TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Smaller Page Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

D 1, A School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES

® Mon 3/11 (4pm): Husky Alumni Visit from T-Mobile Q&A
CS work life after graduation-room 206C
Garrett Lahmann ('18), Vlad Kaganyuk ('17)

= Wed 3/13: Prof. Mohamed Ali- UWT CSS Grad Program
® Active Reading Quiz Posted - Chapter 19
= Assignment 3

= Memory Virtualization
® Chapter 20 - Smaller Page Tables
= Chapter 21/22 - Beyond Physical Memory

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.2

March 11, 2019

Lioyd

3/11/2019

L15.1



TCSS 422 A — Winter 2019
School of Engineering and Technology

FEEDBACK FROM

3/6

= Can pages in different locations be used?

® Question may refer to example in following slide...

= For example: a 48-bytes program, with 3 x 16-byte free
pages in different locations?

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L15.3

0
16

32

48

64

A Simple 64-byte Address Space

PAGING: EXAMPLE

® Consider a 128 byte address space
with 16-byte pages

® Consider a 64-byte program
address space

(page 0 of
the address space) 80

(page 1)

(page 2)

112
(page 3)

128

Page Table:

VPO > PF3
VP1 - PF7

VP2 > PF5

VP3 > PF2

reserved for OS

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

page frame 0
physical mem

page frame 1
page frame 2
page frame 3
page frame 4
page frame 5
page frame 6

page frame 7

of
ory

64-Byte Address Space Placed In Physical Memory

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L15.4

Slides by Wes J. Lloyd

3/11/2019

L15.2



TCSS 422 A — Winter 2019
School of Engineering and Technology

FEEDBACK - 2

®Could you go over the TLB example again?

= Why are they (the array accesses) hits or misses?

TCSS422: Operating Systems [Winter 2019]

March 11, 2019

School of Engineering and Technology, University of Washington - Tacoma

TLB EXAMPLE

int sum = 0 ;
for( i=0; i<10; i++){

sum+=a[i];

w N o

= Example:

® Program address space: 256-byte
= Addressable using 8 total bits (28)
= 4 bits for the VPN (16 total pages)

® Page size: 16 bytes
= Offset is addressable using 4-bits

® Store an array: of (10) 4-byte integers

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

TCSS422: Operating Systems [Winter 2019]

March 11, 2019

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

3/11/2019
L15.5
OFFSET
00 04 08 12 16
a0l | a[1] | af2]
a3l | a[4] | a[5] | al6]
a7 | a8l | af9]
L15.6
L15.3



TCSS 422 A — Winter 2019
School of Engineering and Technology

3/11/2019

TLB EXAMPLE - 2

g
1
2z
3

int sum = 0 ;
for( i=0; i<10; i++){

sum+=a[i] ;

}

a[8], a[9]

in the TLB?

® Consider the code above:

Initially the TLB does not know where a[] is
® Consider the accesses:
a[0], a[1], a[2], a[3], a[4], a[53], a[6], a[7],

= How many pages are accessed?
= What happens when accessing a page not

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN =14

VPN =15

00

04 08 12 16

OFFSET

afo] | a[1] | a[2]

a[3]

af4] | a[3] | a[6]

ag] | a[9]

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L15.7

TLB EXAMPLE - 3

w N o

int sum = 0 ;
for( i=0; i<10; i++){

sum+=a[i];

® For the accesses: a[0], a[1], a[2], a[3], a[4],
a[5], a[6], a[7], a[8], a[9]

How many are hits?

How many are misses?

What is the hit rate? (%)

= 70% (3 misses one for each VP, 7 hits)

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

00

04

OFFSET
08 12 16

afo] | a[] | a[2

a3

a4l | a[s] | al6]

a8l | a[9]

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L15.8

Slides by Wes J. Lloyd

L15.4



TCSS 422 A — Winter 2019
School of Engineering and Technology

TLB EXAMPLE - 4

Ww N = o

int sum = 0 ;
for( i=0; i<10; i++){

sum+=a[i] ;

= Page size

® What factors affect the hit/miss rate?

= Data locality
= Temporal locality

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN =14

VPN =15

00

OFFSET

04 08 12 16

afo] | a[1] | a[2]

a[3]

af4] | a[3] | a[6]

a[7]

ag] | a[9]

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L15.9

FEEDBACK - 3

= Still unsure about level 1 & 2 pg table calculations

= Can we do more examples in class?

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L15.10

Slides by Wes J. Lloyd

3/11/2019

L15.5



TCSS 422 A — Winter 2019
School of Engineering and Technology

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Winter 2019]

Marchllli2019 School of Engineering and Technology, University of Washington - o

OBJECTIVES

® Chapter 20

=Smaller tables

=Hybrid tables

= Multi-level page tables

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

March 11, 2019

L15.12

Slides by Wes J. Lloyd

3/11/2019

L15.6



TCSS 422 A — Winter 2019

School of Engineering and Technology

LINEAR PAGE TABLES

®m Consider array-based page tables:

= Each process has its own page table

= 32-bit process address space (up to 4GB)
= With 4 KB pages

= 20 bits for VPN

= 12 bits for the page offset

March 11, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

m Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page

= Page table size 4MB / process

32
Page table size = % * 4Byte = 4MByte

® Consider 100+ OS processes

= Requires 400+ MB of RAM to store process information

March 11, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

Slides by Wes J. Lloyd

3/11/2019

L15.7



TCSS 422 A — Winter 2019
School of Engineering and Technology

LINEAR PAGE TABLES - 2

® Page tables stored in RAM

® Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
m Pagetable size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

March 11, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

® Larger pages

PAGING: USE LARGER PAGES

= 16KB = 214

m 32-bit address space: 232
m 218 = 262,144 pages

¥4
;T& +4 = 1MB per page table

B Memory requirement cut to ¥4
® However pages are huge
® [nternal fragmentation results

® 16KB page(s) allocated for small programs with only a
few variables

March 11, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

Slides by Wes J. Lloyd

3/11/2019

L15.8



TCSS 422 A — Winter 2019

School of Engineering and Technology

® Process: 16KB Address Space w/ 1KB pages

PAGE TABLES: WASTED SPACE

Page Table Physical Memory
Virtual Address
Space
code 0. }
1\ Allocate / N .
5 e PFN valid prot present dirty
5 N/ 10 1 rx 1 0
™
heap 4 / 0
5 /
/ 0
. \;“' ;
%
8 f 5 15 1 rw- 1 a
10
n o/ L
12/ 2} 1 rw- Al il
stack 13/ 23 1 rw- 1 il
"
A Page Table For 16KB Address Space
A 16KB Address Space with 1KB Pages
TCSS422: Operating Systems [Winter 2019]
Wkisel £, 2000 School of Engineering and Technology, University of Washington - Tacoma L15.17

Page Table

Virtual Address
Space

code —| o

N
1

2

heap

stack 13/

Physical Memory

. Allocate /|
s /

PEN

® Process: 16 KB Address Space w/ 1KB pages

valid prot

present

PAGE TABLES: WASTED SPACE

Most of the page table is unused

and full of wasted space. (73%)

rw-

dirty

3 1 rw- 1 1
23 1 rw- 1 1

A 16KB Address Space with 1KB Pages

A Page Table For 16KB Address Space

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L15.18

Slides by Wes J. Lloyd

3/11/2019

L15.9



TCSS 422 A — Winter 2019

School of Engineering and Technology

32
Page table size = % * 4Byte = 4MByte

MULTI-LEVEL PAGE TABLES

® Consider a page table:
® 32-bit addressing, 4KB pages
m 220 page table entries

®m Even if memory is sparsely populated the per process page
table requires:

= MUST SAVE MEMORY!

®m Often most of the 4MB per process page table is empty
® Page table must be placed in 4MB contiguous block of RAM

March 11, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

MULTI-LEVEL PAGE TABLES - 2

o[ mi o e[ w0 ]
: PFN ] :

®m Add level of indirection, the “page directory”

Linear Page Table Multi-level Page Table

200
]
5 B = z s
2 2 T PEN S 5 PFN
| 12 — 1| 201 |[———> 1] 12
| = S 8 o] - 1] o 13 |3
o - 3 z 2 &
o T |o ol - _ z
1 mw 100 o, o
it 203 1] w 100
0
- "
0 = The Page Directory [Page 1 of PT:Not Allocated]
0 z
i —_—
o
0
0 on
0 - S L &,
o 0 o
1 rw 86 o 3
| v 15 1 rw 86 i
o
1 mw 15

Linear (Left) And Multi-Level (Right) Page Tables

March 11, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

Slides by Wes J. Lloyd

3/11/2019

L15.10



TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLES - 2

®m Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR 201

Two level page table:
220 pages addressed with

two level-indexing
page directory index, page table index)

: S 0
z 0 b=y
1] w 86 o %
1] w 15 8 b L&
1] w 15

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.21

March 11, 2019

MULTI-LEVEL PAGE TABLES - 3

® Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

®m Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Winter 2019] 115.22

March 11, 2019 School of Engineering and Technology, University of Washington - Tacoma

Lioyd

3/11/2019

L15.11



TCSS 422 A — Winter 2019
School of Engineering and Technology

3/11/2019

EXAMPLE

= 16KB address space, 64byte pages
® How large would a one-level page table need to be?
m 214 (address space) / 26 (page size) = 28 = 256 (pages)

Flag Detail

0000 000 code
00000001 code

(free) Address space 16 KB
(free) Page size 64 byte
heap Virtual address 14 bit
Besp VPN 8 bit
f
) Offset 6 bit
(free)

Page table entry 2%(256)
stack

1111 1111} stack A 16-KB Address Space With 64-byte Pages

13[12[11]10]9f8|7]6[5[af[3[2[1]0a]

Offset

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

March 11, 2019

L15.23

EXAMPLE - 2

m 256 total page table entries (64 bytes each)

®m 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

®m Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

®m 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key idea: the page table is stored using pages too!

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.24

March 11, 2019

Slides by Wes J. Lloyd L15.12



TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:

= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

. _Page Directory Index
3

13[22]11]10]| 9|87 ]6|5]|4a]3]2]1]0]
(B VPN 1 offset Egl]
14-bits Virtual address
TCSS422: Operating Systems [Winter 2019]
Wkisel £, 2000 School of Engineering and Technology, University of Washington - Tacoma L15.25

PAGE TABLE INDEX

" 4 bits page directory index (PDI - 1stlevel)
m 4 bits page table index (PTI - 29 |evel)

. Page Directory Index | Page Table Index

12 |11 IOT\ g

I‘13 8‘7’615‘4|3‘2|1|0‘

VPN Offset
14-bits Virtual address

® To dereference one 64-byte memory page,

= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.26

March 11, 2019

Lloyd

3/11/2019

L15.13



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

m 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
®m 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

® Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.27

March 11, 2019

32-BIT EXAMPLE

m Consider: 32-bit address space, 4KB pages, 22° pages
® Only 4 mapped pages

m Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

® Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

® Savings = using just .78 % the space !!!

®m 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.28

March 11, 2019

Slides by Wes J. Lloyd L15.14



TCSS 422 A — Winter 2019
School of Engineering and Technology

MORE THAN TWO LEVELS

® Consider: page size is 22 = 512 bytes
® Page size 512 bytes / Page entry size 4 bytes

= VPN is 21 bits

3029282726252423222120191817161514131211109 8 76 54 3 21 0

IRNRNRNRNNNNNNNNNNNRNNANENENEN

i
Ealy

N
>

<
€

VPN

offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L15.29

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
m 7 bytes - for page table index (PTI)

3029282726252423222120191817161514131211109 8 76 54 3 21 0

[1]

ERNNRNNNRRANRRNNRDY

i< Page Directory Index i
VPN offset
Flag Detail
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset g bit
Page entry per page 128 PTEs ——1—> log,128 =7
TCSS422: Operating Systems [Winter 2019]
March 11, 2019 School of Engineering and Technology, University of Washington - Tacoma L15.30

Slides by Wes J. Lloyd

3/11/2019

L15.15



TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

® When using 27 (128 entry) page tables...

® Page size = 512 bytes / 4 bytes per addr

30292827262524232221201918171615141312111098 7654 3 21 0

ENNARRNANRNARNNARRNA AR ARRRAS

Page Directory Index

3l 3!

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Winter 2019]

Wkisel £, 2000 School of Engineering and Technology, University of Washington - Tacoma

L15.31

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...

B Pagess

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

| Virtualaddress |30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log, 128 =7

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

March 11, 2019

L15.32

Lioyd

3/11/2019

L15.16



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
® When using 27 (128 entry) page tables...

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

Virtual address bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.33

March 11, 2019

MORE THAN TWO LEVELS - 4

® We can now address 1GB with“fine grained” 512 byte pages
® Using multiple levels of indirection

302928 2726252423222120191817161514131211109 87654 3 21 0

NERRNRNNNNNNNNNENNRRAREE

o

Y. ¥

’ Page Table Index

L

VPN = >
® Consider the implications for address translation!
® How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’'s say 4 32-bit integers)
= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes
® Memory Usage= 1,536 (3-1evel) / 8,388,608 (1-1evel) = .0183% !!!

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1534

March 11, 2019

Slides by Wes J. Lloyd L15.17



TCSS 422 A — Winter 2019
School of Engineering and Technology

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:
// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.35

March 11, 2019

ADDRESS TRANSLATION - 2

pgd_offset():
pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none (*pgd) || pgd_bad(*pgd) )| for the process, returns the PGD entry that
return O0; covers the requested address...

p4d = p4d offset(pgd, vpage);
- = 4d/pud/pmd_offset():
£ 44 *pdad 4d bad (*p4ad p4d/pud/pmd_offset():
* (P4d_none (*pdd) || pdd_bad(*pdd)) Takes a vpage address and the

pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

return O0;
pud = pud_offset (p4d, vpage)
if (pud_none(*pud) || pud_bad(*pud))

return O0;

pmd = pmd_offset (pud, vpage);

if (pmd_none (*pmd) || pmd_bad(*pmd))
return O0;

if (!'(pte = pte_offset_map(pmd, vpage)))

return O0; te_unmap()
1 1 =
25 (L Gpeee PEE PR (L REE) ) release temporary kernel mapping

BEizEEe U for the page table entry
physical page_addr = page_to_phys (page)

pte_unmap (pte) ;
return physical_ page_addr; // param to send back

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1536

March 11, 2019

Slides by Wes J. Lloyd

3/11/2019

L15.18



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

INVERTED PAGE TABLES

®m Keep a single page table for each physical page of memory

® Consider 4GB physical memory
m Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

m All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

® Finding process memory pages requires search of 22° pages
® Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.37

March 11, 2019

MULTI-LEVEL PAGE TABLE EXAMPLE

® Consider a 16 MB computer which indexes memory using 4KB
pages

® (#1) For a single level page table, how many pages are
required to index memory?

® (#2) How many bits are required for the VPN?

® (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

® (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1538

March 11, 2019

Slides by Wes J. Lloyd L15.19



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

® Let’s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

® (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

® (#7) How many bits are required for the Page Table Index
(PTI)?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.39

March 11, 2019

MULTI LEVEL PAGE TABLE EXAMPLE - 3

® Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

® HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.40

March 11, 2019

Slides by Wes J. Lloyd L15.20



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 4

® (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

® HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Winter 2019]

Wkisel £, 2000 School of Engineering and Technology, University of Washington - Tacoma

L15.41

ANSWERS
®m #1 - 4096 pages
m#2 - 12 bits
m#3 - 12 bits
m #4 - 4 bytes
#5 - 4096 x 4 = 16,384 bytes (16KB)
m #6 - 6 bits
m#7 - 6 bits
m #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

® #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

" #10- 512/16384 = .03125 > 3.125%

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

March 11, 2019

L15.42

Slides by Wes J. Lloyd L15.21



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

CHAPTER 21/22:
BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Winter 2019]

MarchyUBI2000 School of Engineering and Technology, University of Washington -

MEMORY HIERARCHY

= Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Registers

Cache

Main Memory

Mass Storage( hard disk, tape, etc...)

Memory Hierarchy in modern system

TCSS422: Operating Systems [Winter 2019]

. N h . . L15.44
School of Engineering and Technology, University of Washington - Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.22



TCSS 422 A — Winter 2019
School of Engineering and Technology

physical RAM

= Ease of use

processes

MOTIVATION FOR

EXPANDING THE ADDRESS SPACE

= Can provide illusion of an address space larger than

® For a single process
= Convenience

® For multiple processes
= Large virtual memory space for many concurrent

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1545

LATENCY TIMES

= Desigh considerations
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from SSD* 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memaory 250,000 ns 250 ps
Read 1 MB sequentially from S5D* 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec 55D, 4% memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memory, 20X 55D

= Latency numbers every programmer should know
" From: https://gist.github.com/jboner/2841832#file-latency-txt

March 11, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.46

Slides by Wes J. Lloyd

3/11/2019

L15.23



TCSS 422 A — Winter 2019 3/11/2019

School of Engineering and Technology

SWAP SPACE

® Disk space for storing memory pages
® “‘Swap” them in and out of memory to disk as needed

PFN O PFN 1 PFN 2 PFN 3
Physical Proc 0 Proc 1 Proc1 Proc 2
Memory [VPN 0] VPN 2] [VPN 3] [VPN 0]

Block0  Block 1 Block 2 Block 3 Block4  Block 5 Block 6  Block 7

Swap Proc0 Proc 0 jeeer] Procl Proc1 Proc 3 Proc 2 Proc 3
Space | VPN 1] | [VPN 2] VPN O] | [WVPN1] | VPN O] | [vPN1] | (VPN 1]

Physical Memory and Swap Space

TCSS422: Operating Systems [Winter 2019]
el 2L, 24 School of Engineering and Technology, University of Washington - Tacoma L1547

PAGE LOCATION

® Page table pages are:
= Stored in memory
= Swapped to disk

= Present bit
= |[n the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

TCSS422: Operating Systems [Winter 2019]
March 11, 2019 School of Engineering and Technology, University of Washington - Tacoma L15.48

Slides by Wes J. Lloyd L15.24



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

PAGE FAULT

® OS steps in to handle the page fault
® Loading page from disk requires a free memory page

= Page-Fault Algorithm

1% PFN = FindFreePhysicalPage ()
2 if (PFN == -1) // no free page found
3: PFN = EvictPage () // run replacement algorithm
a: DiskRead (PTE.Diskaddr, pfn) // sleep (waiting for I/O)
o PTE.present = True // set PTE bit to present
6 PTE.PFN = PFN // reference new loaded page
i RetryInstruction() // retry instruction
Wkisel £, 2000 ggﬁiﬁfﬁf g’:gei:\aetler:’ignzy:tnedm‘lf‘eElfl\{wlglt:é; 0Ulr?i]versity of Washington - Tacoma L1549

PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
= Threshold for when to swap pages to disk
= Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

® High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.50

March 11, 2019

Slides by Wes J. Lloyd L15.25



TCSS 422 A — Winter 2019

School of Engineering and Technology

March 11, 2019

REPLACEMENT
POLICIES

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

Argument Meaning

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time can be estimated:

AMAT = (Pt * Tay) + (Puiss * Tp)

Tu The cost of accessing memory (time)

Tp The cost of accessing disk (time)

Puit The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)

= Consider Ty, = 100 ns, T, = 10ms
= Consider P,;; =
= Consider P, =

.9 (90%), Pee = .1
.999 (99.9%), P, ... = .001

March 11, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.52

Slides by Wes J. Lloyd

3/11/2019

L15.26



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

® Used for a comparison
® Provides a “best case” replacement policy

® Consider a 3-element empty cache with the following page

accesses:
What is the hit/miss ratio?
TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

01201303121

March 11, 2019 115.53

FIFO REPLACEMENT

® Queue based

= Always replace the oldest element at the back of cache
B Simple to implement

® Doesn’t consider importance... just arrival ordering

®m Consider a 3-element empty cache with the following
page accesses:

01201303121
= What is the hit/miss ratio? m

® How is FIFO different than LRU? LRU incorporates history

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

March 11, 2019 115.54

Slides by Wes J. Lloyd L15.27



TCSS 422 A — Winter 2019 3/11/2019

School of Engineering and Technology

RANDOM REPLACEMENT

® Pick a page at random to replace
® Simple and fast implementation
= Performance depends on luck of random choices

01201303121

50

40

w
o

Frequency
)
=]

-
o

o

1 2 3 4 5 6
Number of Hits

Random Performance over 10,000 Trials

TCSS422: Operating Systems [Winter 2019]
el 2L, 24 School of Engineering and Technology, University of Washington - Tacoma L1555

HISTORY-BASED POLICIES

®m LRU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

®m Considers temporal locality (when pg was last accessed)

01201303121 What is the hit/miss ratio?

m LFU: Least frequently used
= Always replace page with fewest accesses (front)
®m Consider frequency of page accesses

Hit/miss ratio is=

TCSS422: Operating Systems [Winter 2019]
March 11, 2019 School of Engineering and Technology, University of Washington - Tacoma L15.56

01201303121

Slides by Wes J. Lloyd L15.28



TCSS 422 A — Winter 2019
School of Engineering and Technology

WORKLOAD EXAMPLES: NO-LOCALITY

® No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

100%: //W
s
80%— /’/ ,/ .
. P / When the cache is
S eox P large enough to fit
E= / S = the entire workload,
an— /[ /S ] — i it doesn’t matter
/ yd which policy you use.
20%—| 4/
v R
2|0 4|0 6|O Slt) 1[‘)0
Cache Size (Blocks)
Wkisel £, 2000 ;Eﬁgifif gr?gei:\a:enrignzy:;edm‘l?e(EY]\::glt:éyf (Llr?i]versity of Washington - Tacoma L15.57

Slides by Wes J.

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages

= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload

A
100%—| e
e =
I LRU is more likely
” / s to hold onto
.'2: 60%—| s — OPT hot pages
H — [RU
prasl FIFO
— RAND (recalls history)
20%| /
| \ \ | >
20 40 60 80 100
Cache Size (Blocks)
TCSS422: Operating Systems [Winter 2019]
March 11, 2019 School of Engineering and Technology, University of Washington - Tacoma L1558

Lioyd

3/11/2019

L15.29



TCSS 422 A — Winter 2019
School of Engineering and Technology

WORKLOAD EXAMPLES: SEQUENTIAL

® Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49
= Repeat loop

The Looping-Sequential Workload

100%— /'7
/] Random performs
50%—] /| better than FIFO and
. / / LRU for
£ 0% / — OPT cache sizes < 50
= / —LRU
FIFO

40%— / i AR

Cache Size (Blocks)

st | Algorithms should provide
P m . ”
R scan resistance
T

TCSS422: Operating Systems [Winter 2019]

Wkisel £, 2000 School of Engineering and Technology, University of Washington - Tacoma

L15.59

IMPLEMENTING LRU

B [mplementing last recently used (LRU) requires tracking

access time for all system memory pages
B Times can be tracked with a list
® For cache eviction, we must scan an entire list

m Consider: 4GB memory system (232),
with 4KB pages (212)

® This requires 22° comparisons !!!

®m Simplification is needed
= Consider how to approximate the oldest page access

TCSS422: Operating Systems [Winter 2019]

March 11, 2019 School of Engineering and Technology, University of Washington - Tacoma

L15.60

Slides by Wes J.

Lloyd

3/11/2019

L15.30



TCSS 422 A — Winter 2019
School of Engineering and Technology

IMPLEMENTING LRU - 2

® Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
m0S setsto O

®mClock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT =0
IF USE_BIT=0 replace page

TCSS422: Operating Systems [Winter 2019]

(17l 41, 20 School of Engineering and Technology, University of Washington - Tacoma

L15.61

Slides by Wes J.

CLOCK ALGORITHM

= Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

The 80-20 Workload

A /,_f———f—y‘
100%— =g
/ -~ 3 =
4
80%—| i 7P
[ / 7
] /.
< 60%— / : // — OPT
I / /4 = [RU
i, / ’.«?" Clock
1/ — FIFO
W — RAND
[ | >
20 40 60 80 100

Cache Size (Blocks)

TCSS422: Operating Systems [Winter 2019]

March 11, 2019 School of Engineering and Technology, University of Washington - Tacoma

L15.62

Lloyd

3/11/2019

L15.31



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

CLOCK ALGORITHM - 2

®m Consider dirty pages in cache
= If DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= If DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

®mClock algorithm should favor no cost eviction

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.63

March 11, 2019

WHEN TO LOAD PAGES

® On demand > demand paging

® Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.64

March 11, 2019

Slides by Wes J. Lloyd L15.32



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

®Thrashing

=Occurs when system runs many memory intensive
processes and is low in memotry

=Everything is constantly swapped to-and-from disk

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.65

March 11, 2019

OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

*When thrashing: prevent one or more working
set(s) from running

*Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L15.66

March 11, 2019

Slides by Wes J. Lloyd L15.33



TCSS 422 A — Winter 2019 3/11/2019
School of Engineering and Technology

QUESTIONS

Slides by Wes J. Lloyd L15.34



