L2.33

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching
I

Multitasking

._I.I__I

Vs, Multltasklng with context switching

Sequential

TCSS422: Operating Systems [Winter 2019]

danuaryio204s School of Engineering and Technology, University of Washington - Tacoma

L2.67

LIMITED DIRECT EXECUTION

® OS implements LDE to support time/resource sharing

® Limited direct execution means “only limited” processes

can execute DIRECTLY on the CPU in trusted mode

B TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
® CPU supported context switch

®E Provides data isolation

TCSS422: Operating Systems [Winter 2019]

LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma

L2.68

Lloyd

1/8/2019

L2.34

TCSS 422 A — Winter 2019
School of Engineering and Technology

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access € DNO access

= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
OS kernel is running performing restricted operations

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.69

January 9, 2019

CPU MODES

= User mode: ring 3 - untrusted
= Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions
= 0S memory access
=|/0 device access

= Kernel mode: ring O - trusted
= All instructions and registers enabled

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.70

January 9, 2019

Slides by Wes J. Lloyd

1/8/2019

L2.35

TCSS 422 A — Winter 2019

1/8/2019
School of Engineering and Technology

SYSTEM CALLS

® Implement restricted “OS” operations
®m Kernel exposes key functions through an API:
= Device I/0 (e.g. file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

TCSS422: Operating Systems [Winter 2019]
fanuavp0ts School of Engineering and Technology, University of Washington - Tacoma L2

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS
Mainline Code & Interrupt Service Routine
loon() { termupt L 18m¢) ¢
® Trap: any transfer to kernel mode instruction 1 imsution 1
Tnstruction 3 instruction 3
instruction 4 1
® Three kinds of traps | insirucion

= System call: (planned) user 2> kernel
SYSCALL for 1/0, etc.

= Exception: (error) user - kernel
Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCSS422: Operating Systems [Winter 2019]
LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma L2.72

Slides by Wes J. Lloyd L2.36

TCSS 422 A — Winter 2019
School of Engineering and Technology

EXCEPTION TYPES

School of Engineering and Technology, University of Washington - Tacoma

S Synchronous vs. Userrequestvs. User maskable vs. Within vs. between e —
T asynchronous coerced nonmaskable Instructions .
/0 device request Asynchronous Coerced Nonmaskable Between Resume
Invoke operating system Synchronous User request Nonmaskable Between Resume
Tracing instruction execution Synchronous User request User maskable Between Resume
Breakpoint Synchronous User request User maskable Between Resume
Integer arithmetic overflow Synchronous Coerced User maskable Within Resume
s Aot matic oxerlon] Synchronous Coerced User maskable Within Resume
or underflow
Page fault Synchronous Coerced Nonmaskable Within Resume
Misallgned memory accesses Synchronous Coerced User maskable Within Resume
Memory protection violation Synchronous Coerced Nonmaskable Within Resume
Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate
Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate
Asynchronous Coerced Nonmaskable Within Terminate
TCSS422: Operating Systems [Winter 2019]
n 201 5 % 5 a . L2.73
danuaryio204s School of Engineering and Technology, University of Washington - Tacoma
0S @ boot Hardware
(kernel mode)
‘ initialize trap table
remember address of ...
syscall handler
05 @ run Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from -trap
restore regs from kernel stack
move to user mode
jump to main ¥
I Run main()
Call system
trap into OS
save regs to kernel stack
move to kernel mode
jump to trap handler
Handle trap
‘ Do work of syscall
return-from-trap
restore regs from kernel stack
- move to user mode
jump to PC after trap
‘ return from main
trap (via exit())
‘ Free memory of process
Remove from process list
January 9, 2019 TCSS422: Operating Systems [Winter 2019] e

Slides by Wes J. Lloyd

1/8/2019

L2.37

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

0S @ boot Hardware

(kernel mode)
- initialize trap table
remember address of ...
syscall handler
0OS @ run Hardware Program

(kernel mode) (user mode)

Create entry for process list

Allocate memory for program

Load program into memory
Setup user stack with argv

OS with Limited Direct Execution

move to kernel mode
jump to trap handler

Handle trap
‘ Do work of syscall
return-from-trap
restore regs from kernel stack

move to user mode
‘ return from main
trap (via exit ()

jump to PC after trap
Free memory of process
TCSS422: Operating Systems [Winter 2019]

Remove from process list

January 9, 2019

Computer BOOT Sequenc

School of Engineering and Technology, University of Washington - Tacoma

L2.75

MULTITASKING

® How/when should the OS regain control of the CPU to

switch between processes?

®m Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX

= Opportunistic: running programs must give up control

= User programs must call a special yield system call
= When performing 1/0
= lllegal operations

= (POLLEV)

What problems could you for see with this approach?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L2.76

Lioyd

1/8/2019

L2.38

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MULTITASKING

® How/when should the OS regain control of the CPU to
switch between processes?

lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L7

January 9, 2019

What problems exist for regaining the control

W of the CPU with cooperative multitasking
OSes?

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

Lloyd

1/8/2019

L2.39

TCSS 422 A — Winter 2019

School of Engineering and Technology

QUESTION: MULTITASKING

= What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.79

MULTITASKING - 2

® Preemptive multitasking (32 & 64 bit 0Ses)
®>= Mac 0SX, Windows 95+

" Timer interrupt
= Raised at some regular interval (in ms)
= [nterrupt handling
Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.80

Slides by Wes J. Lloyd

1/8/2019

L2.40

TCSS 422 A — Winter 2019
School of Engineering and Technology

MULTITASKING - 2

® Preemptive multitasking (32 & 64 bit OSes)
® >= Mac OSX, Windows 95+

gives OS the ability to
run again on a CPU.

Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
v School of Engineering and Technology, University of Washington - Tacoma

L2.81

Slides by Wes J.

For an OS that uses a system timer to force
arbitrary context switches to share the CPU,

what is a good value (in seconds) for the timer

interrupt?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
.. y 9 Start the PresgEpISH| e FE RiFRE RS Ael TR EHFOIO FlUHR ARSI B NIV ASPRHESAT FABoma

L2.8!.

Lloyd

1/8/2019

L2.41

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

QUESTION: TIME SLICE

= For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TCSS422: Operating Systems [Winter 2019] 12.83
School of Engineering and Technology, University of Washington - Tacoma :

January 9, 2019

CONTEXT SWITCH

® Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

TCSS422: Operating Systems [Winter 2019] 12.84
School of Engineering and Technology, University of Washington - Tacoma :

January 9, 2019

Slides by Wes J. Lloyd L2.42

TCSS 422 A — Winter 2019
School of Engineering and Technology

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel

2. Restore soon-to-be-executing process from its kernel

3.

stack

= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

stack

Switch to the kernel stack for the soon-to-be-executing

process

TCSS422: Operating Systems [Winter 2019]

Slides by Wes J.

danuaryio204s School of Engineering and Technology, University of Washington - Tacoma L2.85
0S @ boot
Hard
(kernel mode) Agare
‘ initialize trap table
remember address of ...
syscall handler
timer handler
‘ start interrupt timer
‘ start timer
interrupt CPU in X ms
0S @ run Program
(kernel mode) Hardware (user mode)
Process A
timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap
Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mede
jump to B's PC
‘ Process B
January 9, 2019 TCSS422: Operating Systems [Winter 2019] 268

School of Engineering and Technology, University of Washington - Tacoma

Lloyd

1/8/2019

L2.43

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

0S @ boot
(kernel mode)

‘ initialize trap table
remember address of ...
‘ syscall handler
timer handler
‘ start interrupt timer

‘ start timer
interrupt CPU in X ms

Hardware

il Hardware il

Context Switch

Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(B)

move to user mode
jump to B's PC

‘ Process B

TCSS422: Operating Systems [Winter 2019]

BT € 2K School of Engineering and Technology, University of Washington - Tacoma

L2.87

INTERRUPTED INTERRUPTS

® What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

E Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCSS422: Operating Systems [Winter 2019]

LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma

L2.88

Lioyd

1/8/2019

L2.44

TCSS 422 A — Winter 2019
School of Engineering and Technology

PREEMPTIVE KERNEL

mUse “locks” as markers of regions of non-
preemptibility (hon-maskable interrupt)

= Preemption counter (preempt_count)
= pbegins at zero
= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= the interrupt is more important

= Interrupt can be interrupted when preempt_count=0
= |t is safe to preempt (maskable interrupt)

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.89

QUESTIONS

Slides by Wes J. Lloyd

1/8/2019

L2.45

