
TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.1Slides by Wes J. Lloyd

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

Intro to Paging,
Translation Lookaside Buffer,

Smaller Page Tables

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Mon 3/11 (4pm): Husky Alumni Visit from T-Mobile Q&A
CS work life after graduation–room 206C
Garrett Lahmann (’18), Vlad Kaganyuk (’17)

 Wed 3/13: Prof. Mohamed Ali- UWT CSS Grad Program

 Active Reading Quiz Posted – Chapter 19

 Assignment 3

 Memory Virtualization

 Chapter 18 – Introduction to Paging

 Chapter 19 – Translation Lookaside Buffer (TLB)

 Chapter 20 – Smaller Page Tables

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

OBJECTIVES

 What is stored in data headers (for malloc) besides the
size?

 See Malloc.c source code – Line 1044:
 https://code.woboq.org/userspace/glibc/malloc/malloc.c.html

 Also:
https://reverseengineering.stackexchange.com/questions/
15033/how-does-glibc-malloc-work

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

FEEDBACK FROM 3/4

 Can internal fragments ever be recovered?

 No, not without changing how data chunks are
provisioned from memory to the programmer
(OS change)

 Internal fragmentation:
no tracking (data) of unused portion of a chunk

 OS provides programmer with chunks of memory that
are too big

 Programmer receives memory chunk that is larger
than the original request

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.4

FEEDBACK - 2

 Could you post solutions to the class activity

 Happy to share answers after class, etc.

 How many notes for the final? Will it cover all material?

 Final is comprehensive, 2 pages of notes, double-sided

 Do you have room for students interested in cloud
computing for TCSS 499 Independent Study and TCSS 498
Directed Readings?

 Yes, here’s some quick background

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

FEEDBACK - 3

CLOUD AND
DISTRIBUTED SYSTEMS

RESEARCH

L19.6

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.2Slides by Wes J. Lloyd

CLOUD AND DISTRIBUTED SYSTEMS LAB
WES LLOY D, WLLOY D@UW.EDU,

HT T P://FACU LT Y.WASHINGTON .EDU /WLLOYD

 Serverless Computing (FaaS):
 How should c loud nat ive applications be composed from microserv ices to

opt imize per formance and cost? Code st ructure d irectly in f luences
host ing costs.
 Service composition, performance and cost optimization/modeling/analytics,

Application migration, Mitigation of Platform limitations, Influencing
infrastructure, Lambda@Edge

 Containerization (Docker):
 How should containers and container platforms be leveraged and

managed to opt imize per formance, reduce costs, and maximize ser ver
uti l ization?
 Containers, container orchestration frameworks, resource allocation, checkpointing

 Infrastructure-as-a-Service (IaaS) Cloud:
 How should applications and workloads be deployed to optimize

per formance and cost? There are many “knobs”, configurat ion opt ions
to consider.
 Application/workload deployment, per formance and cost

optimization/modeling/analytics, infrastructure management,
resource contention detection/mitigation, HW heterogeneity

CHAPTER 18:
INTRODUCTION TO

PAGING

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L14.8

 Split up address space of process into fixed sized pieces
called pages

 Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

 Physical memory is split up into an array of fixed-size slots
called page frames.

 Each process has a page table which translates virtual
addresses to physical addresses

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

PAGING

 Flexibility

 Abstracts the process address space into pages

 No need to track direction of HEAP / STACK growth
 Just add more pages…

 No need to store unused space
 As with segments…

 Simplicity

 Pages and page frames are the same size

 Easy to allocate and keep a free list of pages

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

ADVANTAGES OF PAGING

 Consider a 128 byte address space
with 16-byte pages

 Consider a 64-byte program
address space

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

PAGING: EXAMPLE
Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2  PAGE: Has two address components

 VPN: Virtual Page Number

 Offset: Offset within a Page

 Example:
Page Size: 16-bytes, Address Space: 64-bytes

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.12

PAGING: ADDRESS TRANSLATION

Here there are
just four pages…

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.3Slides by Wes J. Lloyd

 Consider a 64-byte program address space (4 pages)

 Stored in 128-byte physical memory (8 frames)

 Offset is preserved

 VPN is looked up

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

EXAMPLE:
PAGING ADDRESS TRANSLATION

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

PAGING DESIGN QUESTIONS

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

 Linear page table  simple array

 Page-table entry

 32 bits for capturing state

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.18

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.4Slides by Wes J. Lloyd

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dir ty bit

 PFN: the page frame number

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

PAGE TABLE ENTRY

 Common flags:

 Val id Bit : Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read
from, written to, or executed from

 Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

 Dir ty Bit : Indicating whether the page has been modified since
it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been
accessed

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated
address space

 Reduced memory requirement
Compared to base and bounds, and segments

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed
HW Support: Page-table base register
 stores active process
 Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference
HW Support: TLBs (Chapter 19)

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

Stored in RAM 

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

COUNTING MEMORY ACCESSES

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.5Slides by Wes J. Lloyd

 Locations:
 Page table

 Array

 Code

 50 accesses
for 5 loop
iterations

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the
VPN?

 If we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

 How much space does this page table require?
Page Table Entries x Number of pages

 How many page tables (for user processes)
would fill the entire 4GB of memory?

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

PAGING SYSTEM EXAMPLE

CHAPTER 19:
TRANSLATION

LOOKASIDE BUFFER
(TLB)

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L14.27

Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

OBJECTIVES

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual  physical memory

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 RAM accesses
for first 5 for- loop
iterations

 Move lookups
from RAM to TLB
by caching page
table entries

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

TRANSLATION LOOKASIDE BUFFER - 2

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.6Slides by Wes J. Lloyd

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 For: array based page table

 Hardware managed TLB

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to
populate the TLB… we then requery the TLB

 All address translations go through the TLB

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

TLB – ADDRESS TRANSLATION CACHE

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

TLB EXAMPLE

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.7Slides by Wes J. Lloyd

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not
in the TLB?

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality

March 6, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

TLB EXAMPLE - 4

CHAPTER 20:
PAGING:

SMALLER TABLES

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L14.40

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

OBJECTIVES

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

LINEAR PAGE TABLES

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.8Slides by Wes J. Lloyd

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

MULTI-LEVEL PAGE TABLES

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.9Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

PAGE DIRECTORY INDEX

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.10Slides by Wes J. Lloyd

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

32-BIT EXAMPLE

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

MORE THAN TWO LEVELS

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

MORE THAN TWO LEVELS - 3

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.11Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- level) / 8,388,608 (1- level) = .0183% !!!

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup
//
// Inputs:
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.64

ADDRESS TRANSLATION CODE

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr; // param to send back

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.65

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.66

INVERTED PAGE TABLES

TCSS 422 A – Winter 2019
School of Engineering and Technology

3/6/2019

L14.12Slides by Wes J. Lloyd

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.67

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.68

MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page
Table…

 HINT: how many entries are in the PD and PT

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.69

MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.70

MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125  3.125%

November 26, 2018 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L14.71

ANSWERS QUESTIONS

