TCSS 422 A — Winter 2019 2/25/2019
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Condition Variables,
Producer/Consumer

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2019]

FELIUEL 25, 20K School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES

® Assignment 1
B Assignment 2
= Midterm

= Parallel programming with P-threads cont’d
®m Chapter 30 - Condition Variables
® Chapter 32 - Concurrency Problems

= Memory Virtualization
® Chapter 13 - Address Spaces
® Chapter 14 - Memory API

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma t11.2

February 25, 2019

Slides by Wes J. Lloyd L11.1

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

CHAPTER 30 -
CONDITION VARIABLES

TCSS422: Operating Systems [Winter 2019]

bebruanyi2oR2018 School of Engineering and Technology, University of Washington -

CONDITION VARIABLES

®There are many cases where a thread wants to
wait for another thread before proceeding with
execution

mConsider when a precondition must be fulfilled
before it is meaningful to proceed ...

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.5

Lioyd

2/25/2019

L11.2

TCSS 422 A — Winter 2019
School of Engineering and Technology

CONDITION VARIABLES - 2

® Support a signaling mechanism to alert ~
threads when preconditions have been satisfied

® Eliminate busy waiting

m Alert one or more threads to “consume” a result, or
respond to state changes in the application

® Threads are placed on an explicit queue (FIFO) to wait
for signals

m Signal: wakes one thread
broadcast wakes all (ordering by the 0S)

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 25, 2019

L11.6

CONDITION VARIABLES - 3

® Condition variable

H pthread cond t c; |

= Requires initialization

® Condition API calls

pthread cond wait (pthread cond t *c, pthread mutex t *m); /7 wait ()
pthread cond signal(pthread cond t *c): // signal ()

® wait() accepts a mutex parameter
= Releases lock, puts thread to sleep

= signal()
= Wakes up thread, awakening thread acquires lock

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 25, 2019

L11.7

Slides by Wes J. Lloyd

2/25/2019

L11.3

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

CONDITION VARIABLES - QUESTIONS

= Why would we want to put waiting threads on a queue... why
not use a stack?
= Queue (FIFO), Stack (LIFO)

= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= Why do we want to not busily wait for the lock to become
available?

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma Li18

February 25, 2019

MATRIX GENERATOR

Matrix generation example

Chapter 30
sighal.c

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L119

February 25, 2019

Lloyd

2/25/2019

L11.4

TCSS 422 A — Winter 2019

School of Engineering and Technology

MATRIX GENERATOR

® The main thread, and worker thread (generates matrices)
share a single matrix pointer.

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

m Let’s try “nosignal.c”

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.10

SUBTLE RACE CONDITION:

WITHOUT A WHILE

WMo~ Gy W

void thr exit() {
done = 1;
Pthread cond signal (&c);
}

void thr jeoin() {
if (done == 0)
Pthread cond wait(&c):;

}

= The signal

= Parent thread calls thr_join() and executes the comparison
® The context switches to the child

® The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

is lost

® The parent deadlocks

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.11

Slides by Wes J. Lloyd

2/25/2019

L11.5

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

PRODUCER / CONSUMER

Work Queue

i

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.12

PRODUCER / CONSUMER

= Producer
= Produces items - consider the child matrix maker
= Places them in a buffer
Example: the buffer is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Qur example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
B Multithreaded web server example
= Http requests placed into work queue; threads process

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.13

Lloyd

2/25/2019

L11.6

TCSS 422 A — Winter 2019

School of Engineering and Technology

PRODUCER / CONSUMER - 2

® Producer / Consumer is also known as Bounded Buffer

® Bounded buffer

= Similar to piping output from one Linux process to another

= grep pthread signal.c | wc -I

= Synchronized access:
sends output from grep = wc as it is produced

= File stream

TCSS422: Operating Systems [Winter 2019]

February 25,2013 School of Engineering and Technology, University of Washington - Tacoma

L11.14

PUT/GET ROUTINES

®m Buffer is a one element shared data structure (int)
® Producer “puts” data

® Consumer “gets” data

® Shared data structure requires synchronization

1 int buffer;

2 int count = 0; // initially, empty
3

4 void put(int value) {

5 assert (count == 0);
6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert (count == 1);
12 count = 0;

13 return buffer;

14 }

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.15

Slides by Wes J. Lloyd

2/25/2019

L11.7

TCSS 422 A — Winter 2019

School of Engineering and Technology

PRODUCER / CONSUMER - 3

® Producer adds data
®m Consumer removes data (busy waiting)
= Will this code work (spin locks) with 2-threads?

1. Producer 2. Consumer

[=- I . T R OV

void *producer(void *arg) {

61 e
int loops = (int) arg:
for (1 = 0; 1 < loops: i++) {

put(i);
}
}

void *consumer (void *arg) {
int- iy
while (1) {
int tmp = get():
printf ("$d\n", tmp);

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.16

PRODUCER / CONSUMER - 3

® The shared data structure needs synchronization!

1 cond_t cond;

2 mutex t mutex;

3

4 void *producer (void *arg) {

5 int i;

[3 or (1 = 0; 1 < loops; i++) { Producer
T » Pthread mutex lock(&mutex): /7 pl
8 if (count == 1) // p2
9 Pthread cond wait (scond, &mutex); f{ip3
10 put(i); // pi
ki Pthread_cond signal (&cond) ; /4 p5
12 Pthread mutex_unlock(amutex); // pe
13 }

14 }

L

16 void *consumer (void *arg) {

17 int i

18 for (i = 0; i < loops; i++) {

19 » Pthread mutex lock(&amutex); i o

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.17

Slides by Wes J. Lloyd

2/25/2019

L11.8

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

2/25/2019
20 if (count == 0) // c2
21 Pthread_cond_wait (&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread cond signal (&cond) ; // c5
24 Pthread mutex unlock (&mutex) ; // c6
25 printf ("$d\n", tmp);
26 } Consumer
27 }
® This code as-is works with just:
(1) Producer
(1) Consumetr
® |f we scale to (2+) consumer’s it fails
= How can it be fixed ?
TCSS422: Operating Systems [Winter 2019]
February 25,2013 School of Engineering and Technology, University of Washington - Tacoma L11.18
NO WHILE, 1 PRODUCER, 2 CONSUMERS
T. State Te2 State T, State Count Comment
= Two threads cl Running Ready Ready 0
c2 Running Ready Ready 0
» c3 Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready pl Running 0
C1 /p1 = IOCk Sleep Ready p2 Running 0
02/p2_ CheCk var Sleep Read pd Running 1: Buffer now full
C3/p3' Wa|t iea:y zea:y pz Eunnfng 1 T4 awoken
ea ea unnin
c4- put() . - | i
4 Ready Ready pl Running ik
p - get() Ready Ready p2 Running 1
C5/p5' Slg nal Ready Read p3 Sleep 1: Buffer full; sleep
06/p6' Un|OCk Ready| el Running Sleep 1 T, sneaks in ...
Ready c2 Running Sleep 1
Ready c4 Running Sleep 0 ... and grabs data
Ready 5 Running Ready 0 T, awoken
Ready] c6 Running Ready 0
» cd Running Ready Ready 0 Oh oh! No data
TCSS422: Operating Systems [Winter 2019]
February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma L1119
Lloyd L11.9

TCSS 422 A — Winter 2019
School of Engineering and Technology

PRODUCER/CONSUMER

SYNCHRONIZATION

= Need while, not if

= T, needs to wake T, to T,

= When producer threads awake, they do not check if there is
any data in the buffer...

= What if T, puts a value, wakes T,; whom consumes the value

= Then T, has a value to put, but T;,'s signal on &cond wakes T,
® There is nothing for T,, consume, so T, sleeps
" T.4, Teo, and T, all sleep forever

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.20

EXECUTION TRACE:

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ty State T2 State T State Count Comment
cl Running Ready Ready 0
2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Legend Sleep cl Running Ready 0
C1 /p1 - IOCk Sleep c2 Running Ready 0
02/p2_ Check var Sleep c3 Sleep Ready 0 Nothing to get
C3/p3' Wa|t Sleep Sleep pl Running 0
04_ put() Sleep Sleep p2 Runn!ng 0
Sleep Sleep pd Running i Buffer now full
p4- get() * Ready Sleep p5 Running 1 T, awoken
C5/p5- Slgnal Ready Sleep p6 Running il
06/p6' UnIOCk Ready Sleep pl Running il
Ready Sleep p2 Running 1
Ready Sleep p3 Sleep i Must sleep (full)
» c2 Running Sleep Sleep 1 Recheck condition
c4 Running Sleep Sleep 0 T,; grabs data
» c5 Running Ready Sleep 0 Oops! Woke T,
February 25, 2019 ;Er?iilzif gr?;i;ac::er:ignzy:t\edm‘lii\rl\\::gltséy?(ﬁr?i]versity of Washington - Tacoma L1121

Slides by Wes J. Lloyd

2/25/2019

L11.10

TCSS 422 A — Winter 2019

School of Engineering and Technology

EXECUTION TRACE - 2

c6/p6- unlock

= T., runs, no data to consume

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

T State T2 State State Count Comment
L—ege—nd (cont)

C1/p1 - IOCk 6 Running Ready Sleep 0

02/p2' CheCk var cl Running Ready Sleep 0

C3/p3- Walt c? Running Ready Sleep 0

c4- put() c3 Sleep Ready Sleep 0 Nothing to get
p4_ get() Sleep c2 Running Sleep 0

CS/pS' Slg nal Sleep £3 Sleep Sleep 0 Everyone asleep ...

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.22

TWO CONDITIONS

m Use two condition variables: empty & full
= One condition handles the producer
=the other the consumer

W Jo U WN

int
for

i

(1 =0; i < loops;
Pthread mutex lock (&mutex) ;

ond t empty, full;
mutex_t mutex;

void *producer (void *argqg)

{

while (count == 1)

Pthread cond wait (&empty, &mutex);

put (1) ;

Pthread cond signal (&full);
Pthread mutex unlock (&mutex) ;

it+)

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.23

Slides by Wes J. Lloyd

2/25/2019

L11.11

TCSS 422 A — Winter 2019

School of Engineering and Technology

FINAL PRODUCER/CONSUMER

® Change buffer from int, to int buffer[MAX]
= Add indexing variables

s int buffer[MAX];

2 int fill = 0;

2 int use = 0;

4 int count = 0;

5

3 void put (int value) {

i) buffer[fill] = value;
8 fi11 = (fill + 1) % MAX;
9 count++;

10 1

11

12 int get() {

13 int tmp = buffer[use];
14 use = (use + 1) % MAX;
15 count--;

16 return tmp;

12 1

TCSS422: Operating Systems [Winter 2019]

February 25,2013 School of Engineering and Technology, University of Washington - Tacoma

L11.24

FINAL P/C - 2

1

2 mutex t mutex;

3

4 void *producer(wvoid *arg) {

5 int i;

& for (i = 0; i < loops:; i++) {

7 Pthread mutex lock(smutex); /7 pl
8 while (count == MAX) // p2
9 Pthread cond wait (sempty, smutex); f{ip3
10 put (i) s // pé
il Pthread_cond_signal (&full); {f PS5
12 Pthread mutex unlock(smutex); /! pe
13 }

14 }

15

16 void *consumer(void *arg) {

17 2 ol i

18 for (i = 0; i < loops; i++) {

19 Pthread mutex lock(amutex); i el
20 while (count == 0) el
21 Pthread cond wait(s&full, &mutex):; i e3
22 int tmp = get () ’ // c4

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.25

Slides by Wes J. Lloyd

2/25/2019

L11.12

TCSS 422 A — Winter 2019
School of Engineering and Technology

FINAL P/C - 3

(Cont.)

}

Pthread cond signal (semptv); f/
Pthread mutex unlock(&mutex); 7/
printf ("%d\n", tmp);

nn
oy

® Producer: only sleeps when buffer is full
® Consumer: only sleeps if buffers are empty

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.26

scarce

COVERING CONDITIONS

®m A condition that covers all cases (conditions):
® Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

= When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.27

Slides by Wes J. Lloyd

2/25/2019

L11.13

TCSS 422 A — Winter 2019 2/25/2019
School of Engineering and Technology

1 // how many bytes of the heap are free?
2 int bytesLeft = MAX HEAP SIZE;
3
4 // need lock and condition too
5 cond_t c;
[3 mutex t m;
i
8 void *
9 allocate(int size) {
10 Pthread mutex lock(&m);
11 »while (bytesLeft < size) Check available memory
12 Pthread cond wait(sc, &m);
13 void *piri= ...¢ // get mem from heap
14 bytesLeft -= size;
15 Pthread_mutex unlock (&m) ;
le return ptr;
17 }
18
19 void free (void *ptr, int size) {
20 Pthread mutex lock(&m);
21 bytesLeft += size;
23 Pthread mutex_unlock (&m) ;
24 }
TCSS422: Operating Systems [Winter 2019
February 25,2013 School of Er’:gineerigngyand Te«EhnoIogy, Uni]versity of Washington - Tacoma L11.28

COVER CONDITIONS - 3

®m Broadcast awakens all blocked threads requesting
memory

®m Each thread evaluates if there’s enough memory:
(bytesLeft < size)

= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory

= Run: requests which can be fulfilled
with newly available memory!

= Overhead
= Many threads may be awoken which can’t execute

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L11.29

February 25, 2019

Slides by Wes J. Lloyd L11.14

TCSS 422 A — Winter 2019

School of Engineering and Technology

February 25, 2019

CHAPTER 32 -
CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

® Chapter 32:

OBJECTIVES

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.31

Slides by Wes J. Lloyd

2/25/2019

L11.15

TCSS 422 A — Winter 2019
School of Engineering and Technology

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

® “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”
=Shan Lu et al.

= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 25, 2019

L11.32

Slides by Wes J.

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=QOrder violation: failure to initialize lock/condition
before use

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 25, 2019

L11.33

Lloyd

2/25/2019

L11.16

TCSS 422 A — Winter 2019

School of Engineering and Technology

®ENULL

Programmer i
variable to be
atomically...

ATOMICITY VIOLATION - MYSQL

isOinC

® Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

® Simple example:

= Two threads access the proc_info field in struct thd

1 Threadl::

2 if (thd->proc_info) {

2

4 fputs (thd-»proc_info , ..):
ntended 5 -
accessed 6 }

7

8 Thread2::

9

thd->proc info = NULL;

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.34

ATOMICITY VIOLATION - SOLUTION

= Add locks for all uses of: thd->proc_info

@~ m e Wk

HHHHE e
[E I N SRy

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;

Threadl::
pthread mutex lock(&lock):
if (thd-»proc info){

fputs (thd->proc_info , ..):

1
pthread mutex unlock(&lock):

Thread2: :

pthread mutex lock(&lock):
thd-»>proc info = NULL;
pthread mutex unlock(&lock):

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.35

Slides by Wes J. Lloyd

2/25/2019

L11.17

TCSS 422 A — Winter 2019 2/25/2019
School of Engineering and Technology

ORDER VIOLATION BUGS

®mDesired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

Threadl: :
void init(){

mThread = PRﬁCreateThread(mMain, -
}

1
2
3
4
5
6 Thread2: :

7 void mMain(..) {

8 mState = mThread->State
9

}

®What if mThread is not initialized?

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L11.36

February 25, 2019

ORDER VIOLATION - SOLUTION

m Use condition variable to enforce order

1 pthread mutex t mtLock = PTHREAD MUTEX INITIALIZER;
2 pthread cond t mtCond = PTHREAD COND_ INITIALIZER;
3 int mtInit = 0;
4
5 Thread 1::
& void init () {
7
8 mThread = PR CreateThread (mMain,..) ;
9
10 // signal that the thread has been created.
11 pthread mutex lock(amtLock) ?
12 mtInit = 1;
13 pthread cond signal (amtCond);
14 pthread mutex unlock(&mtLock) ;
15
16 1}
19
18 Thread2::
19 wvoid mMain(..){
20
TCSS422: Operating Systems [Winter 2019
February 25, 2019 School of Er?gineerigngyand Teihnology, Uni]versity of Washington - Tacoma L1137

Slides by Wes J. Lloyd L11.18

TCSS 422 A — Winter 2019
School of Engineering and Technology

ORDER VIOLATION - SOLUTION 2

21 // wait for the thread to be initialized ..
22 pthread mutex lock(&mtLock) ;

23 while (mtInit == 0)

24 pthread cond wait (&mtCond, &mtLock):
25 pthread mutex unlock(&mtLock) ;

26

27 mState = mThread->»State;

28

29 }

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 25, 2019

L11.38

NON-DEADLOCK BUGS - 1

=97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

®m Consider what is involved in “spotting” these
bugs in code

® Desire for automated tool support (IDE)

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.39

Slides by Wes J. Lloyd

2/25/2019

L11.19

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
* How do we know if all instances of its use are shared?
Can some non-synchronized (non-atomic) uses be legal?
Before threads are created, after threads exit
Must verify the scope

® Order violation
= Must consider all variable accesses
= Must known desired order

TCSS422: Operating Systems [Winter 2019]

February 25,2013 School of Engineering and Technology, University of Washington - Tacoma

L11.40

DEADLOCK BUGS

® Presence of a cycle in code
® Thread 1 acquires lock L1, waits for lock L2
® Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:
Holds
lock(Ll); lock(L2); — | Zock 11
lock (1L2) ; lock (L1);
by S
®m Both threads can block, unless ?g 3;
one manages to acquire both locks £ g
Lock L2
Holds

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.41

Lloyd

2/25/2019

L11.20

TCSS 422 A — Winter 2019

School of Engineering and Technology

® Complex

® Encapsul
= Easy-to-

= Conside

REASONS FOR DEADLOCKS

code

= Must avoid circular dependencies - can be hard to find...

ation hides potential locking conflicts
use APIs embed locks inside

= Programmer doesn’t know they are there

r the Java Vector class:

1 Vector v1,v2;

2 v1.AddAll (v2):

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.42

C

ONDITIONS FOR DEADLOCK

Condition

Mutual Exclusion

Description

Threads claim exclusive control of resources that they require.

= Four conditions are required for dead lock to occur

Hold-and-wait

Threads hold resources allocated to them while waiting for additional
resources

No preemption

Resources cannot be forcibly removed from threads that are holding them.

Circular wait

There exists a circular chain of threads such that each thread holds one more

resources that are being requested by the next thread in the chain

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.43

Slides by Wes J. Lloyd

2/25/2019

L11.21

TCSS 422 A — Winter 2019

School of Engineering and Technology

PREVENTION - MUTUAL EXCLUSION

® Build wait-free data structures

= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

®m C pseudo code for CompareAndSwap
® Hardware executes this code atomically

1
2
3
4
5
6
7

}

int CompareAndSwap(int *address, int expected, int new) {

if (*address == expected) {
*address = new;
return 1y // success
}

return 0;

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.44

PREVENTION - MUTUAL EXCLUSION - 2

® Recall atomic increment

S I VI

void AtomicIncrement (int *value, int amount) {

do{
int old = *value;
}while(CompareAndSwap (value, old, old+amount)==0);

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
® When it runs it is ALWAYS atomic (at HW level)

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.45

Slides by Wes J. Lloyd

2/25/2019

L11.22

TCSS 422 A — Winter 2019
School of Engineering and Technology

MUTUAL EXCLUSION: LIST INSERTION

®m Consider list insertion

B e S T SV SR

void insert(int walue) {

node t * n = malloc(sizeof(node t));
assert(n != NULL);

n->value = value ;

n->next = head;

head = n;

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.46

MUTUAL

EXCLUSION - LIST INSERTION - 2

" Lock based implementation

W om =l W

void insert (int wvalue) {

node t * n = malloc(sizeof(node_t)):;

assert(n != NULL);

n->value = value ;

lock(listlock); // begin critical section
n->»next = head;

head = n;

unlock(listlock) ; //end critical section

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.47

Slides by Wes J. Lloyd

2/25/2019

L11.23

TCSS 422 A — Winter 2019 2/25/2019
School of Engineering and Technology

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

void insert (int wvalue) {
node_t *n = malloc(sizeof(node_ t));
assert(n != NULL);
n->value = value;
do {
n->next = head;
} while (CompareAndSwap (&head, n->next, n));

W Joy Ul WwWN

mAssign &head to n (new node ptr)
= Only when head = n->next

TCSS422: Operating Systems [Winter 2019]

February 25,2013 School of Engineering and Technology, University of Washington - Tacoma

L11.48

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

: Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

CHclanwart resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.49

Slides by Wes J. Lloyd L11.24

TCSS 422 A — Winter 2019
School of Engineering and Technology

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
® Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) ;
lock(Ll):
lock (L2) ;

mo W

unlock (prevention) ;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

® Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

® Encapsulation: consider the Java Vector class...

TCSS422: Operating Systems [Winter 2019]

February 25,2013 School of Engineering and Technology, University of Washington - Tacoma

L11.50

CONDITIONS FOR DEADLOCK

Mutual Exclusion | Threads claim exclusive control of resources that they require.

= Four conditions are required for dead lock to occur

Condition Description

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

*No preemption | Resources cannot be forcibly removed from threads that are holding them.

Circular wait

resources that are being requested by the next thread in the chain

There exists a circular chain of threads such that each thread holds one more

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.51

Slides by Wes J. Lloyd

2/25/2019

L11.25

TCSS 422 A — Winter 2019
School of Engineering and Technology

unavailable...
= pthread_mutex_trylock() - try once

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if

= pthread_mutex_timedlock() - try and wait awhile

top:
lock(Ll):
if(tryLock(n2) == -1){
unlock(Ll1);
goto top;

oy o W

}

®Eliminates deadlocks

NO
STOPPING

ANY
TIME

TCSS422: Operating Systems [Winter 2019]

February 25,2013 School of Engineering and Technology, University of Washington - Tacoma

L11.52

®Can lead to livelock

top:
lock(Ll) ;
if(tryLock(L2) == -1){
unlock(Ll) #
goto top;

[NI B = OV RN e

}

= Two threads execute code in parallel 2>
always fail to obtain both locks

= Fix: add random delay
=Allows one thread to win the

4

livelock race! ' 72

NO PREEMPTION - LIVELOCKS PROBLEM

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.53

Slides by Wes J. Lloyd

2/25/2019

L11.26

TCSS 422 A — Winter 2019
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

resources that are being requested by the next thread in the chain

: . There exists a circular chain of threads such that each thread holds one more
Circular wait

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 25, 2019 111.54

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code

= Always acquire locks in same order
L1, L2, L3, ..
*Never mix: L2, L1, L3;L2,L3,L1; L3, L1, L2...

®Must carry out same ordering through entire
program

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 25, 2019

L11.55

Slides by Wes J. Lloyd

2/25/2019

L11.27

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

®Consider a smart scheduler

=Scheduler knows which locks threads use

®m Consider this scenario:
=4 Threads (T4, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

T1 T2 T3 T4
L1 yes yes no no
L2 yes yes yes no

TCSS422: Operating Systems [Winter 2019]

February 25,2013 School of Engineering and Technology, University of Washington - Tacoma

L11.56

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

CPU 1

CPU 2

®No deadlock can occur

®m Consider:

T1 T2 T3 T4
L1 yes yes yes no
L2 yes yes yes no

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.57

Lloyd

2/25/2019

L11.28

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

INTELLIGENT SCHEDULING - 3

®m Scheduler produces schedule

m Scheduler must be conservative and not take risks
= Slows down execution - many threads

® There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L11.58

February 25, 2019

DETECT AND RECOVER

® Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

® How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

B Many database systems employ deadlock detection and
recovery techniques.

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L11.59

February 25, 2019

Lloyd

2/25/2019

L11.29

TCSS 422 A — Winter 2019
School of Engineering and Technology

CHAPTER 13:
ADDRESS SPACES

TCSS422: Operating Systems [Winter 2019]

bebruanyi2oR2018 School of Engineering and Technology, University of Washington -

OBJECTIVES - MEMORY VIRTUALIATION

® Chapter 13
= Introduction to memory virtualization
= The address space
= Goals of OS memory virtualization

= Chapter 14
= Memory API
= Commonh memory errors

= Chapter 15
= Address translation
= Base and bounds
= HW and OS Support

® Chapter 16
= Memory segments, fragmentation

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.61

Slides by Wes J. Lloyd

2/25/2019

L11.30

TCSS 422 A — Winter 2019
School of Engineering and Technology

MEMORY VIRTUALIZATION

® What is memory virtualization?

® This is not “virtual” memory,
= Classic use of disk space as additional RAM

= When available RAM was low

= Less common recently

TCSS422: Operating Systems [Winter 2019]

February 25,2013 School of Engineering and Technology, University of Washington - Tacoma

L11.62

MEMORY VIRTUALIZATION - 2

® Presentation of system memory to each process

® Appears as if each process can access the entire
machine’s address space

® Each process’s view of memory is isolated from others
®m Everyone has their own sandbox
Process A

Process B Process C

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.63

Slides by Wes J. Lloyd

2/25/2019

L11.31

TCSS 422 A — Winter 2019
School of Engineering and Technology

E |[solation

®E Protection

MOTIVATION FOR

® Easier to program
= Programs don’t need to understand special memory models

=" From other processes: easier to code

= From other processes
= From programmer error (segmentation fault)

MEMORY VIRTUALIZATION

®m Abstraction enables sophisticated approaches to manage
and share memory among processes

February 25, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L11.64

= Poor memory utilization
= Little abstraction

OKB

64KB

max

EARLY MEMORY MANAGEMENT

®m Load one process at a time into memory

Operating System
(code, data, etc.)

Current
Program
(code, data, etc.)

Physical Memory

February 25, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L11.65

Slides by Wes J. Lloyd

2/25/2019

L11.32

TCSS 422 A — Winter 2019
School of Engineering and Technology

processes

= Solution>

MULTIPROGRAMMING

WITH SHARED MEMORY

® Later machines supported running multiple

= Swap out processes during I/0 waits to
increase system utilization and efficiency

®m Swap entire memory of a process to disk
for context switch

® Too slow, especially for large processes

= Leave processes in memory

® Need to protect from errant memory
accesses in a multiprocessing environment

0KB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

Free

Process C

(code, data, etc.)

Process B

(code, data, etc.)

Free

Process A

(code, data, etc.)

Free

Free

Physical Memory

February 25, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L11.66

=Stack
=Heap

= Example:

ADDRESS SPACE

® Easy-to-use abstraction of physical
memory for a process

® Main elements:
*Program code

16KB address space

1KB

2KB

15KB

16KB

Program Code

Heap

l

(free)

T

Stack

Address Space

February 25, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L11.67

Slides by Wes J. Lloyd

2/25/2019

L11.33

TCSS 422 A — Winter 2019

School of Engineering and Technology

= Code
= Program code

® Stack

ADDRESS SPACE - 2

= Program counter (PC)
= Local variables

= Parameter variables

= Return values (for functions)

® Heap

= Dynamic storage

= Malloc() new()

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

l

(free)

T

Stack

Address Space

February 25, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L11.68

® Program code

= Static size

ADDRESS SPACE - 3

® Heap and stack
= Dynamic size

= Grow and shrink during program execution
= Placed at opposite ends

® Addresses are virtual

= They must be physically mapped by the 0S

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

l

(free)

T

Stack

Address Space

February 25, 2019

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

L11.69

Slides by Wes J. Lloyd

2/25/2019

L11.34

TCSS 422 A — Winter 2019
School of Engineering and Technology

VIRTUAL ADDRESSING

= Every address is virtual

=0S translates virtual to physical addresses

}

#include <stdio.h>
#include <stdlib.h>

int main(int arge, char *argvI[]){

printf("location of cede : %p\n", (void *) main):
printf("location of heap : %p\n", (void *) malloc(l));
int x = 3;

printf("location of stack : %p\n", (void *) &x):
return x;

= EXAMPLE: virtual.c

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.70

VIRTUAL ADDRESSING - 2

Address Space

= Qutput from 64-bit Linux: e Code
(Text)

0x401000
location of code: 0x400686 Data
location of heap: 0x1129420 Exci2008 s

location of stack: Ox7ffe040d77e4 Pl l

heap
(free)
stack
0x7ffSca28000 St]ck

Ox7fff3ca42000

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.71—‘

Slides by Wes J. Lloyd

2/25/2019

L11.35

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

GOALS OF

OS MEMORY VIRTUALIZATION

® Transparency
= Memory shouldn’t appear virtualized to the program

= 0S multiplexes memory among different jobs behind the
scenes

® Protection
= [solation among processes
= OS itself must be isolated

= One program should not be able to affect another
(or the 0S)

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma LiL72

February 25, 2019

GOALS - 2

= Efficiency
*Time
Performance: virtualization must be fast

=Space
Virtualization must not waste space
Consider data structures for organizing memory
Hardware support TLB: Translation Lookaside Buffer

® Goals considered when evaluating memory
virtualization schemes

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1173

February 25, 2019

Lloyd

2/25/2019

L11.36

TCSS 422 A — Winter 2019
School of Engineering and Technology

CHAPTER 14: THE
MEMORY API

TCSS422: Operating Systems [Winter 2019]

bebruanyi2oR2018 School of Engineering and Technology, University of Washington -

MALLOC

#include <stdlib.h>

void* malloc(size t size)

= Allocates memory on the heap
Esize_t unsigned integer (must be +)
m sjze size of memory allocation in bytes

= Returns
m SUCCESS: A void * to a memory address
= FAIL: NULL

m sizeof() often used to ask the system how large a given
datatype or struct is

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 25, 2019

L11.75

Slides by Wes J. Lloyd

2/25/2019

L11.37

TCSS 422 A — Winter 2019
School of Engineering and Technology

® Static array of 10 ints |

SIZEOF()

® Not safe to assume int *x = malloc (10 * sizeof (int)):
a q intf (“%$d\n”, sizeof 5
data type sizes using s sl amiaiiuni
different compilers, | a
systems
® Dynamic array of 10 ints int x[101;

printf (*$d\n”, sizeof (X))

40

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.76

FREE()

#include <stdlib.h>

void free(void* ptr)

® Free memory allocated with malloc()
® Provide: (void *) ptr to malloc’d memory

® Returns: nothing

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.77

Slides by Wes J. Lloyd

2/25/2019

L11.38

TCSS 422 A — Winter 2019
School of Engineering and Technology

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;

return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()

{
int * X = NULL;
X = set_magic_number_a();
printf("The magic number
set_magic_number_b();
printf(“The magic number
return 0;

What will this code do?

is=%d\n“, *x) ;
is=%d\n“, *x) ;

78

#include<stdio.h>

int * set_magic_number_a()
{
int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main(Q)

{
int * X = NULL;
X = set_magic_number_a();
printf("The magic number
set_magic_number_bQ) ;
printf("The magic number
return O;

What will this code do?

Output:

$./pointer error

The magic number is=53247
The magic number is=11111

We have not changed *x but

the value has changed!!
Why?

is=%d\n“, *x);

is=%d\n“, *x) ;

79

Slides by Wes J. Lloyd

2/25/2019

L11.39

TCSS 422 A — Winter 2019
School of Engineering and Technology

Slides by Wes J.

DANGLING POINTER (1/2)

® Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’'s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

® The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L11.80

February 25, 2019

DANGLING POINTER (2/2)

mFortunately in the case, a compiler warning
is generated:

$ g++ -0 pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local

variable ‘a’ returned [enabled by default]

®This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

TCSS422: Operating Systems [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma L1181

February 25, 2019

Lloyd

2/25/2019

L11.40

TCSS 422 A — Winter 2019
School of Engineering and Technology

CALLOC()

#tinclude <stdlib.h>

void *calloc(size t num, size t size)

® Allocate “C”"lear memory on the heap

® Calloc wipes memory in advance of use...

" size_t num : number of blocks to allocate
" size_t size:size of each block(in bytes)

® Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@@F

TCSS422: Operating Systems [Winter 2019]

February 25,2013 School of Engineering and Technology, University of Washington - Tacoma

L11.82

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size t size)

® Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

calloc, or realloc
msize_ t size: New size for the memory block(in bytes)

m EXAMPLE: realloc.c
= EXAMPLE: nom.c

® void *ptr: Pointer to memory block allocated with malloc,

TCSS422: Operating Systems [Winter 2019]

February 25, 2019 School of Engineering and Technology, University of Washington - Tacoma

L11.83

Slides by Wes J. Lloyd

2/25/2019

L11.41

TCSS 422 A — Winter 2019

School of Engineering and Technology

DOUBLE FREE

int *x =

free(x); // fre

free(x); /,

of (int)) £f

alloc

2KB

16KB

allocated

P

l Heap

(free)

T Stack

2KB

Address Space

®m Can’t deallocate twice
®m Second call core dumps

2KB

free (x)
—_—

X 16KB

freed

i Heap

(free)

T Stack

2KB(invalid)

Address Space

free (x)
—

Undefined
Error

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.84

" brk(), sbrk()

= See man page

SYSTEM CALLS

=" Mmap(), munmap()

m Used to change data segment size (the end of the heap)
® Don’t use these

® Can be used to create an extra independent “heap” of memory
for a user program

February 25, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L11.85

Slides by Wes J. Lloyd

2/25/2019

L11.42

TCSS 422 A — Winter 2019 2/25/2019
School of Engineering and Technology

QUESTIONS

Slides by Wes J. Lloyd L11.43

