TCSS 422 A — Winter 2019
School of Engineering and Technology

Smaller Page Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

LRI e, 25 School of Engineering and Technology, University of Washington (RN

TCSS 422: OPERATING SYSTEMS

3/13/2019

OBJECTIVES

= Wed 3/13:

= Assignment 3
= Paging Practice Questions
= Practice Final Exam

Prof. Mohamed Ali- UWT CSS Grad Program

= Memory Virtuallzation
= Chapter 20 - Smaller Page Tables
= Chapter 21/22 - Beyond Physical Memory

TCSS422: Operating Systems [Winter 2019]

WELE) AU e T T T o ey A S T = TPy

62

FEEDBACK FROM 3/11

memory) or fixed?
= Page sizes are generally fixed to 4KB (4096 bytes)

Unit (MMU) of the CPU
= Recently x86_64 CPUs now support HUGE PAGES
= Check “cat /proc/cpuinfo” for support:
= 2MB pages: PSE flag
= 1GB pages: PDPE1GB flag
= See:
= https://wiki.debian.org/Hugepages

= Are page sizes dynamic (proportionate to total available

= Page sizes are “hard wired” into the Memory Management

March 13, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity ington - Tacoma

| 1163

FEEDBACK - 2

= What Is a Page Directory Entry? (PDE)

= Page directory entries are in the page directory of a 2-
level page table scheme

= Each PDE points to a Page Table

= What is a Page Table Entry? (PTE)

= Page table entries include the Physical Frame Number
(PFN) bits and status bits to support Virtual to Physical
address translation of virtual memory addresses

TCSS422: Operating Systems [Winter 2019]

WELEN) T Sehoollof Erineering andTech nolosyjUnversity oWashinaton ik Teconta

64

PAGING PRACTICE - ANSWERS

1-level page table:

= 1. 212 pages, which is 4,096 pages

= 2. 12 bits for the VPN

= 3. 12 offset bits

= 4. Offset bits are repurposed as status bits

= 5.3 bytes for each Page Table Entry

= 6. 212 x 3, which is 4,096 x 3 = 12KB = 12,288 bytes
= 2-level page table:

= 7. 6 Page Directory Index bits

= 8. 6 Page Table Index bits

=9, 26x 3 (PD)+ 26x 3 (PT) = 192+192 = 384 bytes
= 10. 26 x 4KB = 64 x 4 KB = 256 KB

March 13, 2019 TCS3422: Operating Systems [Winter 2019]
School of

hnology, ity ington - Tacoma

| 65

PAGING PRACTICE - ANSWERS - 2

= 11. 384 bytes (2-level page table) / 16 MB (computer RAM)
16MB = 16MB * 1024KB * 1024bytes
384 / 16,777,216 bytes
384 / 16,000,000 bytes (rounded, less precise)
.0022 % - 2-level pg tbl as % of computer memory
16MB can map 43,690 hello world programs

=12, 12 KB/ 16 MB
12 KB / 16,384 KB
.0732 % - ratio of memory use 2-level to 1 level

= 13. 384 /12 KB bytes
384 / 12 * 1024 bytes
384 /12,288
3.125% memory used
Savings = 100% - 3.125% = 96.875% !!

TCSS422: Operating Systems [Winter 2019]

WELE) AT Sehoollof Ergineerng andTechnolosyjUniversity ofWashinaton S Tecoma

166

Slides by Wes J. Lloyd

L16.1

TCSS 422 A — Winter 2019 3/13/2019
School of Engineering and Technology

OBJECTIVES

= Chapter 20

=Smaller tables

CHAPTER 20:

=Hybrid tables

PAGING: |
SMALLER TABLES ' £ 5 =Multi-level page tables

March 13, 2019 1168

TCS8422: Operating Systems [Winter 2019] March 13, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - 4 School of Engineeri Technology, Universi i Tacoma

MULTI-LEVEL PAGE TABLES - 2 MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory” = Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table Linear Page Table Multi-level Page Table

PBTR | 201 PETR | 200 PBIR | 201 PBTR | 200
: - = 5 .
PFN E L
PEN 5 PN

23 = =
it 3 E
Aamrn Y EI N e) A BN Two level page tabl
= g - w g
e B £ -] 220 pages addressed]
D | . "
0 — -
0 g The Page Directory [Page 1 of PT:Not Allocated] . two I.evel IndeXIng .
o £ R (page directory index, page table index)
o
[- . —
G —18 0 - 3 o] - 2
v 4 of - - 13 w £ of - — 18
e W ol w12 el e el
| 15 |
Linear (Left) And Multi-Level (Right) Page Tables Linear (Left) And Multi-Level (Right) Page Tables
March 13, 2019 Tsff‘z:fg;"’“.”““?SV"“”}Zc[mgl‘j;vzlm.] %) Tacoma | 169 March 13, 2019 ;ﬁg‘;ﬁ;DPE.“‘i“?SV“E"}:mZ}:;"".] -) Tacoma 1610
= Advantages = 16KB address space, 64byte pages
= Only allocates page table space in proportion to the = How large would a one-level page table need to be?
address space actually used = 214 (address space) / 26 (page size) = 28 = 256 (pages)
= Can easily grab next free page to expand page table 0000 000 :
0000 0001 ‘code
(free) Address space 16 KB
. (free) Page size 64 byte
= Disadvantages heep Vi addres T
. . heaj
= Multi-level page tables are an example of a time-space it Z:: i:‘
= 7
tradeoff S e
= Sacrifice address translation time (now 2-level) for space RERESE A 16-KB Address Space With 64-byte Pages
= Complexity: multi-level schemes are more complex
[13]12]ua]w0]o[8]7[6[5]4]3]2]1]0]
3 ¢ Offset :
o s 218 Oy rshngon Troms

Slides by Wes J. Lloyd L16.2

TCSS 422 A — Winter 2019
School of Engineering and Technology

EXAMPLE - 2

= 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

= Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key Idea: the page table Is stored using pages too!

3/13/2019

TC55422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma t16.13

March 13, 2019

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

| Page Directory Index _,

(Bl o[7[e[5]4a]3]2]1]0]
: VPN . Offset !
14-bits Virtual address

TCSS422: Operating Systems [Winter 2019]

WELE) AU A T T o U e A S T =

| L16.14

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 1stlevel)
= 4 bits page table index (PTI - 2" level)

Page Directory Index _, ~ Page Table Index

13|12|11|1o[9]s[7|6 s[a[3]2]1]0]
VPN Offset '
14-bits Virtual address

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTl) - can address 16 pages

EXAMPLE - 3

= For thls example, how much space Is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space Is required for a two-level page table with
only 4 page table entrles (PTEs) ?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4/16 entries x 4 bytes (1 x 64 byte page)
= 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TC55422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

March 13, 2019 L16.15

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | Hes

March 13, 2019

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma te.17

March 13, 2019

MORE THAN TWO LEVELS

= Consider: page size is 2° = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

30292827262524232221201918171615141312111098 7654 3 21 0

[T T [TT1

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

TCSS422: Operating Systems [Winter 2019]

(EEDELETD School of Engineering and Technology, University of Washington - Tacoma

| 116.18

Slides by Wes J. Lloyd

L16.3

TCSS 422 A — Winter 2019
School of Engineering and Technology

3/13/2019

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

30292827262524232221201918171615141312111098 7 6 54 3 21 0
[T T A
Page Directory Index | Page Ta »
VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs —T > log,128 =7

TCS5422: Operating Systems [Winter 2019]

school of Technology, ity i Tacoma te.19

March 13, 2019

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

3029282726252423222120191817161514131211109 8 7654 3 2 1

[TTTTTITITTT T A ||||||0\i

Page Directory Index i

School of Engineering and Technology, University of Washington - Tacoma

VPN offset
Flag Detail
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page | 128 PTEs ——> log,128 =7
March 13, 2019 TCSS422: Operating Systems [Winter 2019] | 116,20

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
= Pagosad f a

Can'’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

irtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page | 128 PTEs ——F—> log,128 =7

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University i Tacoma

1621

March 13, 2019

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

" Pagosad i

Need three level page table:
Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)
Page Table Index

Virtual address 0 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page | 128 PTEs ——> log,128 =7

TCS5422: Operating Systems [Winter 2019]
e

School of Technology, University of Washi Tacoma | t6.22

March 13, 2019

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

3029282726252423222120191817161514131211109 876 54 3 21 0

EENARNARNRRNN NN NNARNARENE

" Page Table Index.

VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup

// Inputs:
// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

11623

March 13, 2019 TCS3422: Operating Systems [Winter 2019]
School of

hnology, ity i Tacoma

TCSS422: Operating Systems [Winter 2019]

WELE) AT Sehoollof TechnolosyUniversity/ofWeshi Tacoma

| 116.24

Slides by Wes J. Lloyd

L16.4

TCSS 422 A — Winter 2019
School of Engineering and Technology

ADDRESS TRANSLATION - 2

d.

pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct

if (pgd_none(*pgd) || pgd_bad(*pgd)) forthe process, returns the PGD entry that
return 0; covers the requested address...

3/13/2019

p4d = p4d_offset(pgd, vpage);
z p4d/pud/pmd_offset():

£ 44 *pad 4d_bad (*p4d

if (p none (*p4d) || p4d_] (2 Takes a vpage address and the

it 0;
rerurn pgd/p4d/pud entry and returns the

pud = pud_offset(p4d, vpage);

if (pud_none(*pud) || pud_bad(*pud)) relevant p4d/pud/pmd.
return 0;

pmd = pmd_offset(pud, vpage);

if (pmd_none(*pmd) || pmd_bad (*pmd))
return 0;

if (!(pte = pte_offset_map(pmd, vpage)))
return 0; pte_unmap()

if (!(page = pte_page(*pte)))

release temporary kernel mapping
return 0;

for the page table entry

physical_page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_page_addr; // param to send back

TC55422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1625

March 13, 2019

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 220 pages

= Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Winter 2019]

WELE) AU A T T o U e A S T =

| 116.26 |

MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

= (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCS5422: Operating Systems [Winter 2019]

WELEDE, D) e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

L1627

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

® Let’s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
=1 - code page 1 - stack page
=1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTI)?

TCSS422: Operating Systems [Winter 2019]

archis 2000 ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma | 11628 |

MULTI LEVEL PAGE TABLE EXAMPLE - 3

= Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

= HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1629

March 13, 2019

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

= HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Winter 2019]

(EEDELETD School of Engineering and Technology, University of Washington - Tacoma

| 11630

Slides by Wes J. Lloyd

L16.5

TCSS 422 A — Winter 2019
School of Engineering and Technology

3/13/2019

ANSWERS

= #1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

= #4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

= #7 - 6 bits

= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)

256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 > 3.125%

11631

March 13, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity i Tacoma

CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Winter 2019]

MachiE 20 School of Engineering and Technology, University of Washington -

MEMORY HIERARCHY

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

= Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Registers

Cache

Main Memory

Mass Storage(hard disk, tape, etc...)

Memory Hierarchy in modern system

= Can provide illusion of an address space larger than
physical RAM

= For a single process
= Convenience
= Ease of use

= For multiple processes

= Large virtual memory space for many concurrent
processes

11633

March 13, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity i Tacoma

TCS5422: Operating Systems [Winter 2019]

WELEN) T Schoolof echnolosiUniversityofWeshi Tecoma

| 11634

LATENCY TIMES

= Design considerations
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from 55D 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memory 250,000 ns 250 ps
Read 1 MB sequentially from S5D* 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec 55D, 4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memaory, 20X 55D

= Latency numbers every programmer should know
= From: https://gist.github.com/jboner/2841832#file-latency-txt

SWAP SPACE

= Disk space for storing memory pages
= “Swap” them in and out of memory to disk as needed

PFN 0 PFN 1 PFN 2 PFN 3
Physical Proc0 Proc1 Proc1 Proc2
Memory VPN 0] VPN 2] [VPN 3] [VPN 0]

Block0 Block 1 Block 2 Block 3 Block4 Block 5 Block 6 Block 7

11635

March 13, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity i Tacoma

Swap | proc0 | ProcO | o | Procl | Procl | Proc3 | Proc2 | Proc3
Space | [VPN1] | [VPN 2] [VPNO] | [VPN1] | [VPNO] | VPN 1] | [VPN 1]
Physical Memory and Swap Space
March 13, 2019 TCS5422: Operating Systems [Winter 2019] 1636
b School of Engineering and Technology, University of Washi Tacoma -

Slides by Wes J. Lloyd

L16.6

TCSS 422 A — Winter 2019
School of Engineering and Technology

3/13/2019

PAGE LOCATION

= Page table pages are:
= Stored in memory
= Swapped to disk

= Present bit
= In the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

PAGE FAULT

= OS steps in to handle the page fault
= Loading page from disk requires a free memory page

= Page-Fault Algorithm

PEN = FindFreePhysicalPage ()
&C [N = 1)
PFN = EvictPage ()
DiskRead (PTE.DiskAddr, pfn)
PTE.present = True //

PTE.PFN = PFN Z

N

RetryInstruction()

March 13, 2019 L1637

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University i Tacoma

TCS5422: Operating Systems [Winter 2019]

WELE) AU Sehoslor T Uy f T

PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
=Threshold for when to swap pages to disk
= Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

11639

March 13, 2019 TCS3422: Operating Systems [Winter 2019]
School of

hnology, ity i Tacoma

REPLACEMENT
POLICIES

PpoOLICY
CHANGES

TCSS422: Operating Systems [Winter 2019]

Lk (2 2000 School of Engineering and Technology, University of Washington -

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time can be estimated:

| amar = @+ i+ Prae 1) |

Argument Meaning

Ty The cost of accessing memory (time)

Tp The cost of accessing disk (time)

Puic The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)

= Consider Ty, = 100 ns, T, = 10ms
= Consider Py;; = .9 (90%), Piss = .1
= Consider Py;; = .999 (99.9%), Pss = .001

OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

= Used for a comparison
= Provides a “best case” replacement policy

= Consider a 3-element empty cache with the following page

accesses:
What Is the hit/miss ratlo?

0120130312

16.41

March 13, 2019 TcssAlzz; Operating Systems [Winter 2019]

School o Technology, ity i Tacoma

TCS5422: Operating Systems [Winter 2019]

WELE) AT Schoolof TechnolosyUniversity/ofWeshi Tacoma

| L16.42

Slides by Wes J. Lloyd

L16.7

TCSS 422 A — Winter 2019
School of Engineering and Technology

FIFO REPLACEMENT

= Queue based

= Always replace the oldest element at the back of cache
= Simple to implement

= Doesn’t consider importance... just arrival ordering

= Consider a 3-element empty cache with the following
page accesses:

01201303121
= What is the hit/miss ratio? m

= How is FIFO different than LRU? LRU incorporates history

March 13, 2019 TcssAlzz; Operating Systems [Winter 2019]

School of Technology, ity i Tacoma Le43

3/13/2019

RANDOM REPLACEMENT

= Pick a page at random to replace
= Simple and fast implementation
= Performance depends on luck of random choices

01201303121

o — .
1 2 3 a H 6
Number of Hits

Random Performance over 10,000 Trials

TCS$422: Operating Systems [Winter 2019]

WELE) AU A T T o U e A S T =

| L16.44

HISTORY-BASED POLICIES

= LRU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

= Considers temporal locality (when pg was last accessed)

What Is the hit/miss ratlo?

= LFU: Least frequently used
= Always replace page with fewest accesses (front)
= Consider frequency of page accesses

Hit/miss ratlo Is=

01201303121

01201303121

TCS5422: Operating Systems [Winter 2019]
e 4

March 13, 2019 et T ity i Tacoma

L1645

WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

When the cache is
large enough to fit
the entire workload,
it doesn’t matter
which policy you use.

Hit Rate

Cache Size (Blocks)

TCSS422: Operating Systems [Winter 2019]

WELEN) T ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

| L16.46

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload

LRU is more likely
to hold onto
hot pages

Hit Rate
2

(recalls history)

Cache Size (Blocks)

March 13, 2019

TCS5422: Operating Systems [Winter 2019] L1647
lEas 4 g

School o Technology, ity i Tacoma

Slides by Wes J. Lloyd

WORKLOAD EXAMPLES: SEQUENTIAL

= Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49
= Repeat loop

The Looping-Sequential Workload

Random performs
better than FIFO and

3 /| LRU for
o ¢ — ot cache sizes < 50
= / — LRU

i FIFO

o /) Algorithms should provide
i “scan resistance”

20 40 Ed 8 100
Cache Size (Blocks)

TCSS422: Operating Systems [Winter 2019]

WELE) AT Sehoollof TechnolosyUniversity/ofWeshi Tacoma

| L16.48

L16.8

TCSS 422 A — Winter 2019
School of Engineering and Technology

IMPLEMENTING LRU

= Implementing last recently used (LRU) requires tracking
access time for all system memory pages

= Times can be tracked with a list
= For cache eviction, we must scan an entire list

= Consider: 4GB memory system (232),
with 4KB pages (212)

= This requires 22° comparisons !!!

= Simplification is needed
= Consider how to approximate the oldest page access

3/13/2019

March 13, 2019 TCS5422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1649

IMPLEMENTING LRU - 2

= Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
m0S setsto O

= Clock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT =0
IF USE_BIT=0 replace page

TCSS422: Operating Systems [Winter 2019]

(IR, 20 School of Engineering and Technology, University of Washington - Tacoma

11650

CLOCK ALGORITHM

= Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

The 80-20 Workload
o

Cache Size (Blocks)

TCSS422: Operating Systems [Winter 2019]

LT 2 School of Engineering and Technology, University of Washington - Tacoma

116551

CLOCK ALGORITHM - 2

= Consider dirty pages in cache
= |f DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= |f DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

= Clock algorithm should favor no cost eviction

TCSS422: Operating Systems [Winter 2019]

WELEN) T ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

L1652

WHEN TO LOAD PAGES

= On demand > demand paging

= Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCSS422: Operating Systems [Winter 2019]
WL EDE, 250 Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

11653

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

®Thrashing

=0Occurs when system runs many memory intensive
processes and is low in memory

=Everything is constantly swapped to-and-from disk

TCSS422: Operating Systems [Winter 2019]

(EEDELETD School of Engineering and Technology, University of Washington - Tacoma

L1654

Slides by Wes J. Lloyd

L16.9

TCSS 422 A — Winter 2019
School of Engineering and Technology

OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

=When thrashing: prevent one or more working
set(s) from running

=Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

3/13/2019

March 13, 2019 11655

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, Universi

Slides by Wes J. Lloyd

QUESTIONS

L16.10

