TCSS 422 A — Winter 2018 2/5/2018
Institute of Technology

OBJECTIVES

TCSS 422: OPERATING SYSTEMS
| |

= Quiz 2 Review

= Tutorial 1 Questions
Lock Based Data Structures, ¢ A = Homework 1 Questions

Condition Variables
= Feedback from 1/31

= Ch. 29
Wes J. Lond = Lock Based Data Structures
Institute of Technology = Ch. 30 (start)
University of Washington - Tacoma = Condition Variables

= Practice midterm

TCSS422: Operating Systems [Winter 2018]

(et AU (o2 G e o, I of Washington - Tacoma

February 5, 2018 TCSS422: Operating Systems [Winter 2018] | o2 |

Institute of Technology, University of Washington - Tacoma

FEEDBACK FROM 1/31

FEEDBACK - 2

= For lock Implementation, do we want: = How does lock granularity Impact correctness, falrness, and/or
= Correctness, fairness, OR performance performance of user programs?
= Correctness, falrness, AND performance = Fine grained locking increasing program complexity leading to
= Do we want at least two of the three for a good solution? greater potential for race conditions, dead lock from programmer
error
= Evaluation criteria apply to both:
= Implementation of locks within a language (e.g. C) = Fine grained locking potentially decreases performance by
= Implementation of locking within a user program Increasing overhead for obtaining a large number of locks

= Coarse grained locking results in more blocked threads, less parallelism,

= Correctness: locks must be correct to be usable.
and slower program performance

Must avoid deadlock, race conditions

= Performance and fairness are never perfect = With fine grained locking, there should be less competition for each
= Best solutions are correct, while offering some balance of individual lock, making fairness simpler to provide

performance and fairness. = Coarse grained locks increases competition for each lock

= Performance and fairness aren’t directly related = More opportunities for lock starvation

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]
(e 2 | L3 ‘ (R 1 Institute of Technology, University of Washington - Tacoma o4

LOCK-BASED

CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

CHAPTER 29 - K 3 = Considerations:
LOCK BASED - =Correctness
DATA STRUCTTURES =4 “Performance

=Lock granularity

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2018]

February 5, 2018 Institute of Technology, University of Washington - Tacoma

February 5, 2018

Slides by Wes J. Lloyd L9.1

TCSS 422 A — Winter 2018
Institute of Technology

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

Threads

scales poorly

15
X Procise
3 Sioppy
B0
§
Es
0 Traditional vs. sloppy counter
1 2 3 4 Sloppy Threshold (S) = 1024

CONCURRENT COUNTERS - PERFORMANCE

TCS5422: Operating Systems [Winter 2018]

| (e 2 e e T e G T e

| 9.7 ‘

SLOPPY COUNTER - THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

15

Time (seconds)

O+ 7T T T %
1 2 4 8 16 32 64 128 256 5121024

Sloppiness

TCSS422: Operating Systems [Winter 2018]

(1) S s 1 T, st G B e TP

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

Institute of Technology, University of Washington - Tacoma

1
2
3
4 struct _ node_t *next;
5 } node_t;
6
0 structure (one used per list)
8 _list_t {
9 node_t *head:
10 pthread_mutex_t lock:
1 } List_t;
12
13 void List_Init(list_t *L) (
14 I->head = NULL;
15 pthread_mutex_init (§L->lock, NU
16 }
17
(cont.)
Febuary 512015 TCS5422: Operating Systems [Winter 2018] | o9 ‘

CONCURRENT LINKED LIST - 2

® Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)
18 int List_Insert(list_t *L, int key) {
19 pthread mutex_lock(sL->1ock) ;
20 node_t *new = malloc(sizeof (node_t));
21 if (new == NULL) {
22 perror ("malloc”) ;
23 pthread mutex_unlock (&L->lock)
24 return -1; // fa
26 new->key = key:
27 new->next = L->head;
28 L->head = new;
29 pthread mutex_unlock(&L->lock);
30 return 0; success
31
(Cont.)
TC55422: Operating Systems [Winter 2018
(R 1 |ns(i(u(euf?rechno?o;Unive[rsixyu!Wash]ingwn—ra:oma Lo.10 |

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

Institute of Technology, University of Washington - Tacoma

(Cont.)
32
32 int List_Lookup(list_t *L, int key) {
33 pthread mutex_lock (sL->lock) ;
34 node_t *curr = L->head;
35 while (curr) {
36 if (curr->key == key) {
37 pthread mutex_unlock (&L->lock) ;
38 eturn 0; // success
39 }
40 curr = curr->next;
a1
12 pthread mutex_unlock (sL->lock) ;
13 return -1; failure
14)
February 5, 2018 TCSS422: Operating Systems [Winter 2018] | 011 ‘

CONCURRENT LINKED LIST

= First Implementation:
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TCSS422: Operating Systems [Winter 2018]

(1) e [nstueor TechnolosyUniversitylofWashinstonSTacoma!

19.12 |

Slides by Wes J. Lloyd

2/5/2018

L9.2

TCSS 422 A — Winter 2018
Institute of Technology

2/5/2018

CCL - SECOND IMPLEMENTATION

CCL - SECOND IMPLEMENTATION - 2

= |nit and Insert

¥ 0id List_Init(list_t *L) {

2 L->head = NULL;

3 pthread mutex_init(sL->lock, NULL);
4 i}

5

6 void List_Insert(list_t *I, key) {
7 r t)
8 node_t *new = malloc(sizeof (node_t));
9 if (new == NULL) {

10 perror ("malloc”) ;

11 eturn;

12)

13 new->key = key;

14

15 / just lock criti n
16 pthread mutex_lock (sL->lock) ;
17 new->next = L->head;

18 L->head = new;

19 pthread mutex_unlock (&L->lock) ;
20)

21

TCS5422: Operating Systems [Winter 2018]

(e 2 e e T e G T e

| 1913

= Lookup
(cont.)
22 int List_Lookup(list_t *L, int key) {
23 Tint rv = -1
24 pthread mutex_lock(sL->lock);
25 node_t *curr = L->head;
26 while (curr) {
27 if (curr->key == key) {
28 rv = 0;
29 break;
30 }
31 curr = curr->next;
32
33 pthread_mutex_unlock (&L->lock) ;
34 return Tv; // n th success ar
35)

February5, 2018 TCS5422: Operating Systems [Winter 2018] 014

Institute of Technology, University of Washington - Tacoma

CONCURRENT LINKED LIST PERFORMANCE

MICHAEL AND SCOTT CONCURRENT QUEUES

= Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Winter 2018]

Fetaan/bi2018 Institute of Technology, University of Washington - Tacoma

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

February 5, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma Lo.16

CONCURRENT QUEUE

CONCURRENT QUEUE - 2

= Remove from queue

1 ruct _node_t {

2 nt value;

3 struct _ node_t *next;

4 } node_t;

5

6 typ struct _queue_t (

7 node_t *head;

8 node_t *tail;

9 pthread mutex_t headLock;

10 pthread mutex_t tailLock;

11 } queue_t;

12

13 void Queue Init (queue t *q) {

14 node_t *tmp = malloc(sizeof (node_t));
15 tmp->next = NULL;

16 g->head = g->tail = tmp;

17 pthread mutex_init(sq->headLock, NULL);
18 pthread mutex_init (sq->tailLock, NULL);
19 }

20

(cont.)

TCSS422: Operating Systems [Winter 2018]

(e 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1917 ‘

Slides by Wes J. Lloyd

= Add to queue

(Cont.)
21 void Queue_Enqueue (queue_t *q, int value) {
22 node_t *tmp = malloc(sizeof (node_t));
23 assert (tmp != NULL);
24
25 tmp->value = value;
26 tmp->next = NULL;
27
28 pthread mutex_lock(sq->tailLock);
29 g->tail->next = tmp;
30 g->tail = tmp;
31 pthread mutex_unlock (sq->tailLock);
32)
(Cont.)
February5, 2018 TCS5422: Operating Systems [Winter 2018] L918

Institute of Technology, University of Washington - Tacoma

TCSS 422 A — Winter 2018
Institute of Technology

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket

= One lock per hash (bucket)
= Hash bucket is a linked lists

CONCURRENT HASH TABLE

= Bucket is implemented using a concurrent linked list

February 5, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

| 19.19

INSERT PERFORMANCE -
CONCURRENT HASH TABLE

®= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU
15

o Simple Concurrent List
X Concurrent Hash Table

Time (seconds)
=

o

x* *
10 20 30 40
Inserts (Thousands)

scales

February 5, 2018

1 define BUCKETS (101)
2
3 typedef struct _ hash_t {
4 list_t lists[BUCKETS]:
5 } hash_t; -
6
7 void Hash_Init(hash_t *H) {
8 int iz
9 for (i = 0; i < BUCKETS; i++) {
10 List_Init (sH->lists[i]);
11 }
12)
13
14 int Hash_Insert (hash_t *H, int key) {
15 int bucket = key % BUCKETS;
16 return List_Insert (sH->lists[bucket], key);
17)
18
19 int Hash_Lookup (hash_t *H, int key) {
20 Tint bucket = key % BUCKETS;
21 return List_Lookup (sH->lists[bucket], key):
22 }
TCS5422: Operating Systems [Winter 2018]
(e 2 Institute of?rechno?ugyy, Unive[rsily of Wash]inglon - Tacoma

| 1921 ‘

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/javase/7/docs/api/java
/util/concurrent/atomic/package-summary.html

TCSS422: Operating Systems [Winter 2018]
(R 1 [See et Techolo syl niersity o Washinstoniecome!

19.22

QUESTIONS

Slides by Wes J. Lloyd

2/5/2018

L9.4

