
TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.1Slides by Wes J. Lloyd

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Lock Based Data Structures,
Condition Variables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Quiz 2 Review

 Tutorial 1 Questions

 Homework 1 Questions

 Feedback from 1/31

 Ch. 29

 Lock Based Data Structures

 Ch. 30 (start)

 Condition Variables

 Practice midterm

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.2

OBJECTIVES

 For lock implementation, do we want:
 Correctness, fairness, OR performance
 Correctness, fairness, AND performance
 Do we want at least two of the three for a good solution?

 Evaluation criteria apply to both:
 Implementation of locks within a language (e.g. C)
 Implementation of locking within a user program

 Correctness: locks must be correct to be usable.
Must avoid deadlock, race conditions

 Performance and fairness are never perfect
 Best solutions are correct, while offering some balance of

performance and fairness.
 Performance and fairness aren’t directly related

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.3

FEEDBACK FROM 1/31

 How does lock granularity impact correctness, fai rness, and/or
per formance of user programs?

 Fine grained locking increasing program complexity leading to
greater potential for race conditions, dead lock from programmer
error

 Fine grained locking potentially decreases performance by
increasing overhead for obtaining a large number of locks
 Coarse grained locking results in more blocked threads, less parallelism,

and slower program performance

 With fine grained locking, there should be less competit ion for each
individual lock, making fairness simpler to provide
 Coarse grained locks increases competition for each lock

 More opportunities for lock starvation

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.4

FEEDBACK - 2

CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L9.5

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.6

LOCK-BASED
CONCURRENT DATA STRUCTURES

TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.2Slides by Wes J. Lloyd

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.7

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.8

SLOPPY COUNTER - THRESHOLD VALUE S

 Simplification - only basic list operations shown

 Structs and initialization:

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.9

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!
 There are two unlocks

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.10

CONCURRENT LINKED LIST - 2

 Lookup – checks list for existence of item with key

 Once again everything is critical
 Note - there are also two unlocks

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.11

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.12

CONCURRENT LINKED LIST

TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.3Slides by Wes J. Lloyd

 Init and Insert

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.13

CCL – SECOND IMPLEMENTATION

 Lookup

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.14

CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.15

CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the
same time

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.16

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.17

CONCURRENT QUEUE

 Add to queue

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.18

CONCURRENT QUEUE - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/5/2018

L9.4Slides by Wes J. Lloyd

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list

 One lock per hash (bucket)

 Hash bucket is a linked lists

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.19

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.20

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.21

CONCURRENT HASH TABLE

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java
/uti l/concurrent/atomic/package-summary.html

February 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L9.22

LOCK-FREE DATA STRUCTURES

QUESTIONS

