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 What happens when a thread reaches a lock that another 
thread is holding?

 Does it wait on that line of code?  (lock line)

 Does it continually poll for the lock availability?

 pthread_block.c example
 Check for PID: ps u

 Trace PID: top –d .1 –H –p <pid>

 The thread will  block (stop executing) until  the lock is 
available
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SELECTED FEEDBACK FROM 1/29

 Please give a real example of  when to use: 
pthread_mutex_trylock() and pthread_mutex_timelock()

 Both functions return integer 0 if lock is successfully acquired 

 Both return integer error code (non-zero) otherwise

 Consider if 3 threads append text to the same fi le

 Only one thread is allowed to open the file for writing 
*at the same t ime*

 Locks can be used to synchronize access to append to the fi le

 If a thread can not acquire the fi le lock, it accumulates 
changes in a buffer, but continues to perform useful work
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FEEDBACK - 2
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 What are good habits to do when using locks to avoid bugs?

 This is upcoming in chapter 32

 What are good habits for fine-grained locking?

 Want more opportunities for parallelism in code

 Method-level locking (coarse-grained) does not provide them

 Optimal number of locks is between 1 and n locks,
where n is the number of variables being changed

 Finding optimal solution requires identifying how often 
variables wil l  be modified, and in what combinations by 
multiple threads

 This is non-trivial  thread behavior @ runtime can be random
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FEEDBACK - 3

 How much overhead does lock checking, waiting, and 
signaling have?

 All of these are kernel calls

 Making just a few system calls shouldn’t introduce too much 
overhead  

 The blog, “Measurements of system call  performance and 
overhead” provides insight:

 http://arkanis.de/weblog/2017-01-05-measurements-of-
system-call-per formance-and-overhead
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FEEDBACK - 4
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 What is the performance overhead difference between a 
user function call, and a kernel system call?

 Ordinary function calls require passing data to/from
the stack

 x86 64-bit systems perform kernel calls using 
syscall instruction

 Arguments placed into registers and syscall instruction 
transitions from user mode to kernel mode
to call kernel function
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OVERHEAD OF A LINUX C SYSTEM CALL

 Additional overhead is from CPU switching to different 
(protected) address space, CPU memory caches (TLB) may 
require updating 

 Linux kernel provides optimized kernel calls via the vDSO: 
Virtually dynamically linked shared object 
(see https://en.wikipedia.org/wiki/VDSO )

 vDSO provides optimized "virtual" system calls where a 
selected set of common kernel space routines are 
exported to user space applications for faster execution

 Linux (glibc) uses virtual system calls automatically when 
available
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OVERHEAD - 2
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Overhead of System calls:

Approximately ~20-30x
vs. user function calls
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SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation:  Correct?  Fair?  Per formant?

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will  deadlock, doesn’t miscount
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DIY: TEST-AND-SET - 2
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 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b
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COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b
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COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock
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 Cooperative instructions used together to support 
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value
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TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code
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LL/SC LOCK
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 Two instruction lock
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LL/SC LOCK - 2

 HW CPU Instruction

 Increment counter atomically -as a unit in one instruction

 Fetch and return value

 Increment by 1
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FETCH-AND-ADD
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 Can build Ticket Lock using Fetch-and-Add

 Ensures progress of all  threads (fairness)
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TICKET LOCK
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TICKET LOCK - 2

TA myturn=0
ticket=1
turn=0

TA
while (0 != 0)
acquire lock

TB myturn=1
ticket=2
turn=0

TB
while (0 != 1)
spin

TA-unlock
myturn=0
ticket=2
turn=1

TB
while (1 != 1)
acquire lock
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 Give up the CPU – instead of busy waiting…
 running ready

 Ready relinquishes the CPU for another thread (ctxt. switch)

 How does the thread get the CPU back?
 OS must opportunistically reschedule it: ready  running
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YIELD() – SYSTEM CALL

 Simple, correct

 Slow

 With long locks, waiting threads spin for entire timeslice

 Repeat comparison continuously

 Busy waiting
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HARDWARE SPIN LOCKS - SUMMARY

How To Avoid Spinning?
Need both HW & OS Support !
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 Don’t allow the OS to control your program
 Use internal Thread Queues

 Allows programmer to maintain control
 Ensure fairness, prevent starvation
 Better for synchronizing large #’s of threads

 Require OS support to add/remove threads to/from 
queue(s)

 Solaris API:
 park(): puts thread to sleep
 unpark(threadID): wakes specified thread

 Linux API: futex()
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THREAD QUEUES
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THREAD QUEUES - 2

lock unavailable; add thread to queue

Guard uses a spin-lock to protect the
critical sections in lock() and unlock()

Obtain guard lock

try to obtain actual lock

potential wakeup/waiting race



TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.13Slides by Wes J. Lloyd

 Unlock

 Note: no change to m->flag if unparking a thread

 Lock is passed to the unparked thread “directly”
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THREAD QUEUES - 3

Obtain guard lock (spin)

wake up thread from queue

release guard lock

 Thread B: context switch occurs immediately before call  to 
park()

 Thread A: releases lock, calls unpark, queue is empty

 Thread B: regains context, proceeds to lock itself forever

 Need new system call 
 setpark()- informs OS about soon to be parked thread

 Subsequent calls to unpark() are aware that ThreadB is about to park

 ThreadB’s call to park() immediately returns
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WAKEUP/WAITING RACE
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 Fast Userspace MuTEX

 Linux futex system calls similar to park() and unpark()

 Linux uses an in-kernel queue 

 Provides a futex() system call

 Provides atomic-as a unit compare-and-block operation

 Futex is a lower-level construct

 Used as building blocks for:
mutex, condition variables, semaphores

 Objective: reduce the number of system calls
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FUTEX

 futex_wait(addr, expected)
 Put calling thread to sleep
 If value @ addr != expected  return immediately

 futex_wake(addr)
 Wake one thread that is waiting on the queue

 These are not exposed as C library calls  directly
 Call futex() with FUTEX_WAIT or FUTEX_WAKE

 Use a 32-bit integer
 The leftmost bit (the +/- sign) tracks the lock state
 0 – free
 1 – locked

 Remaining 31 bits: identifies thread
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FUTEX: WRITE YOUR OWN MUTEX LOCK
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FUTEX: MUTEX_LOCK PSUEDO CODE

Void mutex_lock(int *mutex) {
int v;
/* Bit 31 was clear, we got the mutex (this is a fast lock!)
if (atomic_bit_test_set (mutex, 31) == 0)

return;
// “adds” mutex to queue
atomic_increment (mutex);
while (1)  {

// is lock available?
if (atomic_bit_test_set (mutex, 31) ==0 {

// remove mutex from queue – it has the lock now
atomic_decrement (mutex);
return;

}
// Have to wait. Make sure futex value is locked (negative)
v = *mutex;
iv (v >= 0)
continue;

// wait to be woken up when lock is available
// this is not a spin lock… (signal)
futex_wait (mutex, v);

}
}

 Interesting note: Futex bug in Redhat Linux

 https://www.infoq.com/news/2015/05/redhat-futex
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FUTEX: MUTEX UNLOCK PSUEDO CODE

Void mutex_unlock(int *mutex) {

// Adding 0x80000000 to counter results in 0 if and only if
// there are no other interested threads

if (atomic_add_zero (mutex, 0x80000000))
return;

// There are other threads waiting for this lock (mutex)
// wake one of them up..
// (e.g. dequeue it)
futex_wake (mutex);

}



TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.16Slides by Wes J. Lloyd

 Hybrid between spin-locks and yielding

 Useful if lock is about to be released

 First phase – spin lock

 Spin for some time waiting for the lock to be released

 If lock is not acquired after time expires enter phase two.

 Second phase - yield

 Thread sleeps (yields)

 Is awoken when the lock becomes free
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HYBRID - TWO PHASE LOCKS

CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES
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 Concurrent Data Structures

 Performance

 Lock Granularity
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OBJECTIVES

Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity
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LOCK-BASED
CONCURRENT DATA STRUCTURES
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COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data
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CONCURRENT COUNTER
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 Decrease counter

 Get value

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.37

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times
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CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.
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 Achieve (N) per formance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core 

 N = 1000 tps
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PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically 
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  
Why do we want counters local to each CPU Core?
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SLOPPY COUNTER
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 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters
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SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?
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THRESHOLD VALUE S



TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.22Slides by Wes J. Lloyd

 Example implementation

 Also with CPU affinity
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SLOPPY COUNTER - EXAMPLE

 Simplification - only basic l ist operations shown

 Structs and initialization:
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CONCURRENT LINKED LIST - 1
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 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks
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CONCURRENT LINKED LIST - 2

 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks 
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CONCURRENT LINKED LIST - 3
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 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …
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CONCURRENT LINKED LIST

QUESTIONS


