TCSS 422 A — Winter 2019
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

INTRODUCTION

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

RanuayB 2019 School of Engineering and Technology, University of Washington [fll Tacoma

FEEDBACK 1/7

= What is the concept of abstraction, with respect to
operating systems?
=CPU
= Memory
=1/0 (disk, network)

= What is the difference between memory virtualization in
an operating system and “virtual memory” also known as
“swap memory”?

= What is an operating system kernel?

TCSS422: Operating Systems [Winter 2019]
L) e T T T o ey A S T = TPy

[EF] |

OPERATING SYSTEM KERNEL

= Kernel is the central component of most computer
operating systems

= The OS kernel provides a bridge to manage the
communication between user applications and the
hardware (CPU, memory, I/0 devices)

= When a user process makes a request of the kernel, the
request is called a “system call”.

= Various kernel designs differ in how they manage calls
and resources

= Kernel location in Linux
= /boot

January 8, 2019 TcssAlzz; Operating Systems [Winter 2019]

School of Technology, ity i - Tacoma | 22 ‘

FEEDBACK - 3: PROCESS VS THREADS

Process Multithreaded Process
Process State: PC, Process State: PC, Thread
registers, SP, registers, SP, e

Cot S

Single
Threaded
Process g —_
L 4 ' S -

: Li ¢ 0 9
I (I

©Alfred Park, http://randu.org/tutorials/threads

Multiple

iy SHAED Threaded

4 ~ || Process

@

ata S

i

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University i Tacoma

‘ October 17, 2018

FEEDBACK - 4

= What is the difference between a thread and a process?
= Every program runs as a process
= Programs may have O to many threads

= For several threads within a process, what memory
elements are shared?

= For two distinct processes:
consider two instances A and B of the simpleloop.c
sample program

What memory elements are shared?

TCS5422: Operating Systems [Winter 2019]
HTEEh) SeFoo[of Enginearing andiechnolosyiUnVe sty S = TR 125

Slides by Wes J. Lloyd

FEEDBACK - 5

= In multi-threaded programs, how do we
synchronize access to global (shared) variables?
=Chapters 26 - 32

TCSS422: Operating Systems [Winter 2019]
L) Sehoollof Ergineerng andTechnolosyjUniversity ofWashinaton S Tecoma

[E13 |

1/8/2019

L2.1

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

FEEDBACK - 6 OBJECTIVES
= The slides do not open. | tried to download the lexture to my = Chapter 2 - Introduction to operating systems
iPad and it doesn’t work. = THREE EASY PIECES:
Virtualizing the CPU
= What are the requirements needed to do well in TCSS 422? Virtualizing Memory

Virtualizing /0
= Operating system design goals
= Chapter 4 - Processes

= Chapter 5 - Process API
= Chapter 6 - Limited Direct Execution

January 8, 2019 TcssAlzz; Operating Systems [Winter 2019]

TCS$422: Operating Systems [Winter 2019
i e ity . R | 2.7 ‘ January 9, 2019 Pt 8

School of Technology, University i - Tacoma

VIRTUAL MACHINE SURVEY

= Please complete the Virtual Machine Survey to request
a “School of Engineering and Technology” remote
hosted Ubuntu VM

INTRODUCTION TO =https://g00.gl/forms/SC8GzWAgIUfHZ0g33

OPERATING SYSTEMS

TCSS422: Operating Systems [Winter 2019]

TR 2T School of Engineering and Technology, University of Washington -

January 9, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University of Washington - Tacoma

.10 |

OBJECTIVES

(S|

= Chapter 2: Operating Systems - Three Easy Pleces
= Introduction to operating systems

= Management of resources
= Concepts of virtualization/abstraction

= THREE EASY PIECES:
Virtualizing the CPU: simpleloop.c example
pthread.c example
Virtualizing Memory: mem.c example
Virtualizing 1/0

= Operating system design goals

TCS5422: Operating Systems [Winter 2019] TCSS422: Operating Systems [Winter 2019]
HTEEh) Sehoo[efEnginest ; L) Sehoollof Ergineerng andTechnolosyjUniversity ofWashinaton S Tecoma

hnology, ity ington - Tacoma L2.12

| [EXT

Slides by Wes J. Lloyd L2.2

TCSS 422 A — Winter 2019
School of Engineering and Technology

CONCURRENCY

® Linux: 654 tasks
= Windows: 37 processes

= The OS appears to run many programs at once, juggling
them

= Modern multi-threaded programs feature concurrent
threads and processes

= What is a key difference between a process and a thread?

TCS5422: Operating Systems [Winter 2019]

HEEh) e o T B o e s oy Uy A T = Ty

| 13

CONCURRENCY - 2

#include <stdio.h>
#include <stdlib.h>
#include "common.h"

thread.c

Listing continues ...

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.14

January 9, 2019

CONCURRENCY - 3

16 int

17 main (int arge, char *argv(l])

18 (

19 (arge 1= 2)

20 fprintf (stderr, "usage: threads <value>\n");
(1)

22)

23 loops = atoi (argv(l]);

24 pthread_t pl, p2;

25 printf("Initial value : %d\n", counter);

, worker, N
, worker, N

27 Pthread_create(spl, N

)i
)i

)i

31 printf ("Final value : %d\n", counter);
32 0;

33)

= Program creates two threads
= Check documentation: “man pthread_create”
= worker() method counts from O to argv[1] (loop)

January 8, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity ington - Tacoma

| 15

PTHREAD_CREATE(3) Linux Programmer’s Wanual PTHREAD_CREATE(3)
NAME

pthread_create - create a new thread

SYNOPSIS 1op
#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *ater,
Void *(¥start_routine) (void *), void *arg):

Linux
“man”
page = -

The pthread_create() function starts a new thread in the calling
process. The new thread starts execution by invoking
Start_routine(); arg is passed as the sole arguent of
Start_routine()

Conpile and link with -pthread.

example The new thread tarminates in ane of the following ways
0 AT, G ASECTSs wpecifyiog; +xik aftim i 1
available to another thread in the same process that calls
pthread_join(3)

* It returns fron start_routine(). This is equivalent to calling
pthread_exit(3) with the value supplied in the return statement

¥ It is canceled (see pthread_cancel(3))

* Any of the threads in the process calls exit(3), or the main thread
perforns a return fron main(). This causes the termination of all
threads in the process.

The attr argunent points to a pthread attr_t structure whose contents
are used at thread creation tine to determine attributes for the new
thread; this structure is initialized using pthread_attr_init(3) and
related functions. If attr is NULL, then the thread is created with
default attributes

TCSS422: Operating Systems [Winter 2019]

T LD School of Engineering and Technology, University of Washington - Tacoma L2.16

CONCURRENCY - 4

= Command line parameter argv[1] provides loop length
= Defines number of times the shared counter is incremented

= Loops: 1000

prompt> gee -o thread thread.c -Wall -pthread
prompt> ./thread 1000

Initial value : 0

Final value : 2000

= Loops 100000

prompt> ./thread 100000
Initial value : 0
Final value : 143012 // hu
prompt> ./thread 100000
Initial value : 0
Final value : 137298 //

January 8, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, University ington - Tacoma

| 217

Slides by Wes J. Lloyd

CONCURRENCY -5

= When loop value is large why do we not achieve 200000 ?

= C code is translated to (3) assembly code operations
1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

= These instructions happen concurrently and VERY FAST

= (P1 || P2) write incremented register values back to memory,
While (P1 | | P2) read same memory

= Memory access here is unsynchronlzed (non-atomic)
= Some of the increments are lost

TCSS422: Operating Systems [Winter 2019]

L) Sehoollof Ergineerng andTechnolosyjUniversity ofWashinaton S Tecoma

1218

1/8/2019

L2.3

TCSS 422 A — Winter 2019

1/8/2019
School of Engineering and Technology

| | |
YA To perform parallel work, a single process may:

PARALLEL PROGRAMMING

= To perform parallel work, a single process may:

= A. Launch multiple threads to execute code in parallel while
sharing global data in memory

= B. Launch multiple processes to execute code in parallel
Laur?ch Launch Eteifh Azl Wemeaiitie without sharing global data in memory
multiple multiple above
threads to processes to
execute code execute code = C. Both A and B
in parallel in parallel
while sharing without sharing = D. None of the above
global datain global datain
memory memory
- . mirys, 2019 | 1SS Spet e e 20ty ot s - T

VIRTUALIZING 1/0: PERSISTENCE VIRTUALIZING 1/0: PERSISTENCE - 2

= DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

1 #include
2 #include
. . 3 £ luds
= Stores data while power is present i finclude <foncl.ne
. . . 5 #include <sys/types.h>
= When power is lost, data is lost (volatile) ¢
¢ .
8 main(int argec, char *argv[])
9 {
= Operating System helps “persist” data more permanently 0 S e
=1/0 device(s): hard disk drive (HDD), solid state drive (SSD) 5 et T irekia, "hello worldwar, 13)5
A f 13 (rc == 13);
= File system(s): “catalog” data for storage and retrieval 1 leseifars
15 0;

16 }

= open(), write(), close(): OS system calls for device I/0

= Note: man page for open(), write() require page number:
“man 2 open”, ”“man 2 write”, “man close”

TCSS422: Operating Systems [Winter 2019] TCSS422: Operating Systems [Winter 2019]
HTEEh) e oolol Enpinearns rdlechnolo syl e sty iNes hineronikTacoma 1221 HETERYEh D)

School of Engineering and Technology, University of Washington - Tacoma L2.22

VIRTUALIZING 1/0: PERSISTENCE - 3 SUMMARY:

OPERATING SYSTEM DESIGN GOALS
= To write to disk, 0S must: = ABSTRACTING THE HARDWARE
= Determine where on disk data should reside = Makes programming code easier to write
= Automate sharing resources - save programmer burden
= Perform sys calls to perform 1/0:
Read/write to file system (inode record)

= PROVIDE HIGH PERFORMANCE
Read/write data to file

= Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, 1/0)

= Provide fault tolerance for system crashes * Share resources fairly
= Journaling: Record disk operations in a journal for replay - '::It:r’:‘tgt to tradeoff performance vs. fairness > consider
= Copy-on-write - replicating shared data - see ZFS
= Carefully order writes on disk = PROVIDE ISOLATION

= User programs can'’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

TCSS422: Operating Systems [Winter 2019]
HTEEh) e oo[of Enginearing andiechnolosyiUnversity/chiWeshington i Tacoma 1223

TCSS422: Operating Systems [Winter 2019]
L) Sehoollof Ergineerng andTechnolosyjUniversity ofWashinaton S Tecoma

24

Slides by Wes J. Lloyd L2.4

TCSS 422 A — Winter 2019
School of Engineering and Technology

SUMMARY:

= RELIABILITY
= 0S must not crash, 24/7 Up-time

Blue Screen

= Other Issues:
= Energy-efficiency
= Security (of data)
= Cloud: Virtual Machines

OPERATING SYSTEM DESIGN GOALS - 2

= Poor user programs must not bring down the system:

January 9, 2019

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University i - Tacoma

| 25

Process State

Gy smmies o @on

T scheauer aispatch |
vo)

or
event completion™

@} eventwait

E /proc

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

January 9, 2019

CPU VIRTUALIZING

= How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

= How do we SWAP processes in and out of the CPU
efficiently?
= Goal is to minimize overhead of the swap

January 8, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity i Tacoma

| w27

PROCESS

running program

= Process comprises of:
= Memory
Instructions (“the code”)
Data (heap)

= Registers
PC: Program counter
Stack pointer

January 9, 2019 TBSMZ; Operating Systems [Winter 2019]

School of Technology, University of Washi Tacoma L2.28

PROCESS API

= Modern OSes provide a Process API for process support
= Create
= Create a new process
= Destroy
= Terminate a process (ctrl-c)
" Wait
= Wait for a process to complete/stop
= Miscellaneous Control

= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

January 8, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity i Tacoma

| 1229

Slides by Wes J. Lloyd

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loadIng: Load entire program before running

= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation
= Stack: local variables, function params, return address(es)

January 9, 2019 TBSMZ; Operating Systems [Winter 2019]

School of Technology, University of Washi Tacoma L2.30

1/8/2019

L2.5

TCSS 422 A — Winter 2019
School of Engineering and Technology

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization
= 1/0 Setup
Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

| TCS5422: Operating Systems [Winter 2019] | 1231 ‘

HEEh) AT o T o e s oy ATt A T T

CPU Memory

code
static data
heap

Loading:
Reads program from
disk into the address

space of process

TCSS422: Operating Systems [Winter 2019]

LImLg 250 School of Engineering and Technology, University of Washington - Tacoma

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED
= Process is not ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

January 9, 2019 TCS5422: Operating Systems [Winter 2019] | 33

School of Engineering and Technology, University of Washington - Tacoma

PROCESS STATE TRANSITIONS

e /
/ \ / \
\ Descheduled \
R | Ready |
\ /" Scheduled /
/
1/0: initiate //O: done
/ g \
/)
| Blocked
\ /
AN

-~

TCS5422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019 1234 |

PROCESS DATA STRUCTURES

= 0S provides data structures to track process information

= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)
= A C-structure that contains information about each
process

TCS5422: Operating Systems [Winter 2019] | 1235 ‘

HTEEh) Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

XV6 KERNEL DATA STRUCTURES

= xv6: pedagogical implementation of Linux
= Simplified structures

: rs xv6 will save and re
-t context {
int eip; Index pointer register

int esp; ack pointer register

int ebx; .) E

int ecx; 11led the counter

int edx; 11led the d

int esi; ource index register

int edi; Destination index register
int ebp; Stack base pointer

b
the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TCSS422: Operating Systems [Winter 2019]

L) I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma

1236 |

Slides by Wes J. Lloyd

1/8/2019

L2.6

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

XV6 KERNEL DATA STRUCTURES - 2 LINUX: STRUCTURES

= struct task struct, equivalent to struct proc

1 ! con E E = Provides process description
roc {
o *mem; \rt of process memory = Large: 10,000+ bytes
- S;?t X Lee ob ~‘L' S _memory = /usr/src/linux-headers-{kernel version}/include/linux/sched.h
r *kstack; ker sta

. - 1227 - 1587
enum proc_state state; ces Y
pid; Croemes : i “ ”
1ot proc *parent; Parent proce " struct thread info, provides “context
*chan; ~ ro, g on chan - - K
killed: § ro, h: L K = thread_info.h is at:
ict file *ofile[NOFILE]; ot
inode *cwd;
context context;
trapframe *tf;

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

TCS5422: Operating Systems [Winter 2019]

TCSS422: Operating Systems [Winter 2019]
HEEh) AT o T o e s oy ATt A T T | 1237 ‘ L)

School of Engineering and Technology, University of Washington - Tacoma

1238

struct thread_info { = List of Linux data structures:
struct task_struct *task; /* main task structure */ .
struct exec_domain *exec_domain; /* execution domain */ http://www.tldp.org/LDP/tlk/ds/ds.html
_u32 flags; /* low level flags */
“u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */ e o
= s oty /0 © O pEoRea, = Description of process c!ata structures:
<0 => BUG */ http://www.makelinux.net/books/lkd2/ch0O3leviseci
mm_segment_t addr_limit; Py 9 q .
struct restart block restart block; 2nd edition is online (dated from 2005):
void __user *sysenter_return; i nd iti
i o 8 Linux Kernel Development, 2" edition
unsigned long previous_esp; /* ESP of the previous stack in Robert Love
- case of nested (IRQ) stacks Sams Publishing
_u8 supervisor_stack[0] ;
#endif
int uaccess_err;
¥
TCSS422: Operating Systems [Winter 2019] TCSS422: Operating Systems [Winter 2019]
HTEEh) e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms | 1239 ‘ L) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma L240

When a process is in this state, it is

QUESTION: WHEN TO CONTEXT SWITCH

-w- advantageous for the Operating System to

perform a CONTEXT SWITCH to perform other

= When a process is in this state, it is advantageous for the
work

Operating System to perform a CONTEXT SWITCH to
perform other work:

= (a) RUNNING

= (b) READY

= (c) BLOCKED

= (d) All of the above

= (e) None of the above

RUNNING READY BLOCKED Allofthe None of
above theabove

TCSS422: Operating Systems [Winter 2019]

TCSS422: Operating Systems [Winter 2019]
o January 9, 2019 i School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019
u 14 L2. 4-.

[E¥5)

Slides by Wes J. Lloyd L2.7

TCSS 422 A — Winter 2019
School of Engineering and Technology

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Winter 2019]
LT 2T School of Engineering and Technology, University of Washington -

fork()

= Creates a new process - think of “a fork in the road”
= “Parent” process is the original
= Creates “child” process of the program from the current
executlon point
= Book says “pretty odd”
= Creates a dupllcate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int arge, char *argv([])({
printf("hello world (pid:%d)\n", (int) getpid());
‘ int re = fork();
if (re < 0) (fork failec
fprintf (stderr, "fork failed\n
exit(1);
} if (rc == 0) {
printf("hello, I am child (pi
(parent g

xi

process)
%d)\n", (int) getpid());
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

irn 07

TCS5422: Operating Systems [Winter 2019]
HTEEh) e oolof Enpinearns ardilechiolosiUnt

ity i Tacoma

| 1245 ‘

TCS5422: Operating Systems [Winter 2019]
(TR 2N |Schoolol ineeri Technology, University i Tacoma

[oo]

= 0 to child
TCSS422: Operating Systems [Winter 2019]
L) e T T T e T L244
= Non deterministic ordering of execution
prompt> ./pl
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>
or
prompt> ./pl
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>
= CPU scheduler determines which to run first
TCSS422: Operating Systems [Winter 2019]
L) Sehoolo Ergineerins andTechnok syjUnvest f Tecoma L246
wait()

= wait(), waitpid()
= Called by parent process

= Waits for a child process to finish executing
= Not a sleep() function

= Provides some ordering to multi-process execution

Slides by Wes J. Lloyd

TCSS422: Operating Systems [Winter 2019]
L) Sehool of Engineering and Technolosy University ot Washi Tacoma

1248

1/8/2019

L2.8

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

FORK WITH WAIT FORK WITH WAIT - 2

= Deterministic ordering of execution

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> prompt> . /p2
#include <sys/wait.h> hello world (pid:29266)

hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)

nt main(int arge, char *argv(]){
printf("hello world (pid:d)\n", (int) getpid()); prompt>
int rc = fork();

(re < 0) |
fprintf (stderr, "fork failed\n");
exit(1);

(re 0 { (
printf("hello, I am child (pid:%d)\n", (int) getpid());

{
- nt we = wait (NULL) ;
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, we, (int) getpid());

0;

TCSS422: Operating Systems [Winter 2019] TCSS422: Operating Systems [Winter 2019]
HEEh) AT o T o e s oy ATt A T T | 1249 ‘ L) A T T o U e A S T = 1250
FORK EXAMPLE exec()
® Linux example = Supports running an external program
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()
= execl(), execlp(), execle(): const char *arg
List of pointers (terminated by null pointer)
to strings provided as arguments... (arg0, argd, .. argn)
= Execv(), execvp(), execvpe()
Array of pointers to strings as arguments
Strings are null-terminated
First argument is name of file being executed
TCSS422: Operating Systems [Winter 2019] TCSS422: Operating Systems [Winter 2019]
HTEEh) e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms | 1251 ‘ L) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma 1252
= Common use case:
. . # lude <stdio.h>
= Write a new program which wraps a legacy one Finolndg <otdlib >
. . . #include <unistd.h>
= Provide a new interface to an old system: Web services finclude <string.h>
” # lude < / t.h>
= Legacy program thought of as a “black box pneinas seva/var
int main(int arge, char *argv(]){
printf("hello world (pid:%d)\n", (int) getpid());
P . nt re = fork();
= We don’t want to know what is inside... © (rc < 0) {
fprintf (stderr, "fork failed\n");
} == 0) { (
- printf("hello, I am child (pid:%d)\n", (int) getpid());
q char *myargs[3];
Output myargs[0] up ("we") ; am: "we"
myargs[1] s up ("p3.c"); :
oput N Black Box myargs (2] = NULL; 2 8
internal behavior of the code s unknown
TCSS422: Operating Systems [Winter 2019] TCSS422: Operating Systems [Winter 2019]
HTEEh) Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms | 1253 ‘ L) I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma L2

Slides by Wes J. Lloyd L2.9

TCSS 422 A — Winter 2019
School of Engineering and Technology

EXEC EXAMPLE - 2

EXEC WITH FILE REDIRECTION (OUTPUT)

‘ execvp (myargs (0], myargs);

printf("this shouldn’t print out");
i {
nt we = wait (NULL);
printf("hello, I am parent of %d (wc:d) (pid:%d)\n",
re, we, (int) getpid();

07

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
finclude <string.h>
finclude <fentl.h>
finclude <sys/wait.h>

main(int arge, char *argv(]){
c = fork();

<0 { ailed;

fprintf (stderr, "fork failed\n");

prompt> ./p3
hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

exit (1);
} (rc == 0) {
close (STDOUT_FILENO) ;
q open ("./pd.output”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

TC55422: Operating Systems [Winter 2019]

HEEh) AT o T o e s oy ATt A T T

TCSS422: Operating Systems [Winter 2019]

| 1255 ‘ ‘ L) A T T o U e A S T =

1256

FILE MODE BITS

...’. S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

har *myargs(

myargs[0] = strdup("wc");
myargs(1] = strdup("p4.c");
myargs([2] = NULL;

execvp (myargs (0], myargs);
int we = wait (NULL);

0;

prompt> ./pd

prompt> cat pd.output
32 109 846 pd.c
prompt>

TCS5422: Operating Systems [Winter 2019]

HTEEh) e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1258

| 1257 ‘ January 9, 2019

Which Process API call is used to launch a

different program from the current program?

QUESTION: PROCESS API

= Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

Fork() Exec() Wait() None of
the
above

n January 9, 2019 TCSS422: Operating Systems [Winter 2019]

- School of Engineering and Technology, University of Washington - Tacoma L2.60

Slides by Wes J. Lloyd

1/8/2019

L2.10

TCSS 422 A — Winter 2019
School of Engineering and Technology

CH. 6:

LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Winter 2019]

LT 2T School of Engineering and Technology, University of Washington -

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

= Time Sharing

= Tradeoffs:
= Performance
= Excessive overhead
= Control
= Fairness
= Security

= Both HW and OS support
is used

TCS5422: Operating Systems [Winter 2019]

January 9, 2019 e D e T —

62

COMPUTER BOOT SEQUENCE:
0OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0s Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with arge /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()
8. Execute return from main ()

9. Free memory of process
10. Remove from process list

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0os Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn’t be in control of anything
and would

7. Run main ()
8. Execute return from main ()

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

January 8, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity i Tacoma

| 1263

TCS5422: Operating Systems [Winter 2019]

January 9, 2019 Lo D e T —

264

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform /0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

=Too much control:
=Too much OS overhead
= Poor performance for compute & I/0
= Complex APlIs (system calls), difficult to use

January 8, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity i Tacoma

| 1265

TCS5422: Operating Systems [Winter 2019]
e

L) School o TechnolosyUniversity/ofWeshi Tacoma

1266

Slides by Wes J. Lloyd

1/8/2019

L2.11

TCSS 422 A — Winter 2019
School of Engineering and Technology

Context Switching Total cost of

context switching

Multitasking

vs. Multitasking with context switching

sequential

CONTEXT SWITCHING OVERHEAD

TC55422: Operating Systems [Winter 2019]

HEEh) AT o T o e s oy ATt A T T

| 1267

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

TCSS422: Operating Systems [Winter 2019]

L) A T T o U e A S T =

1268

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access _ no access
= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:

0S kernel is running performing restricted operations

TCS5422: Operating Systems [Winter 2019]

HTEEh) e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

| 1269

CPU MODES

= User mode: ring 3 - untrusted
=Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions
= 0S memory access
=1/0 device access

= Kernel mode: ring 0 - trusted
= All instructions and registers enabled

TCSS422: Operating Systems [Winter 2019]

L) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

.70

SYSTEM CALLS

" Implement restricted “OS” operations
= Kernel exposes key functions through an API:
=Device I/0 (e.g.file 1/0)

= Memory management/allocation: malloc()
= Creating/destroying processes

= Task swapping: context switching between processes

TCSS422: Operating Systems [Winter 2019]

HTEEh) Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

[an]

Slides by Wes J. Lloyd

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code N\ intemupt Service Rowtine
Intermupt

loop({
= Trap: any transfer to kernel mode

mstruction 3
= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCSS422: Operating Systems [Winter 2019]

L) I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma

[EX7)

1/8/2019

L2.12

TCSS 422 A — Winter 2019
School of Engineering and Technology

EXCEPTION TYPES

Synchronousva.
ynchronous
Coerced

Between

Asynchronous Nonmaskable Resume.

Nonmaskable Between Resume.

Synchronous

User request

Synchronous User request User maskable Between Resume.
Synchronous User request User maskable Between Resume.
Synchronous Coerced User maskable Within Resume.
Synchronous Coerced User maskable Within Resume.
Synchronous Coerced Nonmaskable Within Resume.
Synchronous Coerced User maskable Within Resume.
Synchronous Coerced Nonmaskable Within Resume.
Synchronous Coerced Nonmaskable Within Terminate
Asynchronous Coerced Nonmaskable Within Terminate.
Asynchronous Coerced Nonmaskable Within Terminate

05 @ boot Hardware

(kernel mode)
remember address of
syscall handler

Hardware Program
(kernel mode) (user mode)

-

ize trap table

Create entry for process list
- Allocate memory for program
Load program into memory
Setup user stack with argy
Fill kernel stack with reg/PC

return-from -trap.
restore regs from kernel stack

‘ move to user mode
jump to main
Run main()
' Call system

trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handler

Handle trap
- Do work of syscall
turn-from-tre
fEomne restore regs from kernel stack

move to user mode
jump to PC after trap

‘ return from main

trap (via exit ()

Free memory of process
Remove from process list

TCSS422: Operating Systems [Winter 2019]

LImLg 250 School of Engineering and Technology, University of Washington - Tacoma L2.74

TCSS422: Operating Systems [Winter 2019] 5
| January 9, 2019 | e et Technology, University . R 1273
0S @ boot Hardware
(kernel mode)
jalize trap table
remember address of
syscall handler
Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv.
Computer BOOT Sequence:
o] q g
OS with Limited Direct Execution
move to kernel mode
jump to trap handler
Handle trap
‘ Do work of syscall
rety -fr -t
o restore regs from kernel stack
B rrove o user moce
jump to PC after trap
‘ return from main
trap (via exit ()
Free memory of process
Remove from process list
"TCSS422: Operating Systems [Winter 2019]
ETTERyEHEED School of Engineering and Technology, University of Washington - Tacoma L275

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0
lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCS5422: Operating Systems [Winter 2019] 76
e 5

School of Technology, University of Washi Tacoma

January 9, 2019

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

Illegal operations

= (POLLEV)
What problems could you for see with this approach?
fnvaryg,a019 | 1SSz OperaingSysems Winr 2010 com E3

What problems exist for regaining the control

W of the CPU with cooperative multitasking
OSes?

Slides by Wes J. Lloyd

1/8/2019

L2.13

TCSS 422 A — Winter 2019 1/8/2019
School of Engineering and Technology

QUESTION: MULTITASKING MULTITASKING - 2
= What problems exist for regaining the control of = Preemptive multitasking (32 & 64 bit OSes)
the CPU with cooperative multitasking 0Ses? = >= Mac 0SX, Windows 95+

= Timer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling
Current program is halted
Program states are saved
0OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L2.80

TC55422: Operating Systems [Winter 2019] 1278
School of Engineering and Technology, University of Washington - Tacoma i

January 9, 2019 January 9, 2019

For an OS that uses a system timer to force

OB = 2 arbitrary context switches to share the CPU,

what is a good value (in seconds) for the timer
interrupt?

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

1 January 9, 2019 TCSS422: Operating Systems [Winter 2019]

January 9, 2019
u G5

TC55422: Operating Systems [Winter 2019] e
School of Engineering and Technology, University of Washington - Tacoma i

QUESTION: TIME SLICE CONTEXT SWITCH

= Preemptive multitasking initiates “trap”

= For an OS that uses a system timer to force
into the OS code to determine:

arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer : :

int 2 + Whether to continue running the current process,
interrupt: or switch to a different one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1284

January 9, 2019

TCS5422: Operating Systems [Winter 2019] 3
School of Engineering and Technology, University of Washington - Tacoma i

January 9, 2019

Slides by Wes J. Lloyd L2.14

TCSS 422 A — Winter 2019
School of Engineering and Technology

CONTEXT SWITCH - 2

stack

= General purpose registers

= PC: program counter (instruction pointer)
= kernel stack pointer

1. Save register values of the current process to its kernel

2. Restore soon-to-be-executing process from its kernel

05 @ boot
(kernel mode)

‘ initialize trap table
‘ start interrupt timer

Hardware

remember address of ...

q syscall handler

timer handler

‘ start timer
interrupt CPU in X ms

0S @ run

Program
(kernel mode) Hardware

(user mode)

B rocess A
timer interruj

save regs(A) to k-stack(A)
move to kernel mode
Jump to trap handler

Handle the trap
Call switch() routine
- save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(3)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(8)
move to user mode
jump to B's PC

- Process B

TCSS422: Operating Systems [Winter 2019]
LImLg 250 School of Engineering and Technology, University of Washington - Tacoma L2.86

ize trap table

- start interrupt timer

remember address of ...

syscall handler
timer handler
- start timer

interrupt CPU in X ms

Hardware Program

Context Switch

Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(®)
move to user mode
jump to B's PC

- Process B

January 9, 2019 TCSS422: Operating Systems [Winter 2019

School of Engineering and Technology, University of Washington - Tacoma

stack
3. Switch to the kernel stack for the soon-to-be-executing
process
January 9, 2019 . o Tacoms | w285
0S @ b
(kernel :::de) s

L2.87

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCSS422: Operating Systems [Winter 2019]
L) Sehool o Ergineerins endTechnolosyjUns

2.8

v i Tacoma

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero

= decrements when locks are released

= It is safe to preempt (maskable interrupt)
= the interrupt is more important

= increments for each lock acquired (not safe to preempt)

= nterrupt can be interrupted when preempt_count=0

TCS5422: Operating Systems [Winter 2019]
HTEEh) SeFoo[of Enginearing andiechnolosyiUnVe sty q Tacoma

| 1289 ‘

Slides by Wes J. Lloyd

QUESTIONS

1/8/2019

L2.15

