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OBJECTIVES

 Are page sizes dynamic (proportionate to total available 
memory) or f ixed?

 Page sizes are generally fixed to 4KB (4096 bytes)
 Page sizes are “hard wired” into the Memory Management 

Unit (MMU) of the CPU
 Recently x86_64 CPUs now support HUGE PAGES 
 Check “cat /proc/cpuinfo” for support:
 2MB pages: PSE flag
 1GB pages: PDPE1GB flag
 See:
 https://wiki.debian.org/Hugepages
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FEEDBACK FROM 3/11

 What is a Page Directory Entry? (PDE)

 Page directory entries are in the page directory of a 2-
level page table scheme

 Each PDE points to a Page Table

 What is a Page Table Entry? (PTE)

 Page table entries include the Physical Frame Number 
(PFN) bits and status bits to support Virtual to Physical 
address translation of vir tual memory addresses
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FEEDBACK - 2

1-level page table:

 1. 212 pages, which is 4,096 pages

 2. 12 bits for the VPN

 3. 12 offset bits

 4. Offset bits are repurposed as status bits

 5. 3 bytes for each Page Table Entry

 6. 212 x 3, which is 4,096 x 3 = 12KB = 12,288 bytes

 2-level page table:

 7. 6 Page Directory Index bits

 8. 6 Page Table Index bits

 9. 26 x 3 (PD) + 26 x 3 (PT) = 192+192 = 384 bytes

 10. 26 x 4KB = 64 x 4 KB = 256 KB
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PAGING PRACTICE - ANSWERS

 11. 384 bytes (2-level page table) / 16 MB (computer RAM)
16MB = 16MB * 1024KB * 1024bytes
384 / 16,777,216 bytes
384 / 16,000,000 bytes (rounded, less precise)
.0022 % - 2- level pg tbl as % of computer memory
16MB can map 43,690 hello world programs

 12. 12 KB / 16 MB
12 KB / 16,384 KB
.0732 % - ratio of  memory use 2-level  to 1 level

 13. 384 / 12 KB bytes
384 / 12 * 1024 bytes
384 / 12,288
3.125% memory used
Savings = 100% - 3.125% = 96.875% !!
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PAGING PRACTICE – ANSWERS - 2
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CHAPTER 20:
PAGING:

SMALLER TABLES
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Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables
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OBJECTIVES

 Add level of indirection, the “page directory”
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MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”
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MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the 
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space 
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex
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MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)
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EXAMPLE
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 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages 
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table 
entries (PTEs)  e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!
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EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page
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PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry  (PDE)

 One page table Index (PTI) – can address 16 pages
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PAGE TABLE INDEX

 For this example, how much space is  required to store as a 
single-level page table with any number of  PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is  required for a two-level page table with 
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4/16 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!
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EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB  (we’ve done this before)

 Two level:  (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables
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32-BIT EXAMPLE

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits
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MORE THAN TWO LEVELS
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 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI) 
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MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4 
entries on a 512-byte page?  (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- level) / 8,388,608 (1- level) = .0183% !!!
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MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup
//
// Inputs: 
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;
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ADDRESS TRANSLATION CODE



TCSS 422 A – Winter 2019
School of Engineering and Technology

3/13/2019

L16.5Slides by Wes J. Lloyd

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr;  // param to send back
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ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that 
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the 
pgd/p4d/pud entry and returns the 
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores 

 Which process uses each page

 Which process virtual page (from process virtual address 
space) maps to the physical page

 All processes share the same page table for memory mapping, 
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups
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INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB 
pages

 (#1) For a single level page table, how many pages are 
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte 
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are 
required for each page table entry?
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MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level 
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits 
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index 
(PTI)?
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MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry 
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the 
HelloWorld.c program using a two-level page table when we 
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page 
Table…

 HINT: how many entries are in the PD and PT
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MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a 
single page table (PT), if all of the slots of the page table (PT) 
are in use, what is the total amount of memory a two-level 
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme 
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use
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MULTI LEVEL PAGE TABLE EXAMPLE - 4
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 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD)  (64 entries x 4 bytes)
256 bytes for Page Table (PT)  TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125  3.125%
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ANSWERS

CHAPTER 21/22:
BEYOND PHYSICAL 

MEMORY
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 Disks (HDD, SSD) provide another level of storage in the 
memory hierarchy
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MEMORY HIERARCHY

 Can provide illusion of an address space larger than 
physical RAM

 For a single process

 Convenience

 Ease of use 

 For multiple processes

 Large virtual memory space for many concurrent 
processes
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MOTIVATION FOR 
EXPANDING THE ADDRESS SPACE
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LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency  num be rs  e ve r y  prog ram m e r should  know
 From :  ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed
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SWAP SPACE
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 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk
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PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm
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PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW
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PAGE REPLACEMENTS

REPLACEMENT 
POLICIES
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0

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001
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CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃ு௧ ∗ 𝑇ெ + (𝑃ெ௦௦ ∗ 𝑇)

Argument Meaning

𝑇ெ The cost of accessing memory (time)

𝑇 The cost of accessing disk (time)

𝑃ு௧ The probability of finding the data item in the cache(a hit)

𝑃ெ௦௦ The probability of not finding the data in the cache(a miss)

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future 

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page 
accesses:

0  1  2  0  1  3  0  3  1  2  1
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OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits
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 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following 
page accesses:

0  1  2  0  1  3  0  3  1  2  1

 What is the hit/miss ratio?

 How is FIFO different than LRU?
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FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0  1  2  0  1  3  0  3  1  2  1
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RANDOM REPLACEMENT

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 Considers temporal locality (when pg was last accessed)

0  1  2  0  1  3  0  3  1  2  1

 LFU: Least frequently used
 Always replace page with fewest accesses (front)
 Consider frequency of page accesses

0  1  2  0  1  3  0  3  1  2  1
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HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses 

 Across set of 100 memory pages
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WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit 

the entire workload, 
it doesn’t matter 

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)
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WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop
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WORKLOAD EXAMPLES: SEQUENTIAL

Random performs 
better than FIFO and 

LRU for 
cache sizes < 50

Algorithms should provide
“scan resistance”
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 Implementing last recently used (LRU) requires tracking 
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons  !!!

 Simplification is needed

 Consider how to approximate the oldest page access
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IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page
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IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other 
replacement algorithms that do not consider history
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CLOCK ALGORITHM

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction
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CLOCK ALGORITHM - 2

 On demand  demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required 
memory pages?   
 Prediction models, historical analysis 
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time
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WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive 
processes and is low in memory

Everything is constantly swapped to-and-from disk
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OTHER SWAPPING POLICIES
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Working sets

Groups of related processes

When thrashing: prevent one or more working 
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing
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OTHER SWAPPING POLICIES - 2 QUESTIONS


