
TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.1Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

INTRODUCTION

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 What is the concept of abstraction, with respect to
operating systems?

 CPU

Memory

 I/O (disk, network)

 What is the difference between memory virtualization in
an operating system and “virtual memory” also known as
“swap memory”?

 What is an operating system kernel?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

FEEDBACK 1/7

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.2Slides by Wes J. Lloyd

 Kernel is the central component of most computer
operating systems

 The OS kernel provides a bridge to manage the
communication between user applications and the
hardware (CPU, memory, I/O devices)

 When a user process makes a request of the kernel, the
request is called a “system call”.

 Various kernel designs differ in how they manage calls
and resources

 Kernel location in Linux

 /boot

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

OPERATING SYSTEM KERNEL

October 17, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L7.4

FEEDBACK - 3: PROCESS VS THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.3Slides by Wes J. Lloyd

 What is the difference between a thread and a process?

 Every program runs as a process

 Programs may have 0 to many threads

 For several threads within a process, what memory
elements are shared?

 For two distinct processes:
consider two instances A and B of the simpleloop.c
sample program

What memory elements are shared?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

FEEDBACK – 4

 In multi-threaded programs, how do we
synchronize access to global (shared) variables?

Chapters 26 – 32

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

FEEDBACK - 5

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.4Slides by Wes J. Lloyd

 The slides do not open. I tried to download the lexture to my
iPad and it doesn’t work.

 What are the requirements needed to do well in TCSS 422?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

FEEDBACK - 6

 Chapter 2 - Introduction to operating systems

 THREE EASY PIECES:

 Virtualizing the CPU

 Virtualizing Memory

 Virtualizing I/O

 Operating system design goals

 Chapter 4 – Processes

 Chapter 5 – Process API

 Chapter 6 – Limited Direct Execution

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

OBJECTIVES

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.5Slides by Wes J. Lloyd

INTRODUCTION TO
OPERATING SYSTEMS

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.9

 Please complete the Virtual Machine Survey to request
a “School of Engineering and Technology” remote
hosted Ubuntu VM

https://goo.gl/forms/SC8GzWAgIUfHZ0g33

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

VIRTUAL MACHINE SURVEY

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.6Slides by Wes J. Lloyd

 Chapter 2: Operating Systems – Three Easy Pieces
 Introduction to operating systems

 Management of resources

 Concepts of virtualization/abstraction

 THREE EASY PIECES:

 Virtualizing the CPU: simpleloop.c example
pthread.c example

 Virtualizing Memory: mem.c example

 Virtualizing I/O

 Operating system design goals

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.11

OBJECTIVES

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

CONCURRENCY

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.7Slides by Wes J. Lloyd

 Linux: 654 tasks

 Windows: 37 processes

 The OS appears to run many programs at once, juggling
them

 Modern multi-threaded programs feature concurrent
threads and processes

 What is a key difference between a process and a thread?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

CONCURRENCY

thread.c

Listing continues …

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

CONCURRENCY - 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "common.h"
4
5 volatile int counter = 0;
6 int loops;
7
8 void *worker(void *arg) {
9 int i;
10 for (i = 0; i < loops; i++) {
11 counter++;
12 }
13 return NULL;
14 }
15 ...

Not the same as Java volatile:
Provides a compiler hint than an object may change value
unexpectedly (in this case by a separate thread) so aggressive
optimization must be avoided.

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.8Slides by Wes J. Lloyd

 Program creates two threads

 Check documentation: “man pthread_create”

 worker() method counts from 0 to argv[1] (loop)

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

CONCURRENCY - 3

16 int
17 main(int argc, char *argv[])
18 {
19 if (argc != 2) {
20 fprintf(stderr, "usage: threads <value>\n");
21 exit(1);
22 }
23 loops = atoi(argv[1]);
24 pthread_t p1, p2;
25 printf("Initial value : %d\n", counter);
26
27 Pthread_create(&p1, NULL, worker, NULL);
28 Pthread_create(&p2, NULL, worker, NULL);
29 Pthread_join(p1, NULL);
30 Pthread_join(p2, NULL);
31 printf("Final value : %d\n", counter);
32 return 0;
33 }

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.16

Linux
“man”
page

example

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.9Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

CONCURRENCY - 4

 Command l ine parameter argv[1] provides loop length

 Defines number of times the shared counter is incremented

 Loops: 1000

 Loops 100000

prompt> gcc -o thread thread.c -Wall -pthread
prompt> ./thread 1000
Initial value : 0
Final value : 2000

prompt> ./thread 100000
Initial value : 0
Final value : 143012 // huh??
prompt> ./thread 100000
Initial value : 0
Final value : 137298 // what the??

 When loop value is large why do we not achieve 200000 ?

 C code is translated to (3) assembly code operations

1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

 These instructions happen concurrently and VERY FAST

 (P1 || P2) write incremented register values back to memory,
While (P1 || P2) read same memory

 Memory access here is unsynchronized (non-atomic)

 Some of the increments are lost

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

CONCURRENCY - 5

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.10Slides by Wes J. Lloyd

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.19

 To per form parallel work, a single process may:

 A. Launch multiple threads to execute code in parallel while
sharing global data in memory

 B. Launch multiple processes to execute code in parallel
without sharing global data in memory

 C. Both A and B

 D. None of the above

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

PARALLEL PROGRAMMING

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.11Slides by Wes J. Lloyd

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

 Stores data while power is present

When power is lost, data is lost (volatile)

 Operating System helps “persist” data more permanently

 I/O device(s): hard disk drive (HDD), solid state drive (SSD)

 File system(s): “catalog” data for storage and retrieval

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

VIRTUALIZING I/O: PERSISTENCE

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() require page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

VIRTUALIZING I/O: PERSISTENCE - 2

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <assert.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6
7 int
8 main(int argc, char *argv[])
9 {
10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);
11 assert(fd > -1);
12 int rc = write(fd, "hello world\n", 13);
13 assert(rc == 13);
14 close(fd);
15 return 0;
16 }

January 9, 2019

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.12Slides by Wes J. Lloyd

 To write to disk, OS must:

 Determine where on disk data should reside

 Perform sys calls to perform I/O:
 Read/write to file system (inode record)

 Read/write data to file

 Provide fault tolerance for system crashes

 Journaling: Record disk operations in a journal for replay

 Copy-on-write - replicating shared data - see ZFS

 Carefully order writes on disk

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

VIRTUALIZING I/O: PERSISTENCE - 3

 ABSTRACTING THE HARDWARE
 Makes programming code easier to write
 Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE
 Minimize overhead from OS abstraction

(Virtualization of CPU, RAM, I/O)
 Share resources fairly
 Attempt to tradeoff performance vs. fairness  consider

priority

 PROVIDE ISOLATION
 User programs can’t interfere with each other’s virtual

machines, the underlying OS, or the sharing of resources

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

SUMMARY:
OPERATING SYSTEM DESIGN GOALS

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.13Slides by Wes J. Lloyd

 RELIABILITY

 OS must not crash, 24/7 Up-time

 Poor user programs must not bring down the system:

Blue Screen

 Other Issues:
 Energy-efficiency

 Security (of data)

 Cloud: Virtual Machines

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

SUMMARY:
OPERATING SYSTEM DESIGN GOALS - 2

CHAPTER 4:
PROCESSES

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.26

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.14Slides by Wes J. Lloyd

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 How do we SWAP processes in and out of the CPU
efficiently?

 Goal is to minimize overhead of the swap

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

CPU VIRTUALIZING

 Process comprises of:

Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

PROCESS

A process is a running program.

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.15Slides by Wes J. Lloyd

 Modern OSes provide a Process API for process suppor t

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

PROCESS API: CREATE

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.16Slides by Wes J. Lloyd

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup
 Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

PROCESS API: CREATE

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.32

code
static data

heap

stack
Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.17Slides by Wes J. Lloyd

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

PROCESS STATES

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.18Slides by Wes J. Lloyd

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.19Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

 struct task_struct, equivalent to struct proc
 Provides process description

 Large: 10,000+ bytes

 /usr/src/linux-headers-{kernel version}/include/linux/sched.h
 1227 – 1587

 struct thread_info, provides “context”
 thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

LINUX: STRUCTURES

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.20Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
http://www.makelinux.net/books/lkd2/ch03lev1sec1
2nd edition is online (dated from 2005):
Linux Kernel Development, 2nd edition
Robert Love
Sams Publishing

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

LINUX STRUCTURES - 2

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.21Slides by Wes J. Lloyd

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.41

 When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

QUESTION: WHEN TO CONTEXT SWITCH

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.22Slides by Wes J. Lloyd

CHAPTER 5:
C PROCESS API

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.43

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of

 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.44

fork()

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.23Slides by Wes J. Lloyd

 p1.c

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.24Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.47

:(){ :|: & };:

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

wait()

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.25Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}

 Deterministic ordering of execution

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.50

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.26Slides by Wes J. Lloyd

 Linux example

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

FORK EXAMPLE

 Supports running an external program

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments… (arg0, arg1, . . argn)

 Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

exec()

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.27Slides by Wes J. Lloyd

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

EXEC() - 2

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.28Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.55

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.56

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.29Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.30Slides by Wes J. Lloyd

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.59

 Which Process API call is used to launch a different
program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

QUESTION: PROCESS API

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.31Slides by Wes J. Lloyd

CH. 6:
LIMITED DIRECT

EXECUTION

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.61

 How does the CPU support running so many jobs
simultaneously?

 Time Sharing

 Tradeoffs:

 Performance
 Excessive overhead

 Control
 Fairness

 Security

 Both HW and OS support
is used

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

VIRTUALIZING THE CPU

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.32Slides by Wes J. Lloyd

 What if programs could directly control the CPU / system?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.63

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 What if programs could directly control the CPU / system?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.64

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.33Slides by Wes J. Lloyd

 With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/O if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.65

DIRECT EXECUTION - 2

 Too little control:
 No security

 No time sharing

 Too much control:
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.66

CONTROL TRADEOFF

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.34Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.67

CONTEXT SWITCHING OVERHEAD

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.68

LIMITED DIRECT EXECUTION

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.35Slides by Wes J. Lloyd

 Utilize CPU Privilege Rings (Intel x86)
 rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:
Application is running, but w/o direct I/O access

 Kernel mode:
OS kernel is running performing restricted operations

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.69

CPU MODES

access no access

 User mode: ring 3 - untrusted

 Some instructions and registers are disabled by the CPU

 Exception registers

 HALT instruction

MMU instructions

 OS memory access

 I/O device access

 Kernel mode: ring 0 – trusted

 All instructions and registers enabled

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.70

CPU MODES

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.36Slides by Wes J. Lloyd

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation: malloc()

 Creating/destroying processes

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.71

SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned) user  kernel
 SYSCALL for I/O, etc.

 Exception: (error) user  kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user  kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.72

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.37Slides by Wes J. Lloyd

Exception type
Synchronous vs.
asynchronous

User request vs.
coerced

User maskable vs.
nonmaskable

Within vs. between
instructions

Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow
or underflow

Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.73

EXCEPTION TYPES

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.74

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.38Slides by Wes J. Lloyd

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.75

Computer BOOT Sequence:
OS with Limited Direct Execution

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.76

MULTITASKING

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.39Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.77

MULTITASKING

A process gets stuck in an infinite loop.
 Reboot the machine

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.78

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.40Slides by Wes J. Lloyd

What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.79

QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.80

MULTITASKING - 2

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.41Slides by Wes J. Lloyd

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.81

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.82

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.42Slides by Wes J. Lloyd

 For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.83

QUESTION: TIME SLICE

 Preemptive multitasking init iates “trap”
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.84

CONTEXT SWITCH

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.43Slides by Wes J. Lloyd

1. Save register values of the current process to its kernel
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.85

CONTEXT SWITCH - 2

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.86

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.44Slides by Wes J. Lloyd

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.87

Context Switch

 What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.88

INTERRUPTED INTERRUPTS

TCSS 422 A – Winter 2019
School of Engineering and Technology

1/8/2019

L2.45Slides by Wes J. Lloyd

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt)

 the interrupt is more important

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.89

PREEMPTIVE KERNEL

QUESTIONS

