
TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.1Slides by Wes J. Lloyd

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Locks,
Lock Based Data Structures

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Tutorial 1 Questions

 Homework 1 Questions

 Feedback from 1/29

 Ch. 28
 Locks

 Ch. 29
 Lock Based Data Structures

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.2Slides by Wes J. Lloyd

 What happens when a thread reaches a lock that another
thread is holding?

 Does it wait on that line of code? (lock line)

 Does it continually poll for the lock availability?

 pthread_block.c example
 Check for PID: ps u

 Trace PID: top –d .1 –H –p <pid>

 The thread will block (stop executing) until the lock is
available

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.3

SELECTED FEEDBACK FROM 1/29

 Please give a real example of when to use:
pthread_mutex_trylock() and pthread_mutex_timelock()

 Both functions return integer 0 if lock is successfully acquired

 Both return integer error code (non-zero) otherwise

 Consider if 3 threads append text to the same fi le

 Only one thread is allowed to open the file for writing
at the same t ime

 Locks can be used to synchronize access to append to the fi le

 If a thread can not acquire the fi le lock, it accumulates
changes in a buffer, but continues to perform useful work

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.4

FEEDBACK - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.3Slides by Wes J. Lloyd

 What are good habits to do when using locks to avoid bugs?

 This is upcoming in chapter 32

 What are good habits for fine-grained locking?

 Want more opportunities for parallelism in code

 Method-level locking (coarse-grained) does not provide them

 Optimal number of locks is between 1 and n locks,
where n is the number of variables being changed

 Finding optimal solution requires identifying how often
variables wil l be modified, and in what combinations by
multiple threads

 This is non-trivial thread behavior @ runtime can be random

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.5

FEEDBACK - 3

 How much overhead does lock checking, waiting, and
signaling have?

 All of these are kernel calls

 Making just a few system calls shouldn’t introduce too much
overhead

 The blog, “Measurements of system call performance and
overhead” provides insight:

 http://arkanis.de/weblog/2017-01-05-measurements-of-
system-call-per formance-and-overhead

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.6

FEEDBACK - 4

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.4Slides by Wes J. Lloyd

 What is the performance overhead difference between a
user function call, and a kernel system call?

 Ordinary function calls require passing data to/from
the stack

 x86 64-bit systems perform kernel calls using
syscall instruction

 Arguments placed into registers and syscall instruction
transitions from user mode to kernel mode
to call kernel function

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.7

OVERHEAD OF A LINUX C SYSTEM CALL

 Additional overhead is from CPU switching to different
(protected) address space, CPU memory caches (TLB) may
require updating

 Linux kernel provides optimized kernel calls via the vDSO:
Virtually dynamically linked shared object
(see https://en.wikipedia.org/wiki/VDSO)

 vDSO provides optimized "virtual" system calls where a
selected set of common kernel space routines are
exported to user space applications for faster execution

 Linux (glibc) uses virtual system calls automatically when
available

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.8

OVERHEAD - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.5Slides by Wes J. Lloyd

January 31, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L8.9

January 31, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L8.10

Overhead of System calls:

Approximately ~20-30x
vs. user function calls

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.6Slides by Wes J. Lloyd

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L8.11

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: Correct? Fair? Per formant?

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will deadlock, doesn’t miscount

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.12

DIY: TEST-AND-SET - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.7Slides by Wes J. Lloyd

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.13

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.14

COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.8Slides by Wes J. Lloyd

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.15

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.16

LL/SC LOCK

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.9Slides by Wes J. Lloyd

 Two instruction lock

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.17

LL/SC LOCK - 2

 HW CPU Instruction

 Increment counter atomically -as a unit in one instruction

 Fetch and return value

 Increment by 1

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.18

FETCH-AND-ADD

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.10Slides by Wes J. Lloyd

 Can build Ticket Lock using Fetch-and-Add

 Ensures progress of all threads (fairness)

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.19

TICKET LOCK

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.20

TICKET LOCK - 2

TA myturn=0
ticket=1
turn=0

TA
while (0 != 0)
acquire lock

TB myturn=1
ticket=2
turn=0

TB
while (0 != 1)
spin

TA-unlock
myturn=0
ticket=2
turn=1

TB
while (1 != 1)
acquire lock

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.11Slides by Wes J. Lloyd

 Give up the CPU – instead of busy waiting…
 running ready

 Ready relinquishes the CPU for another thread (ctxt. switch)

 How does the thread get the CPU back?
 OS must opportunistically reschedule it: ready running

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.21

YIELD() – SYSTEM CALL

 Simple, correct

 Slow

 With long locks, waiting threads spin for entire timeslice

 Repeat comparison continuously

 Busy waiting

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.22

HARDWARE SPIN LOCKS - SUMMARY

How To Avoid Spinning?
Need both HW & OS Support !

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.12Slides by Wes J. Lloyd

 Don’t allow the OS to control your program
 Use internal Thread Queues

 Allows programmer to maintain control
 Ensure fairness, prevent starvation
 Better for synchronizing large #’s of threads

 Require OS support to add/remove threads to/from
queue(s)

 Solaris API:
 park(): puts thread to sleep
 unpark(threadID): wakes specified thread

 Linux API: futex()

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.23

THREAD QUEUES

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.24

THREAD QUEUES - 2

lock unavailable; add thread to queue

Guard uses a spin-lock to protect the
critical sections in lock() and unlock()

Obtain guard lock

try to obtain actual lock

potential wakeup/waiting race

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.13Slides by Wes J. Lloyd

 Unlock

 Note: no change to m->flag if unparking a thread

 Lock is passed to the unparked thread “directly”

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.25

THREAD QUEUES - 3

Obtain guard lock (spin)

wake up thread from queue

release guard lock

 Thread B: context switch occurs immediately before call to
park()

 Thread A: releases lock, calls unpark, queue is empty

 Thread B: regains context, proceeds to lock itself forever

 Need new system call
 setpark()- informs OS about soon to be parked thread

 Subsequent calls to unpark() are aware that ThreadB is about to park

 ThreadB’s call to park() immediately returns

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.26

WAKEUP/WAITING RACE

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.14Slides by Wes J. Lloyd

 Fast Userspace MuTEX

 Linux futex system calls similar to park() and unpark()

 Linux uses an in-kernel queue

 Provides a futex() system call

 Provides atomic-as a unit compare-and-block operation

 Futex is a lower-level construct

 Used as building blocks for:
mutex, condition variables, semaphores

 Objective: reduce the number of system calls

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.27

FUTEX

 futex_wait(addr, expected)
 Put calling thread to sleep
 If value @ addr != expected return immediately

 futex_wake(addr)
 Wake one thread that is waiting on the queue

 These are not exposed as C library calls directly
 Call futex() with FUTEX_WAIT or FUTEX_WAKE

 Use a 32-bit integer
 The leftmost bit (the +/- sign) tracks the lock state
 0 – free
 1 – locked

 Remaining 31 bits: identifies thread

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.28

FUTEX: WRITE YOUR OWN MUTEX LOCK

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.15Slides by Wes J. Lloyd

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.29

FUTEX: MUTEX_LOCK PSUEDO CODE

Void mutex_lock(int *mutex) {
int v;
/* Bit 31 was clear, we got the mutex (this is a fast lock!)
if (atomic_bit_test_set (mutex, 31) == 0)

return;
// “adds” mutex to queue
atomic_increment (mutex);
while (1) {

// is lock available?
if (atomic_bit_test_set (mutex, 31) ==0 {

// remove mutex from queue – it has the lock now
atomic_decrement (mutex);
return;

}
// Have to wait. Make sure futex value is locked (negative)
v = *mutex;
iv (v >= 0)
continue;

// wait to be woken up when lock is available
// this is not a spin lock… (signal)
futex_wait (mutex, v);

}
}

 Interesting note: Futex bug in Redhat Linux

 https://www.infoq.com/news/2015/05/redhat-futex

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.30

FUTEX: MUTEX UNLOCK PSUEDO CODE

Void mutex_unlock(int *mutex) {

// Adding 0x80000000 to counter results in 0 if and only if
// there are no other interested threads

if (atomic_add_zero (mutex, 0x80000000))
return;

// There are other threads waiting for this lock (mutex)
// wake one of them up..
// (e.g. dequeue it)
futex_wake (mutex);

}

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.16Slides by Wes J. Lloyd

 Hybrid between spin-locks and yielding

 Useful if lock is about to be released

 First phase – spin lock

 Spin for some time waiting for the lock to be released

 If lock is not acquired after time expires enter phase two.

 Second phase - yield

 Thread sleeps (yields)

 Is awoken when the lock becomes free

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.31

HYBRID - TWO PHASE LOCKS

CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES

January 31, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L8.32

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.17Slides by Wes J. Lloyd

 Concurrent Data Structures

 Performance

 Lock Granularity

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.33

OBJECTIVES

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.34

LOCK-BASED
CONCURRENT DATA STRUCTURES

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.18Slides by Wes J. Lloyd

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.35

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.36

CONCURRENT COUNTER

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.19Slides by Wes J. Lloyd

 Decrease counter

 Get value

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.37

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.38

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.20Slides by Wes J. Lloyd

 Achieve (N) per formance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core

 N = 1000 tps

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.39

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.40

SLOPPY COUNTER

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.21Slides by Wes J. Lloyd

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.41

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S What is the consequence?

 High S What is the consequence?

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.42

THRESHOLD VALUE S

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.22Slides by Wes J. Lloyd

 Example implementation

 Also with CPU affinity

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.43

SLOPPY COUNTER - EXAMPLE

 Simplification - only basic l ist operations shown

 Structs and initialization:

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.44

CONCURRENT LINKED LIST - 1

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.23Slides by Wes J. Lloyd

 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.45

CONCURRENT LINKED LIST - 2

 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.46

CONCURRENT LINKED LIST - 3

TCSS 422 A – Winter 2018
Institute of Technology

1/31/2018

L8.24Slides by Wes J. Lloyd

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

January 31, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.47

CONCURRENT LINKED LIST

QUESTIONS

