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 For lock implementation, do we want:
 Correctness, fairness, OR performance
 Correctness, fairness, AND performance
 Do we want at least two of the three for a good solution?

 Evaluation criteria apply to both:
 Implementation of locks within a language (e.g. C)
 Implementation of locking within a user program

 Correctness: locks must be correct to be usable.
Must avoid deadlock, race conditions 

 Performance and fairness are never perfect 
 Best solutions are correct, while offering some balance of 

performance and fairness.
 Performance and fairness aren’t directly related
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FEEDBACK FROM 1/31

 How does lock granularity impact correctness, fairness, and/or 
per formance of user  programs?

 Fine grained locking increasing program complexity leading to 
greater potential for race conditions, dead lock from programmer 
error

 Fine grained locking potentially decreases per formance by 
increasing overhead for obtaining a large number of locks
 Coarse grained locking results in more blocked threads, less parallelism, 

and slower program performance

 With fine grained locking, there should be less competit ion for each 
individual lock, making fairness simpler to provide
 Coarse grained locks increases competition for each lock

 More opportunities for lock starvation 
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CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES
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Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity
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LOCK-BASED
CONCURRENT DATA STRUCTURES
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 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times
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CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?
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SLOPPY COUNTER - THRESHOLD VALUE S
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 Simplification - only basic l ist operations shown

 Structs and initialization:
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CONCURRENT LINKED LIST - 1

 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks
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CONCURRENT LINKED LIST - 2
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 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks 
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CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …
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CONCURRENT LINKED LIST
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 Init and Insert
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CCL – SECOND IMPLEMENTATION

 Lookup
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 Using a single lock for entire l ist is not very performant

 Users must “wait” in l ine for a single lock to access/modify 
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?
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CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 
same time
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MICHAEL AND SCOTT CONCURRENT QUEUES
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 Remove from queue
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CONCURRENT QUEUE

 Add to queue

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.18

CONCURRENT QUEUE - 2
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Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list 

 One lock per hash (bucket)

 Hash bucket is a linked lists
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CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU
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INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.
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CONCURRENT HASH TABLE

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java 
/util/concurrent/atomic/package-summary.html

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.22

LOCK-FREE DATA STRUCTURES
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QUESTIONS


