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Intro to Paging,
Translation Lookaside Buffer,

Smaller Page Tables
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TCSS 422: OPERATING SYSTEMS

 Mon 3/11 (4pm): Husky Alumni Visit from T-Mobile Q&A 
CS work life after graduation–room 206C
Garrett Lahmann (’18), Vlad Kaganyuk (’17)

 Wed 3/13: Prof. Mohamed Ali- UWT CSS Grad Program

 Active Reading Quiz Posted – Chapter 19

 Assignment 3

 Memory Virtualization

 Chapter 18 – Introduction to Paging

 Chapter 19 – Translation Lookaside Buffer (TLB)

 Chapter 20 – Smaller Page Tables

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington  - Tacoma

L14.2

OBJECTIVES

 What is stored in data headers (for malloc) besides the 
size?

 See Malloc.c source code – Line 1044:
 https://code.woboq.org/userspace/glibc/malloc/malloc.c.html

 Also:  
https://reverseengineering.stackexchange.com/questions/      
15033/how-does-glibc-malloc-work
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FEEDBACK FROM 3/4

 Can internal fragments ever be recovered?

 No, not without changing how data chunks are 
provisioned from memory to the programmer 
(OS change)

 Internal fragmentation: 
no tracking (data) of unused portion of a chunk 

 OS provides programmer with chunks of memory that 
are too big 

 Programmer receives memory chunk that is larger 
than the original request

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington  - Tacoma

L14.4

FEEDBACK - 2

 Could you post solutions to the class activity

 Happy to share answers after class, etc.

 How many notes for the final?  Will it cover all material?

 Final is comprehensive, 2 pages of notes, double-sided

 Do you have room for students interested in cloud 
computing for TCSS 499 Independent Study and TCSS 498 
Directed Readings?

 Yes, here’s some quick background
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FEEDBACK - 3

CLOUD AND 
DISTRIBUTED SYSTEMS 

RESEARCH

L19.6
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CLOUD AND DISTRIBUTED SYSTEMS LAB
WES  LLOY D,  WLLOY D@UW.EDU,  

HT T P://FACU LT Y.WASHINGTON .EDU /WLLOYD

 Serverless Computing (FaaS):
 How should c loud nat ive applications  be composed from microserv ices to  

opt imize per formance and cost?  Code st ructure d irectly in f luences 
host ing costs.
 Service composition, performance and cost optimization/modeling/analytics, 

Application migration, Mitigation of Platform limitations, Influencing 
infrastructure, Lambda@Edge

 Containerization (Docker):
 How should containers and container platforms be leveraged and 

managed to  opt imize per formance, reduce costs,  and maximize ser ver 
uti l ization?
 Containers, container orchestration frameworks, resource allocation, checkpointing

 Infrastructure-as-a-Service ( IaaS) Cloud:
 How should applications and  workloads be deployed to optimize 

per formance and cost?  There are many “knobs”,  configurat ion opt ions 
to consider. 
 Application/workload deployment, per formance and cost 

optimization/modeling/analytics, infrastructure management, 
resource contention detection/mitigation, HW heterogeneity

CHAPTER 18:
INTRODUCTION TO

PAGING
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 Split up address space of process into fixed sized pieces
called pages

 Alternative to variable sized pieces (Segmentation) which 
suffers from significant fragmentation

 Physical memory is split up into an array of fixed-size slots 
called page frames.

 Each process has a page table which translates virtual 
addresses to physical addresses
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PAGING

 Flexibility

 Abstracts the process address space into pages

 No need to track direction of HEAP / STACK growth
 Just add more pages…

 No need to store unused space 
 As with segments…

 Simplicity

 Pages and page frames are the same size

 Easy to allocate and keep a free list of pages
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ADVANTAGES OF PAGING

 Consider a 128 byte address space 
with 16-byte pages  

 Consider a 64-byte program
address space
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PAGING: EXAMPLE
Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2  PAGE: Has two address components

 VPN: Virtual Page Number

 Offset: Offset within a Page

 Example: 
Page Size: 16-bytes, Address Space: 64-bytes
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PAGING: ADDRESS TRANSLATION

Here there are
just four pages…
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 Consider a 64-byte program address space (4 pages)

 Stored in 128-byte physical memory (8 frames)

 Offset is preserved

 VPN is looked up
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EXAMPLE:
PAGING ADDRESS TRANSLATION 

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?
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PAGING DESIGN QUESTIONS

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes
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(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is 

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process
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PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits), 
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page 
numbers (VPN) to the physical address (Physical Frame 
Number PFN)

 Linear page table  simple array

 Page-table entry

 32 bits for capturing state

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE
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 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dir ty bit

 PFN: the page frame number

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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PAGE TABLE ENTRY

 Common flags:

 Val id Bit : Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read 
from, written to, or executed from

 Present Bit: Indicating whether this page is in physical 
memory or on disk(swapped out)

 Dir ty Bit : Indicating whether the page has been modified since 
it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been 
accessed

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated 
address space

 Reduced memory requirement
Compared to base and bounds, and segments
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(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is 
needed
HW Support: Page-table base register
 stores active process 
 Facilitates translation

 Issue #2: Each memory address translation for paging 
requires an extra memory reference
HW Support: TLBs (Chapter 19)
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(4) DOES PAGING MAKE 
THE SYSTEM TOO SLOW?

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

Stored in RAM 

1. // Extract the VPN from the virtual address 

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT 

3.

4. // Form the address of the page-table entry (PTE) 

5. PTEAddr = PTBR + (VPN * sizeof(PTE)) 

6.

7. // Fetch the PTE 

8. PTE = AccessMemory(PTEAddr) 

9.

10. // Check if process can access the page 

11. if (PTE.Valid == False) 

12. RaiseException(SEGMENTATION_FAULT) 

13. else if (CanAccess(PTE.ProtectBits) == False) 

14. RaiseException(PROTECTION_FAULT) 

15. else

16. // Access is OK: form physical address and fetch it 

17. offset = VirtualAddress & OFFSET_MASK 

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset 

19. Register = AccessMemory(PhysAddr)
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School of Engineering and Technology, University of Washington - Tacoma

L14.23

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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COUNTING MEMORY ACCESSES
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 Locations:
 Page table

 Array

 Code

 50 accesses
for 5 loop 
iterations

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the 
VPN?

 If we assume the use of 4-byte (32 bit) page table entries, 
how many bits are available for status bits?

 How much space does this page table require?  
Page Table Entries x Number of pages

 How many page tables (for user processes) 
would fill  the entire 4GB of memory?
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PAGING SYSTEM EXAMPLE

CHAPTER 19:
TRANSLATION 

LOOKASIDE BUFFER 
(TLB)

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual  physical memory
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TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 RAM accesses
for first 5 for- loop 
iterations

 Move lookups
from RAM to TLB 
by caching page
table entries

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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TRANSLATION LOOKASIDE BUFFER - 2
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 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 For: array based page table

 Hardware managed TLB
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TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory
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TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to 
populate the TLB… we then requery the TLB

 All address translations go through the TLB

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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TLB – ADDRESS TRANSLATION CACHE

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits  (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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TLB EXAMPLE
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 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not 
in the TLB?

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
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TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4], 

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)
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TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality
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TLB EXAMPLE - 4

CHAPTER 20:
PAGING:

SMALLER TABLES

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L14.40

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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LINEAR PAGE TABLES
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 Page tables stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
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LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information
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LINEAR PAGE TABLES - 2

Page tables are too big and 
consume too much memory.

Need Solutions …

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a 
few variables
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PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages
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PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused 
and full of wasted space. (73%)

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page 
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
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MULTI-LEVEL PAGE TABLES
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 Add level of indirection, the “page directory”
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MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”
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MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the 
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space 
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex
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MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)
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EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages 
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table 
entries (PTEs)  e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
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EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

PAGE DIRECTORY INDEX



TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.10Slides by Wes J. Lloyd

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry  (PDE)

 One page table Index (PTI) – can address 16 pages

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
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PAGE TABLE INDEX

 For this example, how much space is  required to store as a 
single-level page table with any number of  PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is  required for a two-level page table with 
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!
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EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB  (we’ve done this before)

 Two level:  (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables
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32-BIT EXAMPLE

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits
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MORE THAN TWO LEVELS

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI) 
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MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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MORE THAN TWO LEVELS - 3
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 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4 
entries on a 512-byte page?  (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- level) / 8,388,608 (1- level) = .0183% !!!
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MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup
//
// Inputs: 
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;
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ADDRESS TRANSLATION CODE

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr;  // param to send back
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ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that 
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the 
pgd/p4d/pud entry and returns the 
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores 

 Which process uses each page

 Which process virtual page (from process virtual address 
space) maps to the physical page

 All processes share the same page table for memory mapping, 
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups
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INVERTED PAGE TABLES
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 Consider a 16 MB computer which indexes memory using 4KB 
pages

 (#1) For a single level page table, how many pages are 
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte 
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are 
required for each page table entry?
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MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level 
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits 
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index 
(PTI)?
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MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry 
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the 
HelloWorld.c program using a two-level page table when we 
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page 
Table…

 HINT: how many entries are in the PD and PT
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MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a 
single page table (PT), if all of the slots of the page table (PT) 
are in use, what is the total amount of memory a two-level 
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme 
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use
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MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD)  (64 entries x 4 bytes)
256 bytes for Page Table (PT)  TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125  3.125%
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ANSWERS QUESTIONS


