TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Locks,

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

lanuayB L2018 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Tutorial 1 Questions
® Homework 1 Questions

® Feedback from 1/29

= Ch. 28
= Locks
= Ch. 29
= Lock Based Data Structures

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

January 31, 2018

L8.2

Lioyd

1/31/2018

L8.1

TCSS 422 A — Winter 2018

Institute of Technology

SELECTED FEEDBACK FROM 1/29

= What happens when a thread reaches a lock that another
thread is holding?

= Does it wait on that line of code? (lock line)
® Does it continually poll for the lock availability?

= pthread_block.c example
= Check for PID: pPs u
= Trace PID: top -d .1 -H -p <pid>

® The thread will block (stop executing) until the lock is
available

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L83

January 31, 2018

FEEDBACK - 2

= Please give a real example of when to use:
pthread mutex_ trylock() and pthread mutex_timelock ()

® Both functions return integer O if lock is successfully acquired
®m Both return integer error code (hon-zero) otherwise

® Consider if 3 threads append text to the same file

® Only one thread is allowed to open the file for writing
at the same time

® Locks can be used to synchronize access to append to the file

® |f a thread can not acquire the file lock, it accumulates
changes in a buffer, but continues to perform useful work

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 184

January 31, 2018

Slides by Wes J. Lloyd

1/31/2018

L8.2

TCSS 422 A — Winter 2018

Institute of Technology

FEEDBACK - 3

= What are good habits to do when using locks to avoid bugs?

® This is upcoming in chapter 32

= What are good habits for fine-grained locking?
= Want more opportunities for parallelism in code
®m Method-level locking (coarse-grained) does not provide them

® Optimal number of locks is between 1 and n locks,
where n is the number of variables being changed

® Finding optimal solution requires identifying how often
variables will be modified, and in what combinations by
multiple threads

® This is non-trivial > thread behavior @ runtime can be random

TCSS422: Operating Systems [Winter 2018]

lanuanvS 2048 Institute of Technology, University of Washington - Tacoma

L8.5

FEEDBACK - 4

= How much overhead does lock checking, waiting, and
signaling have?

m All of these are kernel calls

B Making just a few system calls shouldn’t introduce too much
overhead

® The blog, “Measurements of system call performance and
overhead” provides insight:

= http://arkanis.de/weblog/2017-01-05-measurements-of-
system-call-performance-and-overhead

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 186

January 31, 2018

Slides by Wes J. Lloyd

1/31/2018

L8.3

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

OVERHEAD OF A LINUX C SYSTEM CALL

® What is the performance overhead difference between a
user function call, and a kernel system call?

® Ordinary function calls require passing data to/from
the stack

m x86 64-bit systems perform kernel calls using
syscall instruction

B Arguments placed into registers and syscall instruction
transitions from user mode to kernel mode
to call kernel function

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 187

January 31, 2018

OVERHEAD - 2

m Additional overhead is from CPU switching to different
(protected) address space, CPU memory caches (TLB) may
require updating

® Linux kernel provides optimized kernel calls via the vDSO:
Virtually dynamically linked shared object
(see https://en.wikipedia.org/wiki/VDSO)

m yDSO provides optimized "virtual" system calls where a
selected set of common kernel space routines are
exported to user space applications for faster execution

® Linux (glibc) uses virtual system calls automatically when
available

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 188

January 31, 2018

Lloyd

1/31/2018

L8.4

TCSS 422 A — Winter 2018

Institute of Technology

Slides by Wes J.

Inted Inted AMD Intel Intel Inted AMD
Celeron D 341 Pentium 4 660 Athlon 64 X2 4200+ Pentium D 820 Core 2 Duo EB400 Core 2 Duo T6600 Phenom Il X2 555
2004 Q2 2005 Q1 2005 Q2 2005 Q2 2008 Q1 2009 Q1 2010Q1

B Unoptimized C function call without parameters
B getpid() system call via syscall instruction
B getpid() system call via vDSO

111
ns B2

A7 a2 38

T =1
1.7 M 27 16

2.8
ns ns . ns

Intel AMD Intel AMD Intel Inted
Keon X5675 Fx-3150 Core i5-4670K A10-TAS0K Core iT-47T90K Core i5-5675C
20111 201104 2013 Q2 2014 Q1 2014 Q2 2015 Q2
TCSS422: Operating Systems [Winter 2018]
BT &, 20 Institute of Technology, University of Washington - Tacoma L8.9
290 224 223
ns ns ns

6.0

I Overhead of System calls: |
| uzr::;z;ized C e
gl A hnroximately ~20-30x
vs. user function calls
47 o -
17" 27 16,28

ns ns . ns
Intel AMD Intel AMD Intel Intei
Xeon X5675 Fx-3150 Core i5-4670K A10-TES0K Core i7-4790K Core i5-5675C
200111 2011 Q4 2013 Q2 2014 Q1 2014 Q2 2015 Q2
TCSS422: Operating Systems [Winter 2018]
JanuaryiS 2018 Institute of Technology, University of Washington - Tacoma L8.10

Lioyd

1/31/2018

L8.5

TCSS 422 A — Winter 2018
Institute of Technology

SPIN LOCK IMPLEMENTATION

® Operate without atomic-as a unit assembly instructions

® “Do-it-yourself” Locks
® |s this lock implementation: Correct? Fair? Performant?

™ 1 typedef struct lock t { int flag:; } lock t:
S, 2 - - -
&P 0% it

S 2 3 void init(lock_t *mutex) |

o 4 // 0 2 lock is available, 1 = held

7"';:0‘9 o 5 mutex->flag = 07

K & 1
7
8 void lock(lock t *mutex) {
9 i (mutex->flag = 1) // TEST the flag
10 ;7 // spin-wait (do nothing)
11 mutex->flag = 17 // now SET it !
2]
gl
14 void unlock(lock t *mutex) {
15 mutex->flag = 07
el]
TCSS422: Operating Systems [Winter 2018
fanuanysiy2018 Institute of EJI'echno%og\y/l, Unive[rsity of Wash]ington - Tacoma L8.11

DIY: TEST-AND-SET - 2

bl typedef struct _ lock t {

2 int flag:

3 } lock_t:

4

5 void init(lock_t *lock) {

[&l cate t lock is available,
7 BT =1 o - 1d

8 lock-»>flag = 07

9 }

10

51 void lock(lock_t *lock) {

12 (Testandset (¢lock->flag, 1) == 1)
13 H // spin-wait

14 3}

15

16 void unlock(lock t *lock) {

17 lock->flag = 07

18}

® Requires a preemptive scheduler on single CPU core system
® Lock is never released without a context switch
® 1-core VM: occasionally will deadlock, doesn’t miscount

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.12

Slides by Wes J. Lloyd

1/31/2018

L8.6

TCSS 422 A — Winter 2018
Institute of Technology

COMPARE AND SWAP

= Compare and Swap

1
2
3
4
5
6

int CompareAndSwap(int *ptr, int expected, int new) {
int actual = *ptr;

(actual == expected)
*ptr = new;
actual:

}

® Spin lock usage

1
2
3
4

void lock(lock t *lock) {
(CompareAndSwap (&lock->flag, 0, 1) == 1)
;7 // spin
}

= cmpxchg8b
= cmpxchgléb

= X86 provides “cmpxchgl” compare-and-exchange instruction

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.13

COMPARE AND SWAP

® Compare and Swap

1
2
3
4
5

® Spin loc

int CompareAndSwap(int *ptr, int expected, int new) {
int actual = *ptr;
(actual == expected)
*ptr = new;
actual;

1-core VM:
Count is correct, no deadlock

}

= cmpxchg8b
" cmpxchgléb

m X86 provides “cmpxchgl” compare-and-exchange instruction

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.14

Slides by Wes J. Lloyd

1/31/2018

L8.7

TCSS 422 A — Winter 2018
Institute of Technology

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

® Cooperative instructions used together to support
synchronization on RISC systems

® No support on x86 processors

= Supported by RISC: Alpha, PowerPC, ARM

= Load-linked (LL)

= Loads value into register
= Same as typical load
= Used as a mechanism to track competition

® Store-conditional (SC)

= Performs “mutually exclusive” store
= Allows only one thread to store value

TCSS422: Operating Systems [Winter 2018]

lanuanvS 2048 Institute of Technology, University of Washington - Tacoma

L8.15

LL/SC LOCK

1 int LoadLinked (int *ptr) {

2 Tpirs

3 }

4

5 int StoreConditional (int *ptr, int wvalue) {
[3 (no one has updated *ptr since the LoadLinked to this address) {
7 *ptr = value;

8 ¥: #F success!

9 } {

10 0; // failed to update
11 1

T2

m LL instruction loads pointer value (ptr)
B SC only stores if the load link pointer has not changed
® Requires HW support

= C code is psuedo code

TCSS422: Operating Systems [Winter 2018]

LEIETR £, AT Institute of Technology, University of Washington - Tacoma

L8.16

Slides by Wes J. Lloyd

1/31/2018

L8.8

TCSS 422 A — Winter 2018
Institute of Technology

LL/SC LOCK - 2

1 void lock(lock t *lock) {

2)

3 (LoadLinked (&lock->flag) == 1)

4 ¢ // spin until it's zero

5y (storeConditional (&lock->flag, 1) == 1)
6 ; // if set-it 1
7, otherwise

8 }

9 }

10

11 wvoid unlock(lock t *lock) {

e lock->flag = 0;

13 -}

® Two instruction lock

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.17

FETCH-AND-ADD

B HW CPU Instruction

1
2
3
4
5

int Fetchandadd(int *ptr) {
int old = *ptr:
*ptr = old + 1;
old;
}

= Fetch and return value
=" I[ncrement by 1

®E [ncrement counter atomically-as a unit in one instruction

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.18

Slides by Wes J. Lloyd

1/31/2018

L8.9

TCSS 422 A — Winter 2018

Institute of Technology

TICKET LOCK

® Can build Ticket Lock using Fetch-and-Add
® Ensures progress of all threads (fairness)

1 typedef struct _ lock t {

2 int ticket:

3 int turn;

4 } lock t;

L

6 void lock init(lock t *lock) {

7 lock->ticket = 0;

8 lock—>turn = 0;

% ok

10

11 woid lock(lock_t *lock) {

12 int myturn = FetchAndadd(&lock->ticket);
13 (lock—>turn != myturn)
14 ¢ XS spin

15

16 wvoid unlock(lock t *lock) {

17 FetchAndAdd (&lock->turn);

18 }

TCSS422: Operating Systems [Winter 2018]

lanuanvS 2048 Institute of Technology, University of Washington - Tacoma

L8.19

TICKET LOCK - 2

1 typedef struct lock T {

2 int ticket:;

3 int turn; B

4 } lock t: while (1!=1)

5 s o acquire lock

[} void lock init (lock t *lock) {

7 lock->ticket = 07 B myturn:‘]

8 lock->turn = 0; ticket=2 TA myturn=0

9 g turn=0 ticket=1

10 . turn=0

11 woid lock(lock t *lock) {

12 int myturn = FetchAndpfd (&lock->ticket) TA

13 (lock-»>turn != myturn) €— while (0 1= 0)

14 : // spin acquire lock

15 3} . B TA-unlock

16 woid unlock(lock t *lock) { while (0 1= 1) myturn=0

17 FetchAndAdd (¢lock->turn); spin ’ ticket=2

18} - turn=1
January 31, 2018 TCSS422: Operating Systems [Winter 2018] 18.20

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

1/31/2018

L8.10

TCSS 422 A — Winter 2018

Institute of Technology

YIELD() - SYSTEM CALL

1 void init () {

2 flag = 0:

3 }

4

5 void lock() {

[(TestAndSet (&flag, 1) == 1)
1 yield(); // give up the CPU
8 }

9

10 wvoid unlock() {

1l flag = 0;

12 3

® Give up the CPU - instead of busy waiting...

= running 2> ready
= Ready relinquishes the CPU for another thread (ctxt. switch)
® How does the thread get the CPU back?

= 0S must opportunistically reschedule it: ready 2 running

TCSS422: Operating Systems [Winter 2018]

L8.21
Institute of Technology, University of Washington - Tacoma

January 31, 2018

HARDWARE SPIN LOCKS - SUMMARY

® Simple, correct

= Slow

® With long locks, waiting threads spin for entire timeslice
= Repeat comparison continuously
= Busy waiting

HW & OS Support

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 18.22

January 31, 2018

Slides by Wes J. Lloyd

1/31/2018

L8.11

TCSS 422 A — Winter 2018

Institute of Technology

THREAD QUEUES

® Don’t allow the OS to control your program
= Use internal Thread Queues

= Allows programmer to maintain control
= Ensure fairness, prevent starvation
= Better for synchronizing large #’s of threads

® Require OS support to add/remove threads to/from
queue(s)

® Solaris API:

= park(): puts thread to sleep

= unpark(threadlD): wakes specified thread
® Linux API: futex()

TCSS422: Operating Systems [Winter 2018]

lanuanvS 2048 Institute of Technology, University of Washington - Tacoma

L8.23

THREAD QUEUES - 2

1 typedef struct lock t { int flag; int guard; queue t *q; } lock t;
2
3 void lock init (lock t *m) {
4 m->flag = 07
5 » m->guard = 0; .
6 quete init (m->q) ; Guard uses a spin-lock to protect the
/A critical sections in lock() and unlock()
g
9 roid lock(lock t *m) {
1 (TestAndSet (&m->gquard, 1) == 1) .
; // acquire guard lock by spinning Obtain guard lock
(m->flag == 0) {
m->flag = 1; // lock is acquired try to obtain actual lock

m->guard = 0f
{

queue_add (m->g, gettid()):; lock unavailable; add thread to queuge

m->guard = 0; . e

park() ; potential wakeup/waiting race

NHBEHHBRR BB B
OWom-J & Ud W HO

\.]
iy
HE

TCSS422: Operating Systems [Winter 2018]

LEIETR £, AT Institute of Technology, University of Washington - Tacoma

L8.24

Slides by Wes J. Lloyd

1/31/2018

L8.12

TCSS 422 A — Winter 2018

Institute of Technology

THREAD QUEUES - 3

= Unlock
22 woid unlock(lock t *m) {
2» (TestAndset (sm->guard, 1) == 1) . .
24 ; // acquire guard lock by spinning Obtain guard lock (spln)
25 (queue_empty (m->q))
26 m->flag = 0; // let go of lock; no one wants it
21 wake up thread from queue
28 unpark (queue remove (m->q)); // hold lock (for next thread!)
29 m->quard = 0;
% release guard lock

= Note: no change to m->flag if unparking a thread
® Lock is passed to the unparked thread “directly”

TCSS422: Operating Systems [Winter 2018]

lanuanvS 2048 Institute of Technology, University of Washington - Tacoma

L8.25

WAKEUP/WAITING RACE

® Thread B: context switch occurs immediately before call to
park()

® Thread A: releases lock, calls unpark, queue is empty

® Thread B: regains context, proceeds to lock itself forever

® Need new system call
= setpark()- informs OS about soon to be parked thread

= Subsequent calls to unpark() are aware that ThreadB is about to park

= ThreadB’s call to park() immediately returns

TCSS422: Operating Systems [Winter 2018]

LEIETR £, AT Institute of Technology, University of Washington - Tacoma

L8.26

Slides by Wes J. Lloyd

1/31/2018

L8.13

TCSS 422 A — Winter 2018

Institute of Technology

A

prll

\)}_L—s/"

® Fast Userspace MuTEX

® Linux futex system calls similar to park() and unpark()
® Linux uses an in-kernel queue

® Provides a futex() system call

® Provides atomic-as a unit compare-and-block operation

® Futex is a lower-level construct

® Used as building blocks for:
mutex, condition variables, semaphores

® Objective: reduce the nhumber of system calls

TCSS422: Operating Systems [Winter 2018]

L8.27
Institute of Technology, University of Washington - Tacoma

January 31, 2018

FUTEX: WRITE YOUR OWN MUTEX LOCK

futex_wait(addr, expected)

= Put calling thread to sleep

= If value @ addr != expected - return immediately
futex_wake(addr)

= Wake one thread that is waiting on the queue

® These are not exposed as C library calls directly
= Call futex() with FUTEX_WAIT or FUTEX_WAKE

Use a 32-bit integer

= The leftmost bit (the +/- sign) tracks the lock state
0 - free
1 - locked

= Remaining 31 bits: identifies thread

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 18.28

January 31, 2018

Slides by Wes J. Lloyd

1/31/2018

L8.14

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

FUTEX: MUTEX_LOCK PSUEDO CODE

void mutex_Tlock(int *mutex) {
int v;

if (atomic_bit_test_set (mutex, 31) == 0)
return;

atomic_increment (mutex);
while (1) {

if (atomic_bit_test_set (mutex, 31) ==0 {

atomic_decrement (mutex);

return;

}
VvV = *mutex;
iv (v >= 0)
continue;

futex_wait (mutex, v);

}

TCSS422: Operating Systems [Winter 2018]
lanuavS L2008 Institute of Technology, University of Washington - Tacoma L8.29

FUTEX: MUTEX UNLOCK PSUEDO CODE

void mutex_unlock(int *mutex) {

if (atomic_add_zero (mutex, 0x80000000))
return;

futex_wake (mutex);

= [nteresting note: Futex bug in Redhat Linux
® https://www.infog.com/news/2015/05/redhat-futex

TCSS422: Operating Systems [Winter 2018]
LEIETR £, AT Institute of Technology, University of Washington - Tacoma L8:30

Lloyd

1/31/2018

L8.15

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

HYBRID - TWO PHASE LOCKS

® Hybrid between spin-locks and yielding

m Useful if lock is about to be released

= First phase - spin lock

= Spin for some time waiting for the lock to be released

= |f lock is not acquired after time expires enter phase two.

= Second phase - yield

= Thread sleeps (yields)
= |s awoken when the lock becomes free

TCSS422: Operating Systems [Winter 2018]

lanuanvS 2048 Institute of Technology, University of Washington - Tacoma

L8.31

CHAPTER 29 -

LOCK BASED
DATA STRUCTTURES

TCSS422: Operating Systems [Winter 2018]

BT &, 20 Institute of Technology, University of Washington - Tacoma

Lioyd

1/31/2018

L8.16

TCSS 422 A — Winter 2018
Institute of Technology

® Performance

OBJECTIVES

® Concurrent Data Structures

® Lock Granularity

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.33

LOCK-BASED

CONCURRENT DATA STRUCTURES

m Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
= Performance
= Lock granularity

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.34

Slides by Wes J. Lloyd

1/31/2018

L8.17

TCSS 422 A — Winter 2018
Institute of Technology

COUNTER STRUCTURE W/0 LOCK

®m Synchronization weary --- not thread safe

o~ oy o WM

typedef struct _ counter t {
int value;
} counter t;

void init (counter t *c) {
c->value = 0;

}

void increment (counter t *c) {
c->value++;

}

void decrement (counter t *c) {
c->value--;

}

int get(counter t *c) {
return c->value;

}

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.35

CONCURRENT COUNTER

[R R R I A

typedef struct _ counter t {
int value;
pthread lock t lock;
} counter_t;

void init (counter_t *c) {

c->value = 0;

Pthread mutex init (sc->lock, NULL);
}

void increment (counter t *c) {
Pthread mutex lock(&c->lock):
c->value++;
Pthread mutex unlock(&c->lock);

= Add lock to the counter
®m Require lock to change data

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.36

Slides by Wes J. Lloyd

1/31/2018

L8.18

TCSS 422 A — Winter 2018
Institute of Technology

® Decrease
® Get value

CONCURRENT COUNTER - 2

counter

{Cont.)
17
18
19
20
21

void decrement (counter t *c) {
Pthread mutex lock(&c->lock);
c—>value--;
Pthread mutex unlock(&c->lock);

}

int get(counter_t *c) {
Pthread mutex lock(&c->lock);
int re = c-»value;
Pthread mutex unlock(&c->lock):
return rc;

January 31, 201.

TCSS422: Operating Systems [Winter 2018]

g Institute of Technology, University of Washington - Tacoma

L8.37

® iMac: fou

r core Intel 2.7 GHz i5 CPU

® Each thread increments counter 1,000,000 times

15
X Precise
© Sloppy
8101
3
£
0 # 5 5 5 Traditional vs. sloppy counter
1 2 3 4 Sloppy Threshold (S) = 1024
Threads

scales poorly

CONCURRENT COUNTERS - PERFORMANCE

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.38

Slides by Wes J. Lloyd

1/31/2018

L8.19

TCSS 422 A — Winter 2018 1/31/2018
Institute of Technology

PERFECT SCALING

®m Achieve (N) performance gain with (N) additional resources

® Throughput:
® Transactions per second

= 1 core
= N=100 tps

® 10 core
=N =1000 tps

TCSS422: Operating Systems [Winter 2018]

lanuanvS 2048 Institute of Technology, University of Washington - Tacoma

L8.39

SLOPPY COUNTER

® Provides single logical shared counter

=" Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks

= Global counter is updated periodically

Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Winter 2018]

LEIETR £, AT Institute of Technology, University of Washington - Tacoma

L8.40

Slides by Wes J. Lloyd L8.20

TCSS 422 A — Winter 2018
Institute of Technology

SLOPPY COUNTER - 2

® Update threshold (S) = 5
® Synchronized across four CPU cores
® Threads update local CPU counters

Time Ly Ls L3 Ly G
0 0 0 0] 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 530 1 3 4 5 (from L,)
7 0 2 4 530 10 (from L)

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.41

THRESHOLD VALUE S

157

10 A

Time (seconds)

0
i

T T T T T i) 1
2 4 8 16 32 64 128 256 5121024

Sloppiness

® Consider 4 threads increment a counter 2000000 times each
m Low S 2> What is the consequence?
= High S > What is the consequence?

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.42

Slides by Wes J. Lloyd

1/31/2018

L8.21

TCSS 422 A — Winter 2018
Institute of Technology

SLOPPY COUNTER - EXAMPLE

® Example implementation

® Also with CPU affinity

TCSS422: Operating Systems [Winter 2018]

lanuanvS 2048 Institute of Technology, University of Washington - Tacoma

L8.43

CONCURRENT LINKED LIST -1

®m Simplification - only basic list operations shown
® Structs and initialization:

1 // node structure

2 struct node t {

3 int key;

4 struct _ node t *next:

5

6

7 t structure (one used per list)
g et . list £ ¢

9 node t *head;

10 pthread mutex t lock:

11 } list_t:

12

1.3 void List Init(list t *L) {

14 L->head = NULL;

15 pthread mutex init (&L->lock, NULL):
16 }

17

(Cont.)

TCSS422: Operating Systems [Winter 2018]

LEIETR £, AT Institute of Technology, University of Washington - Tacoma

L8.44

Slides by Wes J. Lloyd

1/31/2018

L8.22

TCSS 422 A — Winter 2018
Institute of Technology

CONCURRENT LINKED LIST - 2

® |[nsert - adds item to list
® Everything is critical!

= There are two unlocks

(Cont.)
18
19

int List_Insert(list_t *L, int key) {
pthread mutex lock(&L->lock):
node t *new = malloc(sizeof (node t));
if (new == NULL) {
perror("malloc");
pthread mutex unlock(&L->lock);
return -1; // fail
new->key = key;
new->next = L->head:;
L->head = new;
pthread mutex unlock(&L->lock);

return 0; // success

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.45

CONCURRENT LINKED LIST - 3

® Lookup - checks list for existence of item with key
® Once again everything is critical

= Note - there are also two unlocks

int List Lookup(list t *L, int key) {
pthread mutex lock(&L->lock):
node t *curr = L->head;
while (curr) {
if (curr-»key == key) {
pthread mutex unlock(&L->1lock)?
return 0; // success
}
curr = curr->next;
}
pthread mutex unlock(&L->lock)?
return -1; // failure

January 31, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L8.46

Slides by Wes J. Lloyd

1/31/2018

L8.23

TCSS 422 A — Winter 2018

Institute of Technology

CONCURRENT LINKED LIST

® First Implementation:
= Lock everything inside Insert() and Lookup()

= |f malloc() fails lock must be released

= Research has shown “exception-based control flow” to be error
prone

= 40% of Linux OS bugs occur in rarely taken code paths

= Unlocking in an exception handler is considered a poor coding
practice

= There is nothing specifically wrong with this example however

® Second Implementation ...

TCSS422: Operating Systems [Winter 2018]

lanuanvS 2048 Institute of Technology, University of Washington - Tacoma

L8.47

QUESTIONS

Slides by Wes J. Lloyd

1/31/2018

L8.24

