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OBJECTIVES

 For lock implementation, do we want:
 Correctness, fairness, OR performance
 Correctness, fairness, AND performance
 Do we want at least two of the three for a good solution?

 Evaluation criteria apply to both:
 Implementation of locks within a language (e.g. C)
 Implementation of locking within a user program

 Correctness: locks must be correct to be usable.
Must avoid deadlock, race conditions 

 Performance and fairness are never perfect 
 Best solutions are correct, while offering some balance of 

performance and fairness.
 Performance and fairness aren’t directly related
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FEEDBACK FROM 1/31

 How does lock granularity impact correctness, fai rness, and/or 
per formance of user programs?

 Fine grained locking increasing program complexity leading to 
greater potential for race conditions, dead lock from programmer 
error

 Fine grained locking potentially decreases performance by 
increasing overhead for obtaining a large number of locks
 Coarse grained locking results in more blocked threads, less parallelism, 

and slower program performance

 With fine grained locking, there should be less competit ion for each 
individual lock, making fairness simpler to provide
 Coarse grained locks increases competition for each lock

 More opportunities for lock starvation 
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FEEDBACK - 2

CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES
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Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity
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LOCK-BASED
CONCURRENT DATA STRUCTURES
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 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times
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CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?
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SLOPPY COUNTER - THRESHOLD VALUE S

 Simplification - only basic list operations shown

 Structs and initialization:
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CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!
 There are two unlocks
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CONCURRENT LINKED LIST - 2

 Lookup – checks list for existence of item with key

 Once again everything is critical
 Note - there are also two unlocks 
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CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.12

CONCURRENT LINKED LIST



TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.3Slides by Wes J. Lloyd

 Init and Insert
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CCL – SECOND IMPLEMENTATION

 Lookup
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CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify 
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?
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CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 
same time
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MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue
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CONCURRENT QUEUE

 Add to queue
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CONCURRENT QUEUE - 2
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Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list 

 One lock per hash (bucket)

 Hash bucket is a linked lists
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CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU
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INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.
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CONCURRENT HASH TABLE

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java 
/uti l/concurrent/atomic/package-summary.html
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LOCK-FREE DATA STRUCTURES

QUESTIONS


