TCSS 422 A — Winter 2018 1/31/2018
Institute of Technology

OBJECTIVES

TCSS 422: OPERATING SYSTEMS

= Tutorial 1 Questions
= Homework 1 Questions

Locks,
Lock Based Data Structures = Feedback from 1/29
‘, ;
= Ch. 28
Wes J. Lloyd LS
. = Ch. 29
InStItUte Of TeChnOIOgy = Lock Based Data Structures

University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

LanuavaTR20LE Institute of Technology, Uni of Washington - Tacoma

January 31, 2018 TCSS422: Operating Systems [Winter 2018] | o |

Institute of Technology, University of Washington - Tacoma

SELECTED FEEDBACK FROM 1/29 FEEDBACK - 2
= What happens when a thread reaches a lock that another = Please glve a real example of when to use:
thread Is holding? pthread_mutex_trylock() and pthread mutex_timelock ()

= Does it wait on that line of code? (lock line)
= Does it continually poll for the lock availability?

= Both functions return integer O if lock is successfully acquired
= Both return integer error code (non-zero) otherwise

= pthread_block.c example
= Check for PID: pPs u
= Trace PID: top -d .1 -H -p <pid>

= Consider if 3 threads append text to the same file

= Only one thread is allowed to open the file for writing
at the same time

= Locks can be used to synchronize access to append to the file

= |f a thread can not acquire the file lock, it accumulates
changes in a buffer, but continues to perform useful work

= The thread will block (stop executing) until the lock is
available

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TC55422: Operating Systems [Winter 2018]
L e 2 | 183 ‘ TSR, Institute of Technology, University of Washington - Tacoma L84

FEEDBACK - 3 FEEDBACK - 4
= What are good habits to do when using locks to avoid bugs? = How much overhead does lock checking, walting, and
® This is upcoming in chapter 32 signaling have
= What are good hablts for fine-gralned locking? = All of these are kernel calls
= Want more opportunities for parallelism in code
= Method-level locking (coarse-grained) does not provide them = Making just a few system calls shouldn’t introduce too much
= Optimal number of locks is between 1 and n locks, overhead
where n is the number of variables being changed
= Finding optimal solution requires identifying how often = The blog, “Measurements of system call performance and
variables will be modified, and in what combinations by overhead” provides insight:

multiplejthicads = http://arkanis.de/weblog/2017-01-05-measurements-of-

= This is non-trivial > thread behavior @ runtime can be random system-call-performance-and-overhead

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TC55422: Operating Systems [Winter 2018]
L e 2 | 185 ‘ TSR Institute of Technology, University of Washington - Tacoma 186

Slides by Wes J. Lloyd L8.1

TCSS 422 A — Winter 2018 1/31/2018
Institute of Technology

OVERHEAD OF A LINUX C SYSTEM CALL

OVERHEAD - 2

= What is the performance overhead difference between a

= Additional overhead is from CPU switching to different
user function call, and a kernel system call?

(protected) address space, CPU memory caches (TLB) may

. . . . require updating
= Ordinary function calls require passing data to/from
the stack = Linux kernel provides optimized kernel calls via the vDSO:
. . Virtually dynamically linked shared object
= x86 64-bit systems perform kernel calls using (see https://en.wikipedia.org/wiki/VDSO)
syscall instruction
. . . . = vDSO provides optimized "virtual" system calls where a
= Arguments placed into registers and syscall instruction selected set of common kernel space routines are
transitions from wto kernel mode exported to user space applications for faster execution
to call kernel function
= Linux (glibc) uses virtual system calls automatically when
available
TCSS422: Of ing Sy Wi 2018] TCSS422: O ing S\ (Wi 2018]
a3t 2018 | (S g o IER a3t 2o [1SRz Qe e oy EN
220 224 223

Inte! et AMD Intel Intel Intel AMD
Celeron D341 Pentum4 660 Athion 64 X24200+ Pentum D820 Core 2 Duo EB400 Core 2 Duo T6600 Phenom Il X2 §55
2004 Q2 005 QL 2005Q2 005 Q2 2008 Q1 2000 Q1 2010Q1

B Unoptimized C function call without parameters B Unoptimized C

M getpid() system call via syscall instruction M getpid() syster 0

M getpid() system call via vDSO M getpid() syste ApprOXI mately ~20-30x
111
ns

82

vs. user function calls

47

32 38

Lyt oy ig
ns

32 38
2.6

Ly 27 1§

Intel AMD

Intet AM Intel Intel Intel AMD ntel Al Intel Intel
Xeon X5675 %8150 Corei5-4670K A10-7850K Corei7-4790K Core i5-5675C Xeon X5675 FX8150 Core 5-4670K A10-7850K CoreiT-4790K Core (5-5675C
2011Q1 2011Q4 2013 Q2 2014 Q1 40 502 2011 Q1 201104 2013Q2 2014 QL 4Q 2
TCSS422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
Ranian/s Biais Institute of Technology, University of Washington - Tacoma L89 TR SN Institute of Technology, University of Washington - Tacoma L8.10

SPIN LOCK IMPLEMENTATION DIY: TEST-AND-SET - 2

= Operate without atomic-as a unit assembly instructions
= “Do-it-yourself” Locks
= |s this lock implementation: Correct? Fair? Performant?

= Requires a preemptive scheduler on single CPU core system
= Lock is never released without a context switch
= 1-core VM: occasionally will deadlock, doesn’t miscount

1 struct __lock_t { int flag; } lock t: ; = Sock Lt

2

3 i init(lock_t *mutex) { :

. > lock is available, 1 > held k

5 mutex->flag = 0; H

6 } 7

7 8

8 d lock(lock_t *mutex) { 9

9 (mutex->£lag ag 10

10 0 11 void lock(lock_t *lock) {

1 mutex->flag = // o 12 (Testandset (slock->flag, 1) == 1)

12) 13 ’ spin-wait

3 14

14 void unlock(lock t *mutex) { iz e e 1

15 mutex->flag = 0; s S s

164) 1)

7TCS5422: Operating Systems [Winter 2018 TC55422: Operating Systems Winter 2018]

parhayS L2t \nsliluualfll'echnu%ug‘;,Unive[rsilyofWash]inglon-Tacuma | 1811 ‘ Ranta VSRl Ins(i(u(euf';echno‘lgo;Unive[rsi(ynVWash]ing(on—Ta:oma | 1812

Slides by Wes J. Lloyd L8.2

TCSS 422 A — Winter 2018
Institute of Technology

1/31/2018

COMPARE AND SWAP

= Compare and Swap

i nt CompareAndSwap(int *ptr, int expected, int new) {
2 int actual = *ptr;

3 (actual == expected)

4 *ptr = new;

5 actual;

6 }

= Spin lock usage

i lock(lock_t *lock) {
(CompareAndswap (slock->flag, 0, 1) == 1)

N

}

= cmpxchg8b
= cmpxchgléb

= X86 provides “cmpxchgl” compare-and-exchange instruction

TCS5422: Operating Systems [Winter 2018]

L e 2 e e T e G T e

| 1813 ‘

COMPARE AND SWAP

= Compare and Swap

1 int CompareAndswap(int *ptr, int expected, int new) {
2 int actual = *ptr;

3 (actual == expected)

4 *ptr = new;

5 actuals

1-core VM:

= Spin loc .
Count is correct, no deadlock

3
4 b

= X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
= cmpxchgléb

TCS5422: Operating Systems [Winter 2018] 814
Institute of Technology, University of Washington - Tacoma i

January 31, 2018

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

= Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

= Load-linked (LL)
= Loads value into register
=Same as typical load
= Used as a mechanism to track competition

= Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

TCS5422: Operating Systems [Winter 2018]

L e 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 1815 ‘

LL/SC LOCK

1 int LoadlLinked(int *ptr) {
2 *ptr;

3 }

4

5 int StoreConditional (int *ptr, int value) {

6 (no one has updated *ptr since the LoadLinked to this address) {
7 *ptr = value;

8 1; Succassl

9 } {

10 07 failed to update

11 }

12}

= LL instruction loads pointer value (ptr)
= SC only stores if the load link pointer has not changed
= Requires HW support

= C code is psuedo code

January 31, 2018 TCSS422: Operating Systems [Winter 2018] | 1816

Institute of Technology, University of Washington - Tacoma

LL/SC LOCK - 2

1 void lock(lock_t *lock) {

2 (G

3 (LoadLinked (&lock->£lag) 1)
4 ; spin until it’s z

5 (Storeconditional (slock->flag, 1)
6 : o

7

8)

91 i

10

11 void unlock(lock t *lock) {

12 lock->flag = 07

13 o

= Two instruction lock

TCS5422: Operating Systems [Winter 2018]

L e 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1817 ‘

FETCH-AND-ADD

= HW CPU Instruction

= Increment counter atomically-as a unit in one instruction

FetchaAndAdd (int *ptr) {
int old = *ptr;
*ptr = old + 1;

old:

o wn e

}

= Fetch and return value
=Increment by 1

TCS5422: Operating Systems [Winter 2018] 1818
Institute of Technology, University of Washington - Tacoma i

January 31, 2018

Slides by Wes J. Lloyd

L8.3

TCSS 422 A — Winter 2018 1/31/2018
Institute of Technology

i i . 1 struct _ lock t {
= Can build Ticket Lock using Fetch-and-Add 5 int ticket; -
= Ensures progress of all threads (fairness) 3 1n turny B
T 4 fidockets while (11=1)
2 5 g acquire lock
3 6 void lock_init (lock_t *lock) {
4 7 lock->ticket = 0; TB myturn=1
5 8 lock->turn = 0; ticket=2 =
6 i lock_init (lock_t *lock) { 9 } turn=0 ™ [Ffutrlo
7 lock->ticket = 0; 5 icket=
8 lock->turn = 07 turn=0
9 } 11 woid lock(lock_t *lock) {
10 12 int myturn Fe tchan, d (s1lock->ticket) ; TA
11 void lock(lock t *lock) {) 13 (lock->turn != myturn) €= | while (0!=0)
12 nt myturn = FetchAndAdd (&lock->ticket); 14 o P A
13 (lock->turn != myturn) 2l SR acquire lock
i 5 4 15 3} B TA-unlock
15} 16 oid unlock(lock t *lock) { hile (0 1= 1 myturn=0
16 void unlock(lock_t *lock) { 17 FetchAndAdd (&lock->turn) ; v '|e(=1 ticket=2
17 FetchandAdd (slock->turn) ; 18 <« spin -
18} turn=1
TCSS422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
L e 2 e e T e G T e 1819 TSR S s 1 T, st G B e TP | 18.20 |

YIELD() - SYSTEM CALL HARDWARE SPIN LOCKS - SUMMARY

; = Simple, correct

3 = Slow

5 § lock() { i iti i ire ti i

6 (Testandset (s£1ag, 1) = With long locks, waiting threads spin for entire timeslice
i] yield(); // give up tr = Repeat comparison continuously

= = Busy waiting

11

12

= Give up the CPU - instead of busy waiting...
= running >ready HW & OS Support
= Ready relinquishes the CPU for another thread (ctxt. switch)
= How does the thread get the CPU back?
= 0S must opportunistically reschedule it: ready = running

January 31, 2018 TCS5422: Operating Systems [Winter 2018] | 1821 ‘ January 31, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma | 182 |

THREAD QUEUES THREAD QUEUES - 2

= Don’t allow the OS to control your program

1 truct _ lock_t { int flag; int guard; queue_t *q; } lock t7
= Use internal Thread Queues 2 . -
X) 3 lock_init(lock_t *m) (
= Allows programmer to maintain control 4 n->flag =
. . 5 m->guard ;
= Ensure fairness, prevent starvation 6 queue_init (m->q) ; Guard uses a spin-lock to protect the
= Better for synchronizing large #'s of threads 7 critical sections in lock() and unlock()
-] d lock(lock_t *m) {
. 10 (TestAndset (&m->guard, 1) == 1) "
= Require OS support to add/remove threads to/from 11 lock E r Obtain guard lock
12
queue(s) 13 » try to obtain actual lock
14
’ i 15 (
= Solaris API: 16 * quene_add (m->g, gettid()); lock unavailable; add thread to queue
= park(): puts thread to sleep 1; :ii‘:?fd -0 potential wakeup/waiting race
= unpark(threadlD): wakes specified thread 19)
. 20
= Linux API: futex() 21)
TCSS422: Of ting Syste [Winter 2018] TCSS422: O ting Systs [Winter 2018]
3120 e on:Tcome EX [e o n-Tcome | o

Slides by Wes J. Lloyd L8.4

TCSS 422 A — Winter 2018
Institute of Technology

1/31/2018

THREAD QUEUES - 3

= Unlock
22 yoid unlock(lock t *m) {
Zz (TestAndSet (¢ém->guard, 1) == 1) " "
24 e o by spinning Obtain guard lock (spin)
25 (queue_empty (m->q))
26 m->flag = 0; let go of lock; no one wants it
217 wake up thread from queue
28 unpark (queue_remove (m->q)) ; nold lock (for next thread!)
2 » n>guard = 07 release guard lock

= Note: no change to m->flag if unparking a thread
= Lock is passed to the unparked thread “directly”

TCS5422: Operating Systems [Winter 2018]

L e 2 e e T e G T e

| 1825 ‘

WAKEUP/WAITING RACE

= Thread B: context switch occurs immediately before call to
park()

= Thread A: releases lock, calls unpark, queue is empty

= Thread B: regains context, proceeds to lock itself forever

= Need new system call
= setpark()- informs OS about soon to be parked thread
= Subsequent calls to unpark() are aware that ThreadB is about to park
= ThreadB’s call to park() immediately returns

TCSS422: Operating Systems [Winter 2018]

TSR S s 1 T, st G B e TP

| 18.26

FUTEX

= Fast Userspace MuTEX

= Linux futex system calls similar to park() and unpark()
= Linux uses an in-kernel queue

= Provides a futex() system call

= Provides atomic-as a unit compare-and-block operation

= Futex Is a lower-level construct

= Used as building blocks for:
mutex, condition variables, semaphores

= Objective: reduce the number of system calls

TCS5422: Operating Systems [Winter 2018]

L e 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 1827 ‘

FUTEX: WRITE YOUR OWN MUTEX LOCK

= futex_wait(addr, expected)

= Put calling thread to sleep

= If value @ addr != expected > return immediately
= futex_wake(addr)

= Wake one thread that is waiting on the queue

= These are not exposed as C library calls directly
= Call futex() with FUTEX_WAIT or FUTEX_WAKE

= Use a 32-bit integer
= The leftmost bit (the +/- sign) tracks the lock state
0 - free
1 - locked
= Remaining 31 bits: identifies thread

TCSS422: Operating Systems [Winter 2018]

TSR, [See et Techolo syl niersity o Washinstoniecome!

| 18.28

FUTEX: MUTEX_LOCK PSUEDO CODE

void mutex_lock(int *mutex) {
int v;

if (atomic_bit_test_set (mutex, 31) == 0)
return;

atomic_increment (mutex);
while (1) {

if (atomic_bit_test_set (mutex, 31) ==0 {

atomic_decrement (mutex);

return;

}
v = *mutex;
iv (v >= 0)
continue;

futex_wait (mutex, v);

TCSS422: Operating Systems [Winter 2018]

L e 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1829 ‘

FUTEX: MUTEX UNLOCK PSUEDO CODE

void mutex_unlock(int *mutex) {

if (atomic_add_zero (mutex, 0x80000000))
return;

futex_wake (mutex);

= Interesting note: Futex bug in Redhat Linux
= https://www.infoq.com/news/2015/05/redhat-futex

TCSS422: Operating Systems [Winter 2018]

TSR [nstueor TechnolosyUniversitylofWashinstonSTacoma!

| 1830

Slides by Wes J. Lloyd

L8.5

TCSS 422 A — Winter 2018
Institute of Technology

HYBRID - TWO PHASE LOCKS

= Hybrid between spin-locks and yielding
= Useful if lock is about to be released

= First phase - spin lock

= Second phase - yield
=Thread sleeps (yields)
= |s awoken when the lock becomes free

= Spin for some time waiting for the lock to be released
= If lock is not acquired after time expires enter phase two.

TCS5422: Operating Systems [Winter 2018]

L e 2 e e T e G T e

| 1831 ‘

1/31/2018

CHAPTER 29 -
LOCK BASED
DATA STRUCTTURES

TCSS422: Operating Systems [Winter 2018]

LT S Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Concurrent Data Structures
= Performance

= Lock Granularity

TCS5422: Operating Systems [Winter 2018]

L e 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 1833

LOCK-BASED
CONCURRENT DATA STRUCTURES

mAdding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

TCS5422: Operating Systems [Winter 2018]

TSR, [See et Techolo syl niersity o Washinstoniecome!

| 1834

= Synchronization weary --- not thread safe

COUNTER STRUCTURE W/0 LOCK

1 typedef struct _ counter_t {
2

3 } counter_t;

4

5 void init (counter_t *c) {

6 c->value = 0;

7 }

8

9 void increment (counter t *c) {
10 c->value++;

11)

12

13 void decrement (counter_t *c) {
14 c->value--;

15)

16

17 int get(counter_t *c) {

18 ceturn c->value;

19)

TCS5422: Operating Systems [Winter 2018]

L e 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1835

CONCURRENT COUNTER

1 struct __counter_t {

2 int value;

3 pthread lock t lock:

4 } counter_t;

5

3 void init(counter_t *c) {

7 c->value = 0;

8 Pthread mutex_init(sc->lock, NULL);
9 i

10

11 void increment (counter_t *c) {

12 Pthread_mutex_lock(&c->lock);
13 c->valuet+;

14 Pthread mutex_unlock(sc->lock) ;
15) - -

16

= Add lock to the counter
= Require lock to change data

TCS5422: Operating Systems [Winter 2018]

TSR [nstueor TechnolosyUniversitylofWashinstonSTacoma!

| 1836

Slides by Wes J. Lloyd

L8.6

TCSS 422 A — Winter 2018
Institute of Technology

1/31/2018

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

(Cont.)

17 void decrement (counter_t *c) {

18 Pthread mutex_lock (sc->1lock) ;
19 c->value--;

20 Pthread mutex_unlock (sc->lock) 7
21)

22

23 int get(counter_t *c) {

24 pthread mutex_lock (&c->lock) 7
25 int rc = c->value;

26 Pthread_mutex_unlock (&c->lock) ;
27 return rc;

28)

TCS5422: Operating Systems [Winter 2018]

L e 2 e e T e G T e

| 1837 ‘

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

15
X Procise

3 Sioppy
B0
8
8
H
E 5
Traditional vs. sloppy counter
1 2 3 4 Sloppy Threshold (S) = 1024
Threads
scales poorly
TCSS422: Operating Systems [Winter 2018]
‘ TSR S s 1 T, st G B e TP | 1838

PERFECT SCALING

= Throughput:
= Transactions per second

= 1 core
= N =100 tps

= 10 core
= N =1000 tps

= Achieve (N) performance gain with (N) additional resources

TCS5422: Operating Systems [Winter 2018]

L e 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 1839 ‘

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

January 31, 2018 TCSS422: Operating Systems [Winter 2018] | 1840

Institute of Technology, University of Washington - Tacoma

SLOPPY COUNTER - 2

= Update threshold (S) = 5
= Synchronized across four CPU cores
= Threads update local CPU counters

Time ‘ Ly ‘ Ly ‘ L3 Ly G
[¢] 0 [¢] 0 [¢] [¢]
1 0 [¢] 1 1 0
2 1 [¢] 2 1 [¢]
3 2 [¢] 3 1 0
4 3 o] 3 2 [¢]
5 4 1 3 3 [¢]
6 5>0 1 3 4 5 (from L,)
7 0 3 4 550 10 (from Ly)

TCSS422: Operating Systems [Winter 2018]

L e 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1841 ‘

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

Institute of Technology, University of Washington - Tacoma

15
€10
g
8
3
@
R
o
Es
[
OF—T— 1T T e —%
1 2 4 8 16 32 64 128 256 5121024
Sloppiness
January 31, 2018 TCS$422: Operating Systems [Winter 2018] | 1842

Slides by Wes J. Lloyd

L8.7

TCSS 422 A — Winter 2018
Institute of Technology

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

TCS5422: Operating Systems [Winter 2018]

January 31, 2018 Institute of Technology, University of Washington - Tacoma | 1843 ‘

1/31/2018

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

1
2
3
4
5
6
31 tructure (one use st
8 _list t {
9 de_t *head;
10 pthread mutex_t lock;
11 } list_t;
12
13 void List_Tnit(list_t *L) {
14 L->head = NULL;
15 pthread mutex_init(sL->lock, NULL);:
16)
17
(Cont.)
January 31, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

[e

CONCURRENT LINKED LIST - 2

= Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)

18 int List_Insert(list_t *L, int key) {

19 “pthread mutex_lock (sL->lock);

20 node_t *new = malloc(sizeof (node_t));
21 if (new == NULL) { -

22 perror ("malloc") ;

23 pthread mutex unlock (&L->lock)
24 return -1; fail

26 new->key = key:

27 new->next = L->head;

28 L->head = new;

29 pthread mutex_unlock (sL->lock) ;

30 return 0; success

31

(Cont.)

January 31, 2018

TCS5422: Operating Systems [Winter 2018] 1845
Institute of Technology, University of Washington - Tacoma i

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
®= Once again everything is critical
= Note - there are also two unlocks

(Cont.)
32
32 int List_Lookup(list_t *L, int key) {
33 pthread mutex_lock(&L->lock) ;
34 node_t *curr = L->head;
35 while (curr) {
36 if (curr->key == key) {
37 pthread mutex_unlock (sL->lock) ;
38 return 0; s s
39 }
40 curr = curr->next;
41
12 pthread mutex_unlock(&L->lock);
43 return -1; failure
44)
January 31, 2018 TCS$422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

E

CONCURRENT LINKED LIST

= First Implementation:
= Lock everythIng inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TCS5422: Operating Systems [Winter 2018]

January 31, 2018 Institute of Technology, University of Washington - Tacoma | 1847 ‘

Slides by Wes J. Lloyd

QUESTIONS

L8.8

