
Page 1 of 8

TCSS 422: Operating Systems School of Engineering and Technology
Winter 2019 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss422 Instructor: Wes Lloyd

Assignment 3
Linux Kernel Module – Page Table Walker

Due Date: Friday March 15th, 2019 @ 11:59 pm
Version: 0.10

Objective
The purpose of this assignment is gain experience writing code that executes in kernel (protected) mode
in Linux by implementing a Linux Kernel Module. The scope of this assignment has been reduced to
compensate for the abbreviated Winter Quarter. Some functionality is now optional, and is available as
extra credit. Students are encouraged to complete the full unaltered assignment as time permits. The
original goal of the assignment is to implement a Page Table Walker kernel module that generates a
report that dereferences the memory pages of processes to determine the number of pages that are
allocated contiguously vs. non-contiguously in physical memory. Walking the page tables is now
optional. The revised goal of the assignment is to build a kernel module that traverses the list of
running processes and generates report output that displays the process ID and process name of all
processes with PID > 650. This report output from the kernel module should be made to the kernel log
files (/var/log/syslog in Ubuntu) and to a Linux “proc” file under the “/proc” directory.

Output should be generated in comma separated value (CSV) format.
The format is shown below. Output of the columns “contig_pages”, “noncontig_pages” and
“total_pages” is optional.

PROCESS REPORT:
proc_id,proc_name,contig_pages,noncontig_pages,total_pages
654,auditd,95,353,448
663,audispd,61,180,241
665,sedispatch,54,202,256
679,rsyslogd,545,443,988
680,smartd,177,406,583
. . .
5626,kworker/0:2,315,500,815
5641,kworker/3:0,315,500,815
6165,sleep,34,121,155
6182,cat,32,120,152
TOTALS,,218407,124327,342734

The first line says “PROCESS REPORT:”.
The second line is a comma-separated header line describing the columns. The columns are proc_id for
the process ID, proc_name for the process name (the comm field of task_struct).

Page 2 of 8

Optional columns include: Contig_pages which is the number of contiguous pages, noncontig_pages
which is the number of non-contiguous pages, and total_pages which is the total number of memory
pages for the process.

The last line of the report is optional. The last line displays TOTALS in the first cell, a blank value in the
second cell and provide a sum of the total number of contiguous pages, total number of non-contiguous
pages, and the total number of pages for all processes with PID > 650. All of the optional outputs are
required for implementing the extra credit.

For walking the page table, it should be possible to export the CSV output to a spreadsheet to support
further analysis of the data. (note: it is non-trivial to divide to calculate averages in kernel mode.)

For example, when completing this exercise on a Ubuntu 16.04 VM, the average % of contiguous pages
per process was ~63.94% for process pages (PIDs > 650). There were 400,316 contiguous pages,
225,715 non-contiguous pages of a total of 626,031 total memory pages.

Example Hello World Module
A sample kernel module is here:
http://faculty.washington.edu/wlloyd/courses/tcss422/assignments/hello_module.tar.gz

To extract the sample kernel module:
tar xzf hello_module.tar.gz

To build the sample module:
cd hello_module/
make

To remove a previously installed the module:
sudo rmmod ./helloModule.ko

To install a newly built module:
sudo insmod ./helloModule.ko

This sample kernel module prints messages to the kernel logs.
The “dmesg” command provides a command to interface with kernel log messages, but it is simple
enough to just trace the output using:

sudo tail –fn 50 /var/log/messages

*** THE KERNEL MODULE SHOULD BE RENAMED TO “procReport” ***
FAILURE TO RENAME THE MODULE WILL RESULT IN A 10 point deduction.

The kernel module should produce output as in the example descried above.

IF SOME FUNCTIONALITY IS MISSING IN YOUR KERNEL MODULE, PLEASE FOLLOW THE OUTPUT
FORMAT AND USE PLACEHOLDERS.

Page 3 of 8

To support development, it may be helpful to begin by writing code that sends output to the system log
files using printk, and then later, go back and refactor to send output to the proc file. The proc file has
been deemphasized in importance for this assignment.

Here are some references describing how to create the proc file kernel module interface:

https://linux.die.net/lkmpg/

https://linux.die.net/lkmpg/x769.html

http://tuxthink.blogspot.ch/2013/10/creating-read-write-proc-entry-in.html

http://stackoverflow.com/questions/8516021/proc-create-example-for-kernel-module/
Hint: Useful proc file example

Robert Oliver provides a helpful how-to Linux kernel module using Ubuntu 16.04 here:
https://blog.sourcerer.io/writing-a-simple-linux-kernel-module-d9dc3762c234

A good starting point is to first iterate the set of processes in Linux, and print out the proc ID and name.
This link, Chapter #3, "The Process Family Tree", should be helpful:
https://notes.shichao.io/lkd/ch3/

Kernel modules should have a name in the /proc directory.
Please name your “/proc” file as: “proc_report”.

OPTIONAL: Walking the Page Tables - Implementation and Constraints
An excellent starting point is provided from this stack overflow post regarding performing virtual to
physical page address translations. But this example is only for 4-levels of Linux paging:

http://stackoverflow.com/questions/20868921/traversing-all-the-physical-pages-of-a-process

The code to walk the memory page tables is as follows:
Each Linux process has a field in task_struct called “mm” which means “memory map”.
The memory map contains a list of contiguous blocks of virtual memory addresses (vma). Each virtual
memory block has a start and an end address demarking the contiguous set of virtual memory pages.
We walk these virtual pages and ask our virtual to physical address translation function (virt2phys) to
translate our virtual address to a physical address. Once the physical address is known, it is possible to
determine, for each process, how many of the pages are adjacent in physical RAM.

Here is code to obtain the physical address of a memory page.

struct vm_area_struct *vma = 0;
unsigned long vpage;
if (task->mm && task->mm->mmap)
 for (vma = task->mm->mmap; vma; vma = vma->vm_next)
 for (vpage = vma->vm_start; vpage < vma->vm_end; vpage += PAGE_SIZE)
 unsigned long physical_page_addr = virt2phys(task->mm, vpage);

Page 4 of 8

The function virt2phys() must be implemented based on the following pseudo code.
Note if the virtual page is unmapped, the *_none() function returns 0 and the virtual page can be
ignored.

//...
//Where virt2phys would look like this:
//...

pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
struct page *page;
pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))
 return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))
 return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))
 return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))
 return 0;
if (!(pte = pte_offset_map(pmd, vpage)))
 return 0;
if (!(page = pte_page(*pte)))
 return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
// handle unmapped page
if (physical_page_addr==70368744173568)
 return 0;
return physical_page_addr;

Essentially above, the virtual memory areas of a process are walked. VMAs are described by the struct
vm_area_struct. A linked list is provided which can be walked to obtain the virtual addresses.

For virt2phys, implement a function based on the code above that takes in a task->mm and a vpage to
then return an unsigned long address.

For this assignment analyze only analyze PIDs > 650.

If virt2phys should return 0 at one of the stages, for example while translating either the pgd, pud, pmd,
or pte, it is ok for this assignment to ignore the 0, and just keep looping. Treat a 0 as an
unmapped/untranslatable page entry for this assignment.

Linux provides structures for a 5-level page table where pgd_t is the highest-level page directory, p4d_t
is the fourth-level page directory, pud_t is the upper page directory, pmd_t is the middle page directory,
and pte_t is a page table entry. There is no guarantee that all of these 5-levels will be physically backed

Page 5 of 8

by all HW (CPUs) or all specific compilations of the Linux kernel. But Ubuntu on VirtualBox with a kernel
>= 4.11 should work.

pgd_t is the page directory type (5th level)
p4d_t is the page directory type (4th level)
pud_t is the page upper directory type (3rd level)
pmd_t is the page middle directory type (2nd level)
pte_t is the page table entry type (1st level)

pgd_offset(): returns pointer to the PGD (page directory) entry of an address, given a pointer to the
specified mm_struct

p4d_offset(): returns pointer to the P4D (level 4 page directory) entry of an address, given a pointer to
the specified mm_struct

pud_offset(): returns pointer to the PUD entry (upper pg directory) entry of an address, given a pointer
to the specified PGD entry.

pmd_offset(): returns pointer to the PMD entry (middle pg directory) entry of an address, given a
pointer to the specified PUD entry.

pte_page(): pointer to the struct page() entry corresponding to a PTE (page table entry)

pte_offset_map(): Yields an address of the entry in the page table that corresponds to the provided
PMD entry. Establishes a temporary kernel mapping which is released using pte_unmap().

Reference slides describing Linux virtual memory areas are here:
http://www.cs.columbia.edu/~krj/os/lectures/L17-LinuxPaging.pdf

For determining contiguous page mappings, just calculate the next address by adding PAGE_SIZE to the
current page address. If the next page in the process’s virtual memory space is mapped to the current
page’s physical location plus PAGE_SIZE then this is considered a contiguous page – record a “tick” for a
contiguous mapping. IF not, record a tick for a “non-contiguous” mapping.

Page 6 of 8

Grading
This assignment will be scored out of 70* points. (70/70)=100% *-adjusted as needed

Rubric:
90 possible points, 20 points are available as extra credit.

Report Toal: 50 points
15 points Output of the PID for processes with PID > 650
15 points Output of the process name for processes with PID > 650
5 points OPTIONAL: Output of the number of contiguous pages for PIDs

>>> 5 points for at least one PID
>>> 5 points for all PIDs > 650

5 points OPTIONAL: Output of the number of non-contiguous pages for PIDs
>>> 5 points for at least one PID
>>> 5 points for all PIDs > 650

5 points OPTIONAL: Output of the number of total pages for PIDs
>>> 5 points for at least one PID
>>> 5 points for all PIDs > 650

5 points OPTIONAL: Output the total: # of contiguous pages, # of non-contiguous pages,
and # of pages for all processes with PID > 650
>>> 2 points for total # of contiguous pages
>>> 2 points for total # of non-contiguous pages
>>> 1 point for total pages

Output Total: 20 points
10 points Report output is to a Linux proc file named /proc/proc_report
 >>> 5 points - decoupling output routines from report generation
10 points Report output is sent to the kernel log file

>>> 5 points - decoupling output routines from report generation

Miscellaneous: 20 points
5 points Kernel module builds, installs, uninstalls
5 points Following the Output requirements as described (even with missing output)
5 points Kernel module does not crash computer
5 points Coding style, formatting, and comments

Page 7 of 8

What to Submit
For this assignment, submit a tar gzip archive as a single file upload to Canvas.

Tar archive files can be created by going back one directory from the kernel module code with “cd ..”,
then issue the command “tar czf hello_module.tar.gz hello_module”. Name the file
the same as the directory where the kernel module was developed but with “.tar.gz” appended at the
end: tar czf <module_dir>.tar.gz <module_dir>.

Please rename modules to something other than hello_module.
To rename a directory in Linux use: “mv hello_module my_proc_module”.

Pair Programming (optional)
Optionally, this programming assignment can be completed with two person teams.

If choosing to work in pairs, only one person should submit the team’s tar gzip archive to Canvas.

Additionally, EACH member of a pair programming team must provide an effort report of team
members to quantify team contributions for the overall project. Effort reports must be submitted
INDEPENDENTLY and in confidence (i.e. not shared) by each team member to capture each person’s
overall view of the teamwork and outcome of the programming assignment. Effort reports are not used
to directly numerically weight assignment grades.

Effort reports should be submitted in confidence to Canvas as a PDF file named: “effort_report.pdf”.
Google Docs and recent versions of MS Word provide the ability to save or export a document in PDF
format.

Distribute 100 points for the categories to reflect each teammate’s contribution for: research, design,
coding, testing. Effort scores should add up to 100 for each category. Even effort 50%-50% is reported
as 50 and 50. Please do not submit 50-50 scores for all categories. This is not necessarily realistic or
possible. Ratings should reflect an honest confidential assessment of team member contributions. 50-
50 ratings and non-confidential scorings run the risk of an honor code violation.

Here is an effort report for a pair programming team (written from the point of view of Jane Smith):

1. John Doe
Research 24
Design 33
Coding 71
Testing 29

2. Jane Smith
Research 76
Design 67
Coding 29
Testing 71

Team members may not share their effort reports, but should submit them confidentially in Canvas as a
PDF file. Failure of one or both members to submit the effort report will result in both members
receiving NO GRADE on the assignment… (considered late until both are submitted)

Page 8 of 8

Disclaimer regarding pair programming:
The purpose of TCSS 422 is for everyone to gain experience programming in C while working with operating
system and parallel coding. Pair programming is provided as an opportunity to harness teamwork to tackle
programming challenges. But this does not mean that teams consist of one champion programmer, and a
second observer simply watching the champion! The tasks and challenges should be shared as equally as
possible.

Change History

Version Date Change
0.1 02/27/2019 Original Version

