
TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.1Slides by Wes J. Lloyd

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Lock Based Data Structures,
Condition Variables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Quiz 2 Review

 Tutorial 1 Questions  

 Homework 1 Questions

 Feedback from 1/31

 Ch. 29

 Lock Based Data Structures

 Ch. 30 (start)

 Condition Variables

 Practice midterm

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.2

OBJECTIVES



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.2Slides by Wes J. Lloyd

 For lock implementation, do we want:
 Correctness, fairness, OR performance
 Correctness, fairness, AND performance
 Do we want at least two of the three for a good solution?

 Evaluation criteria apply to both:
 Implementation of locks within a language (e.g. C)
 Implementation of locking within a user program

 Correctness: locks must be correct to be usable.
Must avoid deadlock, race conditions 

 Performance and fairness are never perfect 
 Best solutions are correct, while offering some balance of 

performance and fairness.
 Performance and fairness aren’t directly related

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.3

FEEDBACK FROM 1/31

 How does lock granularity impact correctness, fairness, and/or 
per formance of user  programs?

 Fine grained locking increasing program complexity leading to 
greater potential for race conditions, dead lock from programmer 
error

 Fine grained locking potentially decreases per formance by 
increasing overhead for obtaining a large number of locks
 Coarse grained locking results in more blocked threads, less parallelism, 

and slower program performance

 With fine grained locking, there should be less competit ion for each 
individual lock, making fairness simpler to provide
 Coarse grained locks increases competition for each lock

 More opportunities for lock starvation 

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.4

FEEDBACK - 2



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.3Slides by Wes J. Lloyd

CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES

February 5, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L9.5

Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.6

LOCK-BASED
CONCURRENT DATA STRUCTURES



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.4Slides by Wes J. Lloyd

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.7

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.8

SLOPPY COUNTER - THRESHOLD VALUE S



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.5Slides by Wes J. Lloyd

 Simplification - only basic l ist operations shown

 Structs and initialization:

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.9

CONCURRENT LINKED LIST - 1

 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.10

CONCURRENT LINKED LIST - 2



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.6Slides by Wes J. Lloyd

 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks 

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.11

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.12

CONCURRENT LINKED LIST



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.7Slides by Wes J. Lloyd

 Init and Insert

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.13

CCL – SECOND IMPLEMENTATION

 Lookup

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.14

CCL – SECOND IMPLEMENTATION - 2



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.8Slides by Wes J. Lloyd

 Using a single lock for entire l ist is not very performant

 Users must “wait” in l ine for a single lock to access/modify 
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L9.15

CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 
same time

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.16

MICHAEL AND SCOTT CONCURRENT QUEUES



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.9Slides by Wes J. Lloyd

 Remove from queue

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.17

CONCURRENT QUEUE

 Add to queue

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.18

CONCURRENT QUEUE - 2



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.10Slides by Wes J. Lloyd

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list 

 One lock per hash (bucket)

 Hash bucket is a linked lists

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.19

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.20

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.11Slides by Wes J. Lloyd

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.21

CONCURRENT HASH TABLE

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java 
/util/concurrent/atomic/package-summary.html

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.22

LOCK-FREE DATA STRUCTURES



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.12Slides by Wes J. Lloyd

QUESTIONS


