TCSS 422 A — Winter 2019
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Address Translation,
Segmentation,
Free Space Management,
Intro to Paging

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

WL Z0EE) School of Engineering and Technology, University of Washington [fll Tacoma

OBJECTIVES

= Mon 3/11 (4pm): Husky Alumni Visit from T-Mobile Q&A
CS work life after graduation - room TBA
= Wed 3/13: Prof. Mohamed Ali- UWT CSS Grad Program
= Assignment 2
= Active Reading Quiz Posted - Chapter 19
= Assignment 3

= Memory Virtuallzation

= Chapter 15 - Address Translation

= Chapter 16 - Segmentation

= Chapter 17 - Free Space Management

= Chapter 18 - Introduction to Paging

= Chapter 19 - Translation Lookaside Buffer (TLB)

March 4, 2019 T(SSMZ; Operating Systems [Winter 2019]

School of Technology, Uni ington - Tacoma ts2

FEEDBACK FROM 2/27

= Can we schedule producers / consumers to run on
different CPU cores?

= Yes, see Sloppy Counter example from Ch. 29 which
create pthreads and assigns them to fixed CPU cores

= Uses sched_setaffinity () APIcall

= http://faculty.washington.edu/wlloyd/courses/tcss422/

examples/Chapter29/slo .C

= Does realloc() overwrite the header?

= Realloc() should rewrite (update) the header with any
information that has changed

March 4, 2019 Tcsz:lz‘f; Operating Systems [Winter 2019]

Technology, ity ington - Tacoma | 33

FEEDBACK - 2

= Can we get an extension on our HW 2?2
=2 day extension until Tuesday @ 11:59p

= Be wary of using the debugger to find causes of
deadlock in multithreaded

= What challenges may arise if trying to reproduce
deadlock using a stepwise debugger?

March 4, 2019 L34

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, Universi ington - Tacoma

CHAPTER 15: ADDRESS

TRANSLATION

TCSS422: Operating Systems [Winter 2019]

pach 2l School of Engineering and Technology, University of Washington -

OBJECTIVES

= Address translation
= Base and bounds

= HW and OS Support
= Memory segments

= Memory fragmentation

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University of Washi Tacoma

March 4, 2019 L1356

Slides by Wes J. Lloyd

3/4/2019

L13.1

TCSS 422 A — Winter 2019
School of Engineering and Technology

ADDRESS TRANSLATION

Virtual mapping

= 64KB oKe oke
Address space Program Code Operating System
example
16K8
Heap
. .
= Translation: l v
i Code 2
I‘T:I apping Heap g
virtual to heap ¥ &
. (allocated o
physical (free) but not in use) 2
t g
. ey Stack]
T (not in use)
Stack
. 64KB
16KB = Physical Memory

Address Space

March 4, 2019 TC55422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | 37 ‘

BASE AND BOUNDS

= Dynamic relocation

= Two registers base & bounds: on the CPU
= 0S places program in memory

= Sets base register

[physical address = virtual address + base }

= Bounds register
= Stores size of program address space (16KB)
= 0S verifies that every address:

[0 < virtual address < bounds J

TCSS422: Operating Systems [Winter 2019]

WELE 2, 2) A T T o U e A S T =

138 |

INSTRUCTION EXAMPLE

128 : movl 0x0(%ebx), %eax | S
= Base = 32768 ii: program Gode
= Bounds =16384 e e
= Fetch instruction at 128 (virt addr) 1 4B

= Phy addr = virt addr + base reg l

= 32896 = 128 + 32768 (base) s
= Execute instruction o

= Load from address (var x is @ 15kb=15360)

= 48128 = 15360 + 32768 (base) -- found x... stack
= Bounds register: terminate process if

= ACCESS VIOLATION: Virtual address > bounds reg L

15KB |a000 It X
[physical address = virtual address + base J 16KB Stack
| March 4, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | 39 ‘

MEMORY MANAGEMENT UNIT

= MMU
= Portion of the CPU dedicated to address translation
= Contains base & bounds registers

= Base & Bounds Example:
= Consider address translation
= 4 KB (4096 bytes) address space, loaded at 16 KB physical location

Virtual Address Physlcal Address

0 16384
1024 17408
3000 19384
FAULT 4400 20784 (out of bounds)
March 4, 2019 TCSS422: Operating Systems [Winter 2019]

| 113.10

School of Engineering and Technology, University of Washington - Tacoma

DYNAMIC RELOCATION OF PROGRAMS

= Hardware requirements:

Requirements L HWsuppot |

Privileged mode CPU modes: kernel, user

Base / bounds registers Regi to support add ion
Translate virtual addr; check if in Translation circuitry, check limits
bounds

Privileged instruction(s) to Instructions for modifying base/bound
update base / bounds regs registers

Privileged instruction(s)

to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or

attempts to access privileged instr.

March4, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma s

OS SUPPORT FOR MEMORY
VIRTUALIZATION

= For base and bounds OS support required

= When process starts running
Allocate address space in physical memory

=When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers
Function pointers set at OS boot time

March 4, 2019 TCS5422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | us.2 |

Slides by Wes J. Lloyd

3/4/2019

L13.2

TCSS 422 A — Winter 2019
School of Engineering and Technology

0S: WHEN PROCESS STARTS RUNNING

ok8
Operating System
The OS lookup the free list
16KB
Free list
(not in use)
16K8 328 e
Heap
L |(allocated but not in use))
48K 48K8 Stack
(not in use)

= 0S searches for free space for new process
= Free list: data structure that tracks available memory slots

B
Physical Memory

March 4, 2019

TCS5422: Operating Systems [Wi
0ol of Engineeri

inter 2019]

chnology,

ity i Tacoma

113.13

0S: WHEN PROCESS IS TERMINATED

= 0S places memory back on the free list

0KB Free list 0KkB
l Operating System Operating System
16KB
- Y 168
(not in use) (not in use)
¢ 368 ¢ 3268
48KB Process A 32KB (not in use)
48KB ¢ 48K8
(not in use) (not in use)
64KB 48K8 64KB

Physical Memory Physical Memory

TCS5422: Operating Systems [Winter 2019]

WELE 2, 2) Sehoslor T Uy f T

| [SERT)

0S: WHEN CONTEXT SWITCH OCCURS

= 0S must save base and bounds registers
= Saved to the Process Control Block PCB (task_struct in Linux)

Process A PCB

oKB Context Switching %8
Operating System — Operating System
16KB 16KB
(not in use) base (not in use) base
3268 —| 32KB 328
Process A
CurrentlyRunning | bounds Process A bounds
- 48K8 - 64KB
Process B
Process B ot
64KB. 64Kk I e A
Physical Memory Physical Memory
T A TC55422; Operating Systers [Winter 2019]) a1s
00l of hnology, y Tacoma

DYNAMIC RELOCATION

= 0S can move process data when not running

1. OS deschedules process from scheduler

2. 0OS copies address space from current to new location
3. 0S updates PCB (base and bounds registers)

4. OS reschedules process

= When process runs new base register is restored to CPU

= Process doesn’t know it was even moved!

| 11316

March 4, 2019 TBSMZ; Operating Systems [Winter 2019]

School of Technology, University of Washi Tacoma

March 4, 2019

CHAPTER 16:

SEGMENTATION

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

BASE AND BOUNDS INEFFICIENCIES

OKB

= Address space 1KB | Program Code
N N 162 2KB
= Contains significant unused memory o
= Is relatively large 2] —

= Preallocates space to handle stack/heap growth ¢ ‘17

= Large address spaces
= Hard to fit in memory (free)

= How can these issues be addressed?

14KB 41;
158 Stack
16KB
March 4, 2019 TCSS422: Dpe.ri(in.g Systems [Winter 2019.])) L1318
School of Technology, University of Tacoma

Slides by Wes J. Lloyd

3/4/2019

L13.3

TCSS 422 A — Winter 2019
School of Engineering and Technology

MULTIPLE SEGMENTS

= Memory segmentation
= Address space has (3) segments

=Contiguous portions of address space

= Each segment can placed separately

(registers)

®Track base and bounds for each segment

=Logically separate segments for: code, stack, heap

SEGMENTS IN MEMORY

= Consider 3 segments:

Operating System
16K8 s l
(not in use)
t Segment Base Size
Srack Code 32K 2K
(not in use)
32KB o Heap 34K 2K
Heap Stack 28K 2K
HEk0 (not in use)
64K

8
Physical Memory

| T A | Tcsz:lzz; Operating systems [Winter 2019]

chnology, ity i Tacoma

113.19

TCSS422: Operating Systems [Winter 2019]

Rarchi2oLy School of Engineering and Technology, University of Washington - Tacoma

113.20

[physical address = of fset + base }

= Starts at “0” in virtual address space

Segment __Base

Bounds check:
Is virtual address within 2KB
address space?

(not in use)

Virtual Address Space Physical Address Space

= Code segment - physically starts at 32KB (base)

or 32868
desired
address

ADDRESS TRANSLATION: CODE SEGMENT

ADDRESS TRANSLATION: HEAP

Virtual address + base is not the correct physical address.

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
= Physical address = 104 + 34816 (offset + heap base)

Segment Base size
Heap 3K 2K
(not in use)

3268

Code ——————
s 34 | 104+ 34K or 34920
ol - e is the desired
i ‘efp 36cg | Physical address

(not in use)
Address Space

Physical Memory

Marcha, 2019 TCS5422: Operating Systems [Winter 2019]

School of and Technology, ity i Tacoma

1321

TCSS422: Operating Systems [Winter 2019]

archdi2oLy School of Engineering and Technology, University of Washington - Tacoma

1322

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

= Heap starts at 4096 + 2 KB seg size = 6144

SEGMENT REGISTERS

= Used to dereference memory during translation

13 M2 4% ‘10,9 8 7 & 5 4 B3 2 1.0

| | J
T

T
Segment Offset

= First two bits identify segment type
= Remaining bits identify memory offset
= Example: virtual heap address 4200 (01000001101000)

13 12 17 10.9 8 7 ‘6 5 4 3 2 1 @
0

Segment bits

4B
= Offset= 7168 > 4096 + 2048 (6144) Heap

6KB T

7B (notin use)

8KB

Address Space
March 4, 2019 TCSS422: Dpe‘mling Systems [Winter. ZUlQJ)) 1323
0ol of chnology, y Tacoma

| of1[of|ofofoflo[1]|1]0]12 0 o | Code 00

L L | Heap 01

T T Stack 10

Segment Offset - 11
TCSS422: Operating Systems [Winter 2019

archi2oly I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma U324

Slides by Wes J. Lloyd

3/4/2019

L13.4

TCSS 422 A — Winter 2019
School of Engineering and Technology

SEGMENTATION DEREFERENCE

" SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap
" OFFSET_MASK = OxFFF (00111111111111)
= OFFSET = 000001101000 = 104
" OFFSET < BOUNDS : 104 < 2048

1 get s of 14-bit VA
2 segment alhddress & SEG_MASK) >> SEG_SHIFT
3 // now t
4 Offset = VirtualAddress & OFFSET MASK
5 if (Offset >= Bounds([Segment])
6 RaiseException (PROTECTION_FAULT)
7 else
8 PhysAddr = Base [Segment] + Offset
9 Register = AccessMemory (PhysAddr)
= VIRTUAL ADDRESS = 01000001101000 (on heap)

(mask gives us segment code)

(isolates segment offset)

TCS5422: Operating Systems [Winter 2019]

WLEIENE Z0EE) AT o T o e s oy ATt A T T

11325

STACK SEGMENT

= Stack grows backwards (FILO)
®Requires hardware support:
= Direction bit: tracks direction segment grows

(not in use)
26KB T i i ive-
Segment Register(with Negative-Growth Support)
Stack

28KB Segment Base Size Grows Positive?

(not in use) Cods 22K 2K £

Heap 34K 2K s

Stack 28K 2K o

Physical Memory

TCSS422: Operating Systems [Winter 2019]

Rarchi2oLy School of Engineering and Technology, University of Washington - Tacoma

| 113.26

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

= Supports storing shared libraries in memory only once
= DLL: dynamic linked library

® .s0 (linux): shraed object in Linux (under /usr/lib)

= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K Read-Execute
Heap 34K 2K :h Read-Write
stack 28K 2K 0 Read-Write
March 4, 2019 TCSS422: Dpe‘mling Systems [Winter. 2019.])) 1327
0ol of chnology, y Tacoma

SEGMENTATION GRANULARITY

m Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

TCSS422: Operating Systems [Winter 2019]

archdi2oLy School of Engineering and Technology, University of Washington - Tacoma

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
=On early systems

= Stored in memory
= Tracked large number of segments

SEGMENTATION GRANULARITY - 2

March4, 2019 Tcsz:lzcz‘; Operating Systems [Winter 2019]

chnology, ity i Tacoma

11329

MEMORY FRAGMENTATION

= Consider how much free space? Not compacted
= We’ll say about 24 KB KB
8KB | Operating System
= Request arrives to allocate a 20 KB heap 16KB
segment (not in use)
24KB
Allocated
= Can we fulfil the request for 20 KB of 3KB e
contiguous memory? 40KB Alloeated
#8K5) (not in use)
56KB
Allocated
64KB

TCSS422: Operating Systems [Winter 2019]

archi2oly School of Engineering and Technology, University of Washington - Tacoma

| 11330

Slides by Wes J. Lloyd

3/4/2019

L13.5

TCSS 422 A — Winter 2019
School of Engineering and Technology

= Supports rearranging memory Compacted
0KB
= Can we fulfil the request for 20 KB of 8KB | Operating System
contiguous memory?
16K8
= Drawback: Compaction is slow S4KE
= Rearranging memory is time consuming Allocated
= 64KB is fast 2260
= 4GB+ ... slow 40K8
= Algorithms: 4K
. . (not in use)
= Best fit: keep list of free spaces, allocate the 56KB
most snug segment for the request
= Others: worst fit, first fit... (in future chapters) 6aKB,
March 4, 2019 TCSS422: Dpe_mtingsyslems [WinterZUlQ_])) 1331
00l of Technology, y Tacoma

CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Winter 2019]
a2 School of Engineering and Technology, University of Washington -

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request > return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University i - Tacoma

November 20, 2018 11533

TCS5422: Operating Systems [Winter 2019]

WELE 2, 2) Schoolof echnolosiUniversityofWeshi Tecoma

1334

3/4/2019

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap: [_free [Tused | free]
0

10 20 30

= Request for 15-bytes

. addr:0 addr:20
free list. head — 101.10 — jen:10 —> NULL

= Free space: 20 bytes

= No available contiguous chunk - return NULL

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)
= 0S: No 100 byte contiguous chunk is available:
returns NULL
= Memory is externally fragmented - - Compaction can fix!

= Internal: lost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCSS422: Operating Systems [Winter 2019] 11335
100l of Engineeri i .

Technology, ity i Tacoma

March 4, 2019

TCS5422: Operating Systems [Winter 2019]

WETE) Schoolof TechnolosyUniversity/ofWeshi Tacoma

| 11336

Slides by Wes J. Lloyd

L13.6

TCSS 422 A — Winter 2019
School of Engineering and Technology

= Request for 1 byte of memory: malloc(1)

30-byte heap: [free [Tused | free |
0 10 20 30

addr:0 addr:20

free list: head —> 1.,.10 Tent 10

— NULL

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

30-byte heap: [free [Tused [free |
0

10 20 21 30

ALLOCATION STRATEGY: SPLITTING

N addr:0 addr:21
free list. head —» 1.,.10 Temis — NULL
March 4, 2019 TCS5422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

11337

ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head > len:10 > Len:10 > len:lo

— NULL

= Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
= Coalescing regroups chunks into contiguous chunk

addr:0

head > len:30

—> NULL

= Allocation can now proceed
= Coalescing is defragmentation of the free space list

March 4, 2019 TCS5422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | 1338

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter
= How does the OS know how much memory to free?

= Header block

} The header used by malloc library

The 20 bytes returned to caller

An Allocated Region Plus Header

= Small descriptive block of memory at start of chunk

TCSS422: Operating Systems [Winter 2019]
WLEIENE Z0EE) e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

11339

MEMORY HEADERS - 2

size: 20

magic: 1234567

__header_t {
size;
magic;

The 20 bytes } header_t;
returned to caller

» A Simple Header
Specific Contents Of The Header

= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

void free(void *ptr) {

header_t *hptr = (void *)ptr - sizeof (header_t);

TCSS422: Operating Systems [Winter 2019]
WLEIENE Z0EE) Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

u3.41 ‘

School of Engineering and Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]
WELE 2, 2) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma | 340
= Simple free list struct
t struct _ node_t {
= Use mmap to create free list
= 4Kkb heap, 4 byte header, one contiguous free chunk
mmap () r rns a to a chunk of free space
node_t *head = mmap (NULL, 4096, PROT_READ|PROT_WRITE,
MAP_ANON \MAPiPRIVATE, 7 WK
head->size = 4096 - of (node_t) ;
head->next = NULL;
March 4, 2019 TCSS422: Operating Systems [Winter 2019] | 113.42

Slides by Wes J. Lloyd

3/4/2019

L13.7

TCSS 422 A — Winter 2019
School of Engineering and Technology

FREE LIST - 2

= Create and initialize free-list “heap”

node_t

head->size
head->next

sizeof (node_t) ;

MAP_ANON|MAP_PRIVATE, -1, 0);

= Heap layout:

[virtual address: 16K8]

- header: size field
size: 4088

head —>{ next: 0 header: next field(NULL is 0)

e the rest of the 4KB chunk

March 4, 2019 | TC55422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

113.43 ‘

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

A 4KB Heap With One Free Chunk A Heap : After One Allocation
head —> T)
size: 4088 g3 20

magic: 1234567

ptr

the rest of Firstblock |1} 100 bytes now allocated
the 4KB chunk is used
\—1 head —>
size: 3980
next 0

the free 3980 byte chunk

TCSS422: Operating Systems [Winter 2019]

WELE 2, 2) A T T o U e A S T =

2=

= Addresses of chunks

= Start=16384

FREE LIST: FREE() CALL

[virtual address: 16KB]
8 bytes header {

100 bytes still allocated

100 bytes still allocated
(but about to be freed)

+ 108 (end of 1st chunk) [size: 100 |
+ 108 (end of 2"d chunk) sptr

+ 108 (end of 3" chunk)

=16708 size: 100

magic: 1234567

head

100 bytes still allocated

The free 3764-byte chunk

Free Space With Three Chunks Allocated

March 4, 2019 TCS5422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

113.45 ‘

FREE LIST:

FREE() CHUNK #2

= Free(sptr)
= Our 3 chunks start at 16 KB
(@ 16,384 bytes)

[virtual address: 16KB]

100 bytes still allocated

= Free chunk #2 - sptr

Block | (now a free chunk of
= Sptr = 16500 Now Free memory)
= addr - sizeof(node_t) f,',::,c B
100 bytes still allocated
= Actual start of chunk #2 T
= 16492 s =

The free 3764-byte chunk

[

TCSS422: Operating Systems [Winter 2019]

archdi2oLy School of Engineering and Technology, University of Washington - Tacoma

=

Now free remaining chunks:

FREE LIST- FREE ALL CHUNKS

[virtual address: 16K8]

00|«
= Free(16392) e ——
= Free(16608) (now free)
siz 100 [«————
= Walk back 8 bytes for actual next: 16708
start of chunk
(now free)
head
= External fragmentation Fnext 16384 |
= Free chunk pointers
out of order (now free)
size 3764 |«
= Coalescing of next et]
pointers is needed The free 3764-byte chunk
[

March4, 2019 TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

13.47 ‘

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
= 1 break sprk() 0
Ayl
break 7 (not in use)
(not in use)
Address Space Address Space Heap
Physical Memory
TCSS422: Operating Systems [Winter 2019]
WETE) I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma u348

Slides by Wes J. Lloyd

3/4/2019

L13.8

TCSS 422 A — Winter 2019
School of Engineering and Technology

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful - fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

March4, 2019 TCS5422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1349

EXAMPLES

= Allocation request for 15 bytes

head —> 10 ——> 30 ——> 20 —> NULL

= Result of Best Fit

head —>» 10 —> 30 —> 5 ——> NULL

= Result of Worst Fit

head —> 10 ——> 15 ——> 20 —> NULL

TCSS422: Operating Systems [Winter 2019]
WELE 2, 2) A T T o U e A S T =

| 11350

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

March 4, 2019 TCS5422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1351

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.
= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

= |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

= General allocator will reclaim slabs when not used

TCSS422: Operating Systems [Winter 2019]
WELE 2, 2) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma

| u3s2

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

64KB free space for 7KB request

TCSS422: Operating Systems [Winter 2019]
WLEIENE Z0EE) | Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms

11353

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation
= Allocated fragments, typically too large

= Coalescing is simple
=Two adjacent blocks are promoted up

TCSS422: Operating Systems [Winter 2019]
WETE) I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma

| 1354

Slides by Wes J. Lloyd

3/4/2019

L13.9

TCSS 422 A — Winter 2019 3/4/2019
School of Engineering and Technology

= Split up address space of process into fixed sized pieces
called pages

CHAPTER 18:
INTRODUCTION TO

PAG I NG = — = Physical memory is split up into an array of fixed-size slots
S called page frames.

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Each process has a page table which translates virtual
addresses to physical addresses

TCSS422: Operating Systems [Winter 2019]

TC55422; Operating Systems [Winter 2019]
ach izl School of Engineering and Technology, University of Washington - WELE 2, 2) f Engineeri

School of Technology, University i Tacoma

| 11356

P Table:
PAGING: EXAMPLE EEEES

ADVANTAGES OF PAGING
VP1 > PF7
VP2 - PF5
= Consider a 128 byte address space VP3 > PF2

= Flexibility

= Abstracts the process address space into pages with 16-byte pages 0 o eoe fameo of
reserved for ’
= No need to track direction of HEAP / STACK growth 16 physicallmemory
= Consider a 64-byte program (unused) | page frame 1

Just add more pages...
= No need to store unused space

address space page 3 of AS | page frame 2

As with segments... = page 0 of AS | page frame 3
0
(page 0 of (unused) | page frame 4
16 the address space) 80
= Simplicity (page 1) page 2 of AS | page frame 5
32 96
= Pages and page frames are the same size w5 (page 2) (unused) | page frame 6
. 112
= Easy to allocate and keep a free list of pages . (page 3) P AAS | e
128
A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory
March 4, 2019 TCS5422: Operating Systems [Winter 2019 : L1357 March 4, 2019 TCS5422: Operating Systems [Winter 2019] i | L1358
00l of chnology, y Tacoma School of Technology, University of Tacoma

EXAMPLE:
PAGING: ADDRESS TRANSLATION PAGING ADDRESS TRANSLATION
= PAGE: Has two address components = Consider a 64-byte program address space (4 pages)
= VPN: Virtual Page Number = Stored in 128-byte physical memory (8 frames)
= Offset: Offset within a Page VPN offset

= Offset is preserved
VPN offset L} VP: is I:o:led up ;/érdt:sls nn
age lable:

= Example: VP1 > PF7 Tr:::Ir::?:n
Page Size: 16-bytes, Address Space: 64-bytes VP2 > PF5
Ve e VP3 > PF2 v § 4
l—‘ﬁ/—ose‘ﬁ :Zfri:s"l‘l I‘U 1‘0‘1‘

March 4, 2019 L1359 March 4, 2019

TCS5422: Operating Systems [Winter 2019]
0ol of Engineeri chnology, University i Tacoma

TCS5422: Operating Systems [Winter 2019]
School of Engineeri Technology, University of Washi Tacoma

Slides by Wes J. Lloyd L13.10

TCSS 422 A — Winter 2019
School of Engineering and Technology

PAGING DESIGN QUESTIONS

= (1) Where are page tables stored?

= (2) What are the typical contents of the page table?

= (3) How big are page tables?

= (4) Does paging make the system too slow?

TC55422: Operating Systems [Winter 2019]

WLEIENE Z0EE) AT o T o e s oy ATt A T T

1361

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 22° translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Winter 2019]

WELE 2, 2) A T T o U e A S T =

362

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot dereferences a VPN VPN,

VPN,

= Provides physical frame number
VPN,

= Each slot requires 4 bytes (32 bits)

= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is VPN 04576

unrealistically small)

= How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Winter 2019]

WLEIENE Z0EE) e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms

11363

NOW FOR AN ENTIRE OS

= |[f 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s thls efficlent?

TCSS422: Operating Systems [Winter 2019]

archdi2oLy School of Engineering and Technology, University of Washington - Tacoma

L1364

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table > simple array

= Page-table entry
= 32 bits for capturing state

310087 XXUBLANVIBT6I5MU4131211109 87 6543210
| | EEEREEEED

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1365

| March 4, 2019 |

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

BNVBTXB5XAB2A019181716151413 1211109 8 7 6 54 3

210
AP
| ESRRCEEER

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Winter 2019]

(XS EHD School of Engineering and Technology, University of Washington - Tacoma

L1366

Slides by Wes J. Lloyd

3/4/2019

L13.11

TCSS 422 A — Winter 2019 3/4/2019
School of Engineering and Technology

PAGE TABLE ENTRY - 2 (3) HOW BIG ARE PAGE TABLES?

= Common flags: = Page tables are too big to store on the CPU

= Valld BIt: Indicating whether the particular translation is valid.

= Page tables are stored using physical memory
= Protection Bit: Indicating whether the page could be read
from, written to, or executed from
= Paging supports efficiently storing a sparsely populated
= Present Bit: Indicating whether this page is in physical address space
memory or on disk(swapped out)
= Reduced memory requirement
= Dirty BIt: Indicating whether the page has been modified since Compared to base and bounds, and segments
it was brought into memory

= Reference BlIt(Accessed BIt): Indicating that a page has been
accessed

TCSS422: Operating Systems [Winter 2019]

TCSS422: Operating Systems [Winter 2019]
WLEIENE Z0EE) A T T o U e A S T =

School of Engineering and Technology, University of Washington - Tacoma

L1367

March 4, 2019 | 113.68

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW? PAGING MEMORY ACCESS

= Translation 1 // Extract the vPN from the virtual address
2 VPN = (virtualaddress & VPN_MASK) >> SHIFT
&l
. . . 4. // Form the address of the page-table entry (PTE)
= |ssue #1: Starting location of the page table is 5. PTEAdr = PTBR + (VPN * sizeof(PTE))
needed 6
5 7 // Fetch the PTE
=HW Support: Page-table base register Page Table: 8. PTE = AccessMemory(PTEAdr)
; VPO > PF3 9.
stores active process VP1 - PF7 10. // check if process can access the page
Facilitates translation VP2 > PF5 11. if (PTE.valid == False)
Stored in RAM > 12. RaiseException(SEGMENTATION_FAULT)
VP3 = PF2 13. else if (canAccess(PTE.ProtectBits) == False)
p = 14. RaiseE ti0n(PROTECTION_FAULT)
= Issue #2: Each memory address translation for paging T
requires an extra memory reference 16. // Access is ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK
= HW Support: TLBs (Chapter 19) 18. Physaddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)
TC55422: Operating Sy [Winter 2019] TCS5422: Operating S [Winter 2019]
WLEIENE Z0EE) |SchooluVE:geivr\ae"e"r?ngv::\ecm:chr::\l:;/,Universi(yu!Washing(un—Ta:oma L1369 WELE 2, 2) SchoolofE:;::sr:sngy:;ed""f:chr::}:;y,UniversilvofWashingtoanacuma | 1370

COUNTING MEMORY ACCESSES VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]
= Example: Use this Array initialization Code = Locations: =

= Page table
= Array Page Table[1]
= Code

int array[1000];:

f (1=0; 1< 1
array(il

i+4)

Page Table(PA)

= 50 accesses 2 40100 . LE
g H g
A bl e for 5 loop F 40050 . & 78 %
= Assem equivalent: B a z
yeq iterations s 40000 - L L L 2

0x1024 movl $0x0, (sedi, $eax, 4)

0x1028 incl $eax
0x102¢ cmpl $0x03e8, beax g g
0x1030 jne 0x1024 3 5
3 3
8 8
Memory Access
55422 Operating Systems [Winter 2019 TCSS422: Operating Systems [Winter 2019
WLEIENE Z0EE) Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms us71 WETE) I5ehool of Er gineering andTech nolosyjUniversity ofWashinaton S Tacoma 1372

Slides by Wes J. Lloyd L13.12

TCSS 422 A — Winter 2019
School of Engineering and Technology

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:
VPN?

how many bits are available for status bits?

= How much space does this page table require?
Page Table Entries x Number of pages

= How many page tables (for user processes)
would fill the entire 4GB of memory?

= For the page table entry, how many bits are required for the

= |f we assume the use of 4-byte (32 bit) page table entries,

March 4, 2019 Tcsz:lz‘f; Operating Systems [Winter 2019]

Technology, ity i Tacoma

11373

UE

CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Winter 2019]

a2 School of Engineering and Technology, University of Washington -

OBJECTIVES

= Chapter 19

=TLB Algorithm

=TLB Tradeoffs

=TLB Context Switch

March 4, 2019 Tcsz:lz‘f; Operating Systems [Winter 2019]

chnology, ity i Tacoma

11375

TRANSLATION LOOKASIDE BUFFER

ELegacy name...

= Better name, “Address Translation Cache”

=TLB is an on CPU cache of address translations
=virtual > physical memory

March 4, 2019 T(SSMZ; Operating Systems [Winter 2019]

School of Technology, Universi i Tacoma us76

Page Table[39]

TRANSLATION LOOKASIDE BUFFER - 2

table entries
Memory Access

= Goal: 54
Reduce access o o o - o 514
to the page Page Table[1] 1124
tables 1070

1024

= Example:
50 RAM accesses g 00 7132
for first 5 for-loop £ 40050 % i F 7282
iterations = 40000 = n . 7232

= Move lookups 2 UMy gas 4196

from RAMto TLB 3 wn-° *°° a6
n S L] L] L] (L] [L

by caching page Y 04 im BTy uNTy sNT, mlTg mET
o 10 20 30 40 50

Page Table(PA)

Array(PA)

Code(PA)

March 4, 2019 Tcsz:lz‘f; Operating Systems [Winter 2019]

chnology, ity i Tacoma

11377

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

= Address translation cache

L8

Logical Lookup jy 5 Hit Physical
Address Address
Page 0
Page Table : 9 B

| all vto p entries | age
——— < Page 2
Page n

Address Translation with MMU "
Physical Memory
TCS5422: Operating Systems [Winter 2019]
WETE) Sehool of Engineering and Technolosy University ot Washi Tacoma 378

Slides by Wes J. Lloyd

3/4/2019

L13.13

TCSS 422 A — Winter 2019
School of Engineering and Technology

= Part of the CPU’s Memory Management Unit (MMU)

= Address translation cache

— 7) 1

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache

Different than L1, L2, L3 CPU memory caches

P 0
Page Tabl 2
all vto p en L
S —, Page 2

[Pege n |

Physical Memory

Address Translation with MMU

TC55422: Operating Systems [Winter 2019]

WLEIENE Z0EE) | AT o T o e s oy ATt A T T

11379

TLB BASIC ALGORITHM

= For: array based page table
= Hardware managed TLB

»
»

: VPN = (VirtualAddress & VPN_MASK) >> SHIFT
: (Success , TlbEntry) = TLB_Lookup (VEN)

f(Success == True) { LB Hit

Offset = virtualAddress & OFFSET_MASK
»PhysAddr‘(leEntryPFN << SHIFT) | Offset

AccessMemory (PhysAddr)

¥
&
3
4z f (CanAccess (T1bEntry.ProtectBits) == True){
5
6
7
8

}else RaiseException(PROTECTION_ERROR)

I Generate the physical address to access memory |

TCSS422: Operating Systems [Winter 2019]

WELE 2, 2) A T T o U e A S T =

| 113.80

TLB BASIC ALGORITHM - 2

a0 else{ //TLB Miss

12: PTEAddr = PTBR + (VPN * sizeof (PTE))

13: PTE = AccessMemory (PTEAAr)

14: (.) // Check for, and raise exceptions..

15:

16: TLB_Insert(VPN , PTE.PFN , PTE.ProtectBits)
a7l RetryInstruction ()

18: }

19:}

| Retry the instruction... (requery the TLB)

TCS5422: Operating Systems [Winter 2019]

TLB - ADDRESS TRANSLATION CACHE

= Key detail:

= For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

= All address translations go through the TLB

TCSS422: Operating Systems [Winter 2019]

| WLEIENE Z0EE) e oolol Enpinearins ardiecholo syl e ity hNes hinetonETecoms L1381 ‘
0 int sum = 0 ; OFFSET.
w o o 1
1 for(7 i<10; i++){ VPN = 00
2: sum+=a[i]; VPN = 01
3 } VPN = 03
e - 04
= Example: o
VPN = 06 a0 | a1l | al2]
= Program address space: 256-byte v G
= Addressable using 8 total bits (28) VPN =08 | a7) | ai8) | aio)
= 4 bits for the VPN (16 total pages) e
Ve - 10
= Page size: 16 bytes e
ven - 12
= Offset is addressable using 4-bits ——
v
= Store an array: of (10) 4-byte integers VRN =15
TCSS422: Operating Systems [Winter 2019]
WLEIENE Z0EE) Seoo[of Enginearing andiechnolosyiUnversity e hington S Tecoms L1383 ‘

School of Engineering and Technology, University of Washington - Tacoma

WELE 2, 2) ISehool of Erpineering andTechnoloayjUnrversity oWashinaton S Tacoma | U382
0 int sum = 0 ; OFFSET
w o o 1
G or(i=0; i<10; i++){ =00
2 sum+=a[i]; VPN = 01
3 } VPN = 03
. ven - 08
= Consider the code above: R
.) VPN = 06 ao] | a[1 | a2l
= Initially the TLB does not know where a[] is ven =07 [apy | ate) | a1 | at6)
= Consider the accesses: e - o
ven <09
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9] ven =11
= How many pages are accessed? e
ven =13
= What happens when accessing a page not VEN - 14
in the TLB? e =15
March 4, 2019 TCSS422: Operating Systems [Winter 2019] | 113.84

Slides by Wes J. Lloyd

3/4/2019

L13.14

TCSS 422 A — Winter 2019 3/4/2019
School of Engineering and Technology

0 int sum = 0 ; OFFSET. 0 int sum = 0 ; OFFSET
0 o g 12 16 o ot o5 12 1
1 for(i=0; i<10; i++){ . 1: for(i=0; i<10; i++){ N
2: sum+=a[i] 7 VPN = 01 2 sum+=a[i] ; VPN = 01
3 } VPN = 03 = } VPN =03
e - 04 veN - 08
ven - 05 . . veN - 05
= For the accesses: a[0], a[1], a[2], a[3], a[4], "~ = What factors affect the hit/miss rate?
= a0 | a1l | al2] VPN = 06 ao] | a[1 | a2l
= a[5], a[6], a[7], a[8], a[9] ven =07 [ag) | a | aps) | ate) = Page size VPN =07 | o | ae) | als) | al6]
VPN - 08 | a7) | ai8) | aio) a VPN =08 | a7) | ale] | af9)
i e = Data locality 6
= How many are hits? VPN - 10 = Temporal locality VeN - 10
= How many are misses? ven -1 e
X i ven - 12 e - 12
= What is the hit rate? (%) VN1 —
= 70% (3 misses one for each VP, 7 hits) VPN - 14 VPN - 14
ven - 15 e - 15
TCSS422: Operating Systems [Winter 2019] TCSS422: Operating Systems [Winter 2019]
CEEGET0 School of Engineering and Technology, University ington - Tacoma L1385 (EEXHEHD) School of Engineering and Technology, University ington - Tacoma 11386 |

QUESTIONS

Slides by Wes J. Lloyd L13.15

