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Smaller Page Tables,
Beyond Physical Memory
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TCSS 422: OPERATING SYSTEMS

 Mon 3/11 (4pm): Husky Alumni Visit from T-Mobile Q&A 
CS work life after graduation–room 206C
Garrett Lahmann (’18), Vlad Kaganyuk (’17)

 Wed 3/13: Prof. Mohamed Ali- UWT CSS Grad Program

 Active Reading Quiz Posted – Chapter 19

 Assignment 3

 Memory Virtualization

 Chapter 20 – Smaller Page Tables

 Chapter 21/22 – Beyond Physical Memory
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OBJECTIVES

 Can pages in dif ferent locations be used?

 For example: a 48-bytes program, with 3 x 16-byte free
pages in different locations?

 Question may refer to example in following slide…
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FEEDBACK FROM 3/6

 Consider a 128 byte address space 
with 16-byte pages  

 Consider a 64-byte program
address space
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PAGING: EXAMPLE
Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

Could you go over the TLB example again?

Why are they (the array accesses) hits or misses?
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FEEDBACK - 2

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits  (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers
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TLB EXAMPLE
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 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not 
in the TLB?
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TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4], 

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)
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TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality
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TLB EXAMPLE - 4

Still unsure about level 1 & 2 pg table calculations

Can we do more examples in class?
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FEEDBACK - 3

CHAPTER 20:
PAGING:

SMALLER TABLES
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Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables
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OBJECTIVES



TCSS 422 A – Winter 2019
School of Engineering and Technology

3/11/2019

L15.3Slides by Wes J. Lloyd

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset
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LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information
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LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information
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LINEAR PAGE TABLES - 2

Page tables are too big and 
consume too much memory.

Need Solutions …

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a 
few variables
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PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

March 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages
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PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused 
and full of wasted space. (73%)
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 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page 
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!
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MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”
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MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”
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MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the 
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space 
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex
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MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)
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EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages 
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table 
entries (PTEs)  e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!
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EXAMPLE - 2
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 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page
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PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry  (PDE)

 One page table Index (PTI) – can address 16 pages
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PAGE TABLE INDEX

 For this example, how much space is  required to store as a 
single-level page table with any number of  PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is  required for a two-level page table with 
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!
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EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB  (we’ve done this before)

 Two level:  (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables
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32-BIT EXAMPLE

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits
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MORE THAN TWO LEVELS

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI) 
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MORE THAN TWO LEVELS - 2
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 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

March 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4 
entries on a 512-byte page?  (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- level) / 8,388,608 (1- level) = .0183% !!!
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MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup
//
// Inputs: 
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;
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ADDRESS TRANSLATION CODE

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr;  // param to send back
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ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that 
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the 
pgd/p4d/pud entry and returns the 
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry
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 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores 

 Which process uses each page

 Which process virtual page (from process virtual address 
space) maps to the physical page

 All processes share the same page table for memory mapping, 
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups
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INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB 
pages

 (#1) For a single level page table, how many pages are 
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte 
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are 
required for each page table entry?
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MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level 
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits 
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index 
(PTI)?
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MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry 
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the 
HelloWorld.c program using a two-level page table when we 
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page 
Table…

 HINT: how many entries are in the PD and PT
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MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a 
single page table (PT), if all of the slots of the page table (PT) 
are in use, what is the total amount of memory a two-level 
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme 
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use
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MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD)  (64 entries x 4 bytes)
256 bytes for Page Table (PT)  TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125  3.125%
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ANSWERS
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CHAPTER 21/22:
BEYOND PHYSICAL 

MEMORY
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 Disks (HDD, SSD) provide another level of storage in the 
memory hierarchy
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MEMORY HIERARCHY

 Can provide illusion of an address space larger than 
physical RAM

 For a single process

 Convenience

 Ease of use 

 For multiple processes

 Large virtual memory space for many concurrent 
processes
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MOTIVATION FOR 
EXPANDING THE ADDRESS SPACE
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LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency  num be rs  e ve r y  prog ram m e r should  know
 From :  ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed
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SWAP SPACE

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk
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PAGE LOCATION
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 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm
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PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW
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PAGE REPLACEMENTS

REPLACEMENT 
POLICIES
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1

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001
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CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃ு௜௧ ∗ 𝑇ெ + (𝑃ெ௜௦௦ ∗ 𝑇஽)

Argument Meaning

𝑇ெ The cost of accessing memory (time)

𝑇஽ The cost of accessing disk (time)

𝑃ு௜௧ The probability of finding the data item in the cache(a hit)

𝑃ெ௜௦௦ The probability of not finding the data in the cache(a miss)

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future 

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page 
accesses:

0  1  2  0  1  3  0  3  1  2  1
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OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following 
page accesses:

0  1  2  0  1  3  0  3  1  2  1

 What is the hit/miss ratio?

 How is FIFO different than LRU?
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FIFO REPLACEMENT

4 hits

LRU incorporates history



TCSS 422 A – Winter 2019
School of Engineering and Technology

3/11/2019

L15.10Slides by Wes J. Lloyd

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0  1  2  0  1  3  0  3  1  2  1

March 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.55

RANDOM REPLACEMENT

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 Considers temporal locality (when pg was last accessed)

0  1  2  0  1  3  0  3  1  2  1

 LFU: Least frequently used
 Always replace page with fewest accesses (front)
 Consider frequency of page accesses

0  1  2  0  1  3  0  3  1  2  1
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HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses 

 Across set of 100 memory pages
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WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit 

the entire workload, 
it doesn’t matter 

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)
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WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop
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WORKLOAD EXAMPLES: SEQUENTIAL

Random performs 
better than FIFO and 

LRU for 
cache sizes < 50

Algorithms should provide
“scan resistance”

 Implementing last recently used (LRU) requires tracking 
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons  !!!

 Simplification is needed

 Consider how to approximate the oldest page access
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IMPLEMENTING LRU
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Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page
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IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other 
replacement algorithms that do not consider history
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CLOCK ALGORITHM

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction
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CLOCK ALGORITHM - 2

 On demand  demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required 
memory pages?   
 Prediction models, historical analysis 
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time

March 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive 
processes and is low in memory

Everything is constantly swapped to-and-from disk
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OTHER SWAPPING POLICIES

Working sets

Groups of related processes

When thrashing: prevent one or more working 
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing

March 11, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.66

OTHER SWAPPING POLICIES - 2
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QUESTIONS


