TCSS 422 A — Winter 2019 3/6/2019
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Intro to Paging,
Translation Lookaside Buffer,
Smaller Page Tables

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

Marchie201d School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES

® Mon 3/11 (4pm): Husky Alumni Visit from T-Mobile Q&A
CS work life after graduation-room 206C
Garrett Lahmann ('18), Vlad Kaganyuk ('17)

= Wed 3/13: Prof. Mohamed Ali- UWT CSS Grad Program
® Active Reading Quiz Posted - Chapter 19
= Assignment 3

= Memory Virtualization

®= Chapter 18 - Introduction to Paging

® Chapter 19 - Translation Lookaside Buffer (TLB)
® Chapter 20 - Smaller Page Tables

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.2

March 6, 2019

Slides by Wes J. Lloyd L14.1

TCSS 422 A — Winter 2019
School of Engineering and Technology

FEEDBACK FROM 3/4

= What is stored in data headers (for malloc) besides the
size?

®m See Malloc.c source code - Line 1044:

= https://code.woboqg.org/userspace/glibc/malloc/malloc.c.html

= Also:
https://reverseengineering.stackexchange.com/questions/
15033/how-does-glibc-malloc-work

1044 struct malloc_chunk {
1045
INTERNAL SIZE T mchunk prev_size; /* Size of previous chunk (if free).
INTERNAL SIZE T mchunk size; /* Size in bytes, including overhead.
1048
1049 struct malloc chunk* fd; /* double links -- used only if free. */
1050 struct malloc chunk* bk;
1051
1052 /* Only used for large blocks: pointer to next larger size. */
1053 struct malloc chunk* fd nextsize; /* double links -- used only if free. */
1054 struct malloc_chunk* bk nextsize;
168554 };

Y
T

FEEDBACK - 2

® Can internal fragments ever be recovered?

= No, not without changing how data chunks are
provisioned from memory to the programmer
(OS change)

® Internal fragmentation:
ho tracking (data) of unused portion of a chunk

® 0S provides programmer with chunks of memory that
are too big

® Programmer receives memory chunk that is larger
than the original request

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma Lia.4

March 6, 2019

Slides by Wes J. Lloyd

3/6/2019

L14.2

TCSS 422 A — Winter 2019 3/6/2019
School of Engineering and Technology

FEEDBACK - 3

® Could you post solutions to the class activity
= Happy to share answers after class, etc.

® How many notes for the final? Will it cover all material?
= Final is comprehensive, 2 pages of notes, double-sided

®= Do you have room for students interested in cloud
computing for TCSS 499 Independent Study and TCSS 498
Directed Readings?

=Yes, here’s some quick background

TCSS422: Operating Systems [Winter 2019]

L14.5
School of Engineering and Technology, University of Washington - Tacoma

March 6, 2019

CLOUD AND

DISTRIBUTED SYSTEMS
RESEARCH

Slides by Wes J. Lloyd L14.3

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

CLOUD AND DISTRIBUTED SYSTEMS LAB

WES LLOYD, WLLOYD@QUW.EDU, 7 B
HTTP://FACULTY.WASHINGTON.EDU/WLLOYD

= Serverless Computing (FaaS):

How should cloud native applications be composed from microservices to
optimize performance and cost? Code structure directly influences
hosting costs.
= Service composition, performance and cost optimization/modeling/analytics,
Application migration, Mitigation of Platform limitations, Influencing
infrastructure, Lambda@Edge

= Containerization (Docker):
How should containers and container platforms be leveraged and :
managed to optimize performance, reduce costs, and maximize server
utilization?
= Containers, container orchestration frameworks, resource allocation, checkpointing
= Infrastructure-as-a-Service (laaS) Cloud:
How should applications and workloads be deployed to optimize
performance and cost? There are many “knobs”, configuration options
to consider.

= Application/workload deployment, performance and cost [— -T]
optimization/modeling/analytics, infrastructure management, ! | D:
resource contention detection/mitigation, HW heterogeneity I;l (]

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Winter 2019]

LA (3 240K School of Engineering and Technology, University of Washington -

Lioyd

3/6/2019

L14.4

TCSS 422 A — Winter 2019

School of Engineering and Technology

Slides by Wes J.

® Split up address space of process into fixed sized pieces
called pages

® Alternative to variable sized pieces (Segmentation) which

PAGING

suffers from significant fragmentation

® Physical memory is split up into an array of fixed-size slots

called page frames.

® Each process has a page table which translates virtual

addresses to physical addresses

March 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

= Flexibility

ADVANTAGES OF PAGING

= Abstracts the process address space into pages

= No need to track direction of HEAP / STACK growth

Just add more pages...
= No need to store unused space
As with segments...

B Simplicity

= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

March 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

Lloyd

3/6/2019

L14.5

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

Page Table:

PAGING: EXAMPLE VPO > PF3

VP1 > PF7

VP2 > PF5

= Consider a 128 byte address space VP3 - PF2
with 16-byte pages

page frame 0 of
physical memory

® Consider a 64-byte program (unused) | page frame 1
address space

reserved for OS

page 3 of AS | page frame 2

page 0 of AS | page frame 3
0 64

(page 0 of (unused) page frame 4
16 the address space) 80

(page 1) page 2 of AS | page frame 5
32 96

(page 2) (unused) page frame 6
48 112
64 (page 3) page 1 of AS | page frame7

128
64-Byte Address Space Placed In Physical Memory

A Simple 64-byte Address Space

March 6, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.11

PAGING: ADDRESS TRANSLATION

® PAGE: Has two address components
= VPN: Virtual Page Number
= Offset: Offset within a Page

VPN offset

[10 1

Va5 | Va4 | Va3 | Va2 | Val | Va0

= Example:
Page Size: 16-bytes, Address Space: 64-bytes

VPN offset
‘ ‘ Here there are

Just four pages...

TCSS422: Operating Systems [Winter 2019]
March 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L14.12

Lloyd

3/6/2019

L14.6

TCSS 422 A — Winter 2019

School of Engineering and Technology

EXAMPLE:

PAGING ADDRESS TRANSLATION

® Consider a 64-byte program address space (4 pages)
® Stored in 128-byte physical memory (8 frames)

m Offset is preserved r VFTN i Oﬁ.set |
® VPN is looked u irtua
P :ddtres‘s 0 : g 4 £
Page Table: Vo
VPO - PF3
- Add
VP1 > PF7 < Translrai‘is:n
VP2 = PF5
VP3 > PF2 Vo
e [a o]]o]e

PFN

offset

TCSS422: Operating Systems [Winter 2019]

March 6, 2013 School of Engineering and Technology, University of Washington - Tacoma

L14.13

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?

® (3) How big are page tables?

® (4) Does paging make the system too slow?

® (2) What are the typical contents of the page table?

TCSS422: Operating Systems [Winter 2019]

March 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L14.14

Slides by Wes J. Lloyd

3/6/2019

L14.7

TCSS 422 A — Winter 2019 3/6/2019
School of Engineering and Technology

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (220 pages)
= 12 bits for the page offset (212 unique bytes in a page)

® Page tables for each process are stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process

= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.15

March 6, 2019

PAGE TABLE EXAMPLE

m With 220 slots in our page table for a single process

B Each slot dereferences a VPN VPN,
VPN,

= Provides physical frame number

VPN,

® Each slot requires 4 bytes (32 bits)
= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is VPN, 048576
unrealistically small)

®" How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1416

March 6, 2019

Slides by Wes J. Lloyd L14.8

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

NOW FOR AN ENTIRE OS

m|f 4 MB is required to store one process

® Consider how much memory is required for an entire 0S?
= With for example 100 processes...

® Page table memory requirement is now 4MB x 100 = 400MB

® |[f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

m |s this efficient?

TCSS422: Operating Systems [Winter 2019]

March 6, 2013 School of Engineering and Technology, University of Washington - Tacoma

L14.17

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

® Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table > simple array

= Page-table entry
= 32 bits for capturing state

BlVBBTHXHXB32A019181716151431211109 8 7 654 3

RAW |+
P

2
—) v
PFN olg|o|<|8|5|4

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Winter 2019]

March 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L14.18

Lloyd

3/6/2019

L14.9

TCSS 422 A — Winter 2019 3/6/2019
School of Engineering and Technology

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

Bl30BBTX5XB32222019181716151413121109 8 7 6 5 4

Us |m

3
PFN ol%|a|<|S|5
oo

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

March 6, 2019

L14.19

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been
accessed

TCSS422: Operating Systems [Winter 2019]

March 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L14.20

Slides by Wes J. Lloyd L14.10

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

(3) HOW BIG ARE PAGE TABLES?

® Page tables are too big to store on the CPU

® Page tables are stored using physical memory

® Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.21

March 6, 2019

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

® Translation

= Issue #1: Starting location of the page table is

heeded
= HW Support: Page-table base register Page Table:
stores active process VPO - PF3
Facilitates translation VP1 > PF7
. VP2 = PF5
Stored in RAM > VP3 > PF2

= I[ssue #2: Each memory address translation for paging
requires an extra memory reference

= HW Support: TLBs (Chapter 19)

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1422

March 6, 2019

Lloyd

3/6/2019

L14.11

TCSS 422 A — Winter 2019
School of Engineering and Technology

PAGING MEMORY ACCESS

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else 1f (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it
17. offset = vVirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

TCSS422: Operating Systems [Winter 2019]

March 6, 2013 School of Engineering and Technology, University of Washington - Tacoma

L14.23

COUNTING MEMORY ACCESSES

m Example: Use this Array initialization Code

int array[1000]:

for (i = 07 1 < 1000; i++)
array[i] = 0:

m Assembly equivalent:

0x1024 movl §0x0, (%edi, %eax,4)
0x1028 incl %eax

0x102c cmpl $0x03e8, $eax
0x1030 jne 0x1024

TCSS422: Operating Systems [Winter 2019]

March 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L14.24

Slides by Wes J. Lloyd

3/6/2019

L14.12

TCSS 422 A — Winter 2019
School of Engineering and Technology

® Locations:
= Page table
= Array
= Code

® 50 accesses
for 5 loop
iterations

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

\ ~ 1224

[} O O L] [} — 1174

Page Table[1] — 1124

\ - 1074

Page Table(PA)

0 0000 0000 0000 0000 0001 19

5 000 4, - g
240050 4 °© 7282 &
c u 2
£ n
40000 ——m m u 7952
1124 5, — 419
£ 107 i 4146
n
< 1024 e N L L L B= 00 ©

0 10 20 30 40 50

Memory Access

March 6, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L14.25

VPN?

PAGING SYSTEM EXAMPLE

® Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
®= How many pages would fit in physical memory?

® Now consider a page table:
® For the page table entry, how many bits are required for the

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

® How much space does this page table require?
Page Table Entries x Number of pages

® How many page tables (for user processes)
would fill the entire 4GB of memory?

March 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

Slides by Wes J. Lloyd

3/6/2019

L14.13

TCSS 422 A — Winter 2019
School of Engineering and Technology

CHAPTER 19:
TRANSLATION
LOOKASIDE BUFFER

(TLB)

TCSS422: Operating Systems [Winter 2019]

Marchir2ciy School of Engineering and Technology, University of Washington - o

OBJECTIVES

® Chapter 19

*TLB Algorithm

=TLB Tradeoffs

=TLB Context Switch

TCSS422: Operating Systems [Winter 2019]

March 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L14.28

Slides by Wes J. Lloyd

3/6/2019

L14.14

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

TRANSLATION LOOKASIDE BUFFER

®mlLegacy name...

m Better name, “Address Translation Cache”

mTLB is an on CPU cache of address translations

=virtual - physical memory

March 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

TRANSLATION LOOKASIDE BUFFER - 2

Page Table[39]

® Goal: s
Reduce access 0 . - 0 o L g
to the page Page Table[1] — 1124 éz
tables \ 1074 &

OO0 0000000000000 1024

= Example:

50 RAM accesses g 40100 4, rs g
for first 5 for-loop e : - m %
iterations * 0000 —m = L y 7232 <

= Move lookups o WIS m 4%
from RAM to TLB ?‘; wa 45 70T 4146 %‘s;
by Caching page & 1024 —'_.L.r._.._.r._.._.r._.._.r._.LI, 4006 ©
table entries 0 10 20 30 40 50

Memory Access

March 6, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L14.30

Lloyd

3/6/2019

L14.15

TCSS 422 A — Winter 2019
School of Engineering and Technology

m Address translation cache

® Part of the CPU’s Memory Management Unit (MMU)

TRANSLATION LOOKASIDE BUFFER (TLB)

TLB

. 1viJ TLB Hit 2

Logical Lookup | SR Physical
>

Address i TLB Address

popular v to p 2 vlr

§ TLB Miss

: Page O
Page Table = 3 -

all v to p entries =

Address Translation with MMU P
Physical Memory
TCSS422: Operating Systems [Winter 2019]
March 6, 2013 School of Engineering and Technology, University of Washington - Tacoma L1431

7LB

m Address translation cache

9

® Part of the CPU’s Memory Management Unit (MMU)

1

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an addres's'translatior.l cache
Different than L1, L2, L3 CPU memory caches

=)

Page Table -
all v to p entries

Address Translation with MMU

Page O

Page 1

Physical Memory

TCSS422: Operating Systems [Winter 2019]
March 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L14.32

Slides by Wes J. Lloyd

3/6/2019

L14.16

TCSS 422 A — Winter 2019
School of Engineering and Technology

® For: array
® Hardware

TLB BASIC ALGORITHM

based page table
managed TLB

=
»

»

[T« N & 3 B Y B N R

VPN = (VirtualAddress & VPN MASK) >> SHIFT
(Success , TlbEntry) = TLB_Lookup (VPN)
if (Success == True){ // TLB Hit

if (CanAccess (T1bEntry.ProtectBits) == True){

Offset = VirtualAddress & OFFSET MASK
PhySAddr_»(leEntIy.PFN << SHIFT) | Offset

AccessMemory (PhysAddr)

}else RaiseException (PROTECTION ERROR)

Generate the physical address to access memory

March 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

TLB BASIC ALGORITHM - 2

317 i
12:
3 »
14:

15:

le:

L

18: }
19:}

PTEAddr = PTBR + (VPN * sizeof (PTE))
PTE = AccessMemory (PTEAdAr)

(..) // Check for, and raise exceptions..

TLE_Insert(VPN , PTE.FFN , PTE.ProtectBits)

RetryInstruction ()

Retry the instruction... (requery the TLB)

March 6, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

Slides by Wes J. Lloyd

3/6/2019

L14.17

TCSS 422 A — Winter 2019
School of Engineering and Technology

= Key detail:

= All address translations go through the TLB

TLB - ADDRESS TRANSLATION CACHE

® For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

March 6, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

TLB EXAMPLE

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i];

w N o

= Example:

® Program address space: 256-byte
= Addressable using 8 total bits (28)
= 4 bits for the VPN (16 total pages)

® Page size: 16 bytes
= Offset is addressable using 4-bits

® Store an array: of (10) 4-byte integers

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

March 6, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

3/6/2019
L14.35
OFFSET
00 04 08 12 16
a0l | a[1] | af2]
a3l | a[4] | a[5] | al6]
a7 | a8l | af9]
L14.36
L14.18

TCSS 422 A — Winter 2019
School of Engineering and Technology

3/6/2019

TLB EXAMPLE - 2

g
1
2z
3

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i] ;

}

a[8], a[9]

in the TLB?

® Consider the code above:

Initially the TLB does not know where a[] is
® Consider the accesses:
a[0], a[1], a[2], a[3], a[4], a[53], a[6], a[7],

= How many pages are accessed?
= What happens when accessing a page not

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN =14

VPN =15

00

04 08 12 16

OFFSET

afo] | a[1] | a[2]

a[3]

af4] | a[3] | a[6]

ag] | a[9]

March 6, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L14.37

TLB EXAMPLE - 3

w N o

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i];

® For the accesses: a[0], a[1], a[2], a[3], a[4],
a[5], a[6], a[7], a[8], a[9]

How many are hits?

How many are misses?

What is the hit rate? (%)

= 70% (3 misses one for each VP, 7 hits)

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

00

04

OFFSET
08 12 16

afo] | a[] | a[2

a3

a4l | a[s] | al6]

a8l | a[9]

March 6, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L14.38

Slides by Wes J. Lloyd

L14.19

TCSS 422 A — Winter 2019

School of Engineering and Technology

TLB EXAMPLE - 4

School of Engineering and Technology, University of Washington - Tacoma

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VPN = 00
2: sum+=al[i]; VPN = 01
e } VPN =03
VPN = 04
. . VPN = 05
® What factors affect the hit/miss rate?
VPN = 06 al0] | a[] | a2
- Page size VPN =07 | af3] | a4l | als] | alé]
. VPN =08 | af7] | af@] | a[]
= Data locality VPN - 0
= Temporal locality AP
VPN =11
VPN = 12
VPN =13
VPN = 14
VPN =15
March 6, 2019 TCSS422: Operating Systems [Winter 2019] 114.39

CHAPTER 20:
PAGING:

SMALLER TABLES

November 26, 2018

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

3/6/2019

L14.20

TCSS 422 A — Winter 2019
School of Engineering and Technology

OBJECTIVES

= Chapter 20

=Smaller tables

=Hybrid tables

= Multi-level page tables

TCSS422: Operating Systems [Winter 2019]

November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.41

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

TCSS422: Operating Systems [Winter 2019]

November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.42

Slides by Wes J. Lloyd

3/6/2019

L14.21

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

LINEAR PAGE TABLES - 2

® Page tables stored in RAM

® Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

= Page table

size 4MB / process

32
Page table size = % + 4Byte = 4MByte

® Consider 100+ OS processes

= Requires 400+ MB of RAM to store process information

November 26, 2018

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

m Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page

= Page table

size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

m Consider 100+ OS processes

= Requires 400+ MB of RAM to store process information

November 26, 2018

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

Lioyd

3/6/2019

L14.22

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
m 32-bit address space: 232
m 218 = 262,144 pages

232

— x4 = 1MB per page table

214

= Memory requirement cut to V4
® However pages are huge
® Internal fragmentation results

® 16KB page(s) allocated for small programs with only a
few variables

TCSS422: Operating Systems [Winter 2019]

November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.45

PAGE TABLES: WASTED SPACE

® Process: 16 KB Address Space w/ 1KB pages

Page Table Physical Memory
Virtual Address
Space
code o b,
1 Allocate | N .
g g PFN valid prot present dirty
y B \ 10 1 rx 1 0
heap 4 i 0
5 O /
/ 0
N O
;
g/ L 15 1 rw- 1 i
s/
w |/
n/ 0
12 ..: 3 1 rw- 1 1
stack 13/ e 23 1 rw- 1 i
w——
A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCSS422: Operating Systems [Winter 2019]

November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.46

Lloyd

3/6/2019

L14.23

TCSS 422 A — Winter 2019
School of Engineering and Technology

PAGE TABLES: WASTED SPACE

® Process: 16KB Address Space w/ 1KB pages

Page Table Physical Memory
Virtual Address

Space

code

LN 1
1 \Allucate “.‘"

L Most of the page table is unused
and full of wasted space. (73%)

8

PFN valid prot present dirty

9

w
n /

12/ 3 1 rw- 1 1

stack 13/ 23 1 rw- 1 1

w—

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCSS422: Operating Systems [Winter 2019]

November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.47

MULTI-LEVEL PAGE TABLES

® Consider a page table:
® 32-bit addressing, 4KB pages
m 220 page table entries

® Even if memory is sparsely populated the per process page
table requires:

32
Page table size = % * 4Byte = 4M Byte

m Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

= MUST SAVE MEMORY!

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

November 26, 2018

L14.48

Slides by Wes J. Lloyd

3/6/2019

L14.24

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLES - 2

®m Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table

PBTR 201 PBTR 200
PFN 8 Ba : s

©
T3 3 =
3 $ 5
i L i - 1] 01 [———> 1] 12
(o) (=]
= g S |o 1] 13 |3
0| - - o iz 2
a T |o = o| - - z
1w 100 o a
= 1 203 1| rw 100
0 % The!Page Directory [Page 1 of PT:Not Allocated)]
z
0 & —_—
o
0
o on
0 = § g =,
0 (=}
1 rw 86 o %
1] w 15 8 b L&
1 rw 15
Linear (Left) And Multi-Level (Right) Page Tables
TCSS422: Operating Systems [Winter 2019]
L14.49
November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

MULTI-LEVEL PAGE TABLES - 2

®m Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR 201

b}

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

& on
0 = 0
1 26 % 0 §
5 :: I & B w 26 E
1 mw 15
Linear (Left) And Multi-Level (Right) Page Tables
TCSS422: Operating Systems [Winter 2019]
November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma L1450

Lioyd

3/6/2019

L14.25

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLES - 3

® Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

®m Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1451

November 26, 2018

EXAMPLE

= 16KB address space, 64byte pages
® How large would a one-level page table need to be?
m 214 (address space) / 2° (page size) = 28 = 256 (pages)

0000 000 axil

0000 0001 code Flag Detail
(free) Address space 16 KB
(free) Page size 64 byte
heap Virtual address 14 bit
ficap VPN 8 bit
f
fier) Offset 6 bit
(free)

Page table entry 2%(256)

stack

11111111 stack A 16-KB Address Space With 64-byte Pages

13/12[11f10[9]8|7]6[5[4a[3[2[a]0]

Offset

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.52

November 26, 2018

Lloyd

3/6/2019

L14.26

TCSS 422 A — Winter 2019 3/6/2019
School of Engineering and Technology

EXAMPLE - 2

m 256 total page table entries (64 bytes each)

®m 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

®m Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

®m 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

® Key idea: the page table is stored using pages too!

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.53

November 26, 2018

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

| Page Directory Index

aizt | il

ID 10’[9|8‘7‘6|5‘4|3|2|1|0‘|

VPN Offset
14-bits Virtual address

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.54

November 26, 2018

Slides by Wes J. Lloyd L14.27

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

PAGE TABLE INDEX

® 4 bits page directory index (PDI - 1stlevel)
m 4 bits page table index (PTI - 29 |evel)

. Page Directory Index | Page Table Index

>

12 |

10W‘9

13 8|7]e6]s5]a]3]2]1]0]

VPN Offset
14-bits Virtual address

® To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Operating Systems [Winter 2019]

November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.55

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
m 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

® Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Winter 2019]

November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.56

Lloyd

3/6/2019

L14.28

TCSS 422 A — Winter 2019

School of Engineering and Technology

32-BIT EXAMPLE

m Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)
= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

® Consider: 32-bit address space, 4KB pages, 220 pages
® Only 4 mapped pages

® Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required
® Savings = using just .78 % the space !!!

® 100 sparse processes now require < 1MB for page tables

November 26, 2018

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

MORE THAN TWO LEVELS

m Consider: page size is 2% = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

302928 2726252423222120191817161514131211109 87 654 3 21 0

|

ANNNNNRNRNNNNNENNRNRNNENREEEE

5
>

<
<

i
€

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

November 26, 2018

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

Slides by Wes J. Lloyd

3/6/2019

L14.29

TCSS 422 A — Winter 2019

School of Engineering and Technology

MORE THAN TWO LEVELS - 2

® Page table entries per page =512 / 4 = 128
®m 7 bytes - for page table index (PTI)

30292827262524232221201918171615141312111098 7654 3 21 0

L[]

NINNRNNRNANRRRN

Page Directory Index

11]

o'
>

AN

VPN

g
Eany

offset

Flag Detail

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs —

—> log, 128 =7

November 26, 2018

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

MORE THAN TWO LEVELS - 3

30292827262524232221201918171615141312111098 76 54 3 21 0

[[]

1]

A

Page Directory Index

ENNRNNRRRNERREEEN

!
>

VPN

g
€

offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs

——1—> log, 128 =7

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...
® Page size = 512 bytes / 4 bytes per addr

November 26, 2018

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

Slides by Wes J. Lloyd

3/6/2019

L14.30

TCSS 422 A — Winter 2019

School of Engineering and

Technology

MORE THAN TWO LEVELS - 3

Pageand

Can’t Store Page Dlrectory with 16K

pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

irtual address 0 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log,128 =7

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...

November 26, 2018

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When usmg 27 (128 entry) page tables...

Need three level page table:
Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)
Page Table Index

Virtual address

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs —> log, 128 =7

November 26, 2018

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

Slides by Wes J. Lloyd

3/6/2019

L14.31

TCSS 422 A — Winter 2019 3/6/2019
School of Engineering and Technology

MORE THAN TWO LEVELS - 4

® We can now address 1GB with“fine grained” 512 byte pages
® Using multiple levels of indirection

302928 2726252423222120191817161514131211109 8 76 54 3 21 0

NARNARNARNARNARNARNARNARNARNN

| Page Table Index

Y. Y

< <
o~ [

VPN

® Consider the implications for address translation!

® How much space is required for a virtual address space with 4
entries on a 512-byte page? (let's say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

® Memory Usage= 1,536 (3-1evel) / 8,388,608 (1-1evel) = .0183% !!!

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.63

November 26, 2018

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup

//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Winter 2019] L14.64
School of Engineering and Technology, University of Washington - Tacoma :

November 26, 2018

Slides by Wes J. Lloyd L14.32

TCSS 422 A — Winter 2019 3/6/2019
School of Engineering and Technology

ADDRESS TRANSLATION - 2

pgd_offset():
pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none (*pgd) || pgd_bad(*pgd))| forthe process, returns the PGD entry that
return O0; covers the requested address...
p4d = p4d_offset(pgd, vpage) -
if (p4d_none (*p4d) || p4d_bad(*p4d)) p4d/pud/pmd_offset():

Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

return O0;

pud = pud_offset (p4d, vpage);

if (pud_none(*pud) || pud_bad(*pud))
return O0;

pmd = pmd_offset (pud, vpage)

if (pmd_none(*pmd) || pmd_bad(*pmd))
return O0;

if (!'(pte = pte_offset map(pmd, vpage)))

return O0; te_unmap()
i 1 =]
S (8 (g0 =0 JPECO EVREaY)) release temporary kernel mapping

]_:eturn U for the page table entry
physical page_addr = page_to_phys (page)

pte_unmap (pte) ;
return physical page_addr; // param to send back

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.65

November 26, 2018

INVERTED PAGE TABLES

®m Keep a single page table for each physical page of memory

® Consider 4GB physical memory
® Using 4KB pages, page table requires 4MB to map all of RAM

® Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

® All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

® Finding process memory pages requires search of 220 pages
® Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.66

November 26, 2018

Slides by Wes J. Lloyd L14.33

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLE EXAMPLE

® Consider a 16 MB computer which indexes memory using 4KB
pages

® (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

® (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

® (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.67

November 26, 2018

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

m Let’'s assume a simple HelloWorld.c program.

® HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTI)?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L14.68

November 26, 2018

Lloyd

3/6/2019

L14.34

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

MULTI LEVEL PAGE TABLE EXAMPLE - 3

= Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:

= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)

= 12 offset bits

= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

® HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Winter 2019]
November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.69

MULTI LEVEL PAGE TABLE EXAMPLE - 4

® (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

®m HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Winter 2019]
November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.70

Lloyd

3/6/2019

L14.35

TCSS 422 A — Winter 2019 3/6/2019
School of Engineering and Technology

ANSWERS

m#1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

m#4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

u #7 - 6 bits

m #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 - 3.125%

TCSS422: Operating Systems [Winter 2019]

November 26, 2018 School of Engineering and Technology, University of Washington - Tacoma

L14.71

QUESTIONS

Slides by Wes J. Lloyd L14.36

