

SPIN LOCK IMPLEMENTATION						
 Operate without at "Do-it-yourself" Loo Is this lock implem 	omic-as a unit assembly instructions cks nentation: Correct? Fair? Performant?					
<pre>1 typedef // 2 3 void ini/ 4 // 0 5 mute 6 } 7 8 void loc 9 whil 10 11 mute 12 } 13 14 void unl 15 mute 16 }</pre>	<pre>structlock_t { int flag; } lock_t; t(lock_t *mutex) {</pre>					
January 31, 2018 TCSS422 Institute	: Operating Systems [Winter 2018] of Technology, University of Washington - Tacoma	L8.11				

OBJECTIVES					
Concurrent Data Structures					
Performance					
Lock Granularity					
January 31, 2018 TCSS422: Operating Systems [Winter 2018] Institute of Technology, University of Washington - Tacoma	L8.33				

PERFECT SCALING					
Achieve (N) pe	erformance gain with (N) additional resources	6			
Throughput:Transactions p	per second				
1 coreN = 100 tps					
 10 core N = 1000 tps 					
January 31, 2018	TCSS422: Operating Systems [Winter 2018] Institute of Technology, University of Washington - Tacoma	L8.39			

	SLOPPY COUNTER - 2											
■ Upd	ate thr	eshold (S) = 5		e							
= Syn	eads up	odate loo	cal CPU o	counters	3							
	Time	L ₁	L ₂	L ₃	L ₄	G						
	0	0	0	0	0	0						
	1	0	0	1	1	0						
	2	1	0	2	1	0						
	3	2	0	3	1	0						
	4	3	0	3	2	0						
	5	4	1	3	3	0						
	6	5 → 0	1	3	4	5 (from L_1)						
	7	0	2	4	5 → 0	10 (from L_4)						
	1	· · · · · · · · · · · ·			1							
January 31, 2018 TCSS422: Operating Systems [Winter 2018] Institute of Technology, University of Washington - Tacoma												

