
TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.1Slides by Wes J. Lloyd

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Thread API, Locks,
Lock Based Data Structures

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Homework 0 Review

 Tutorial 1 Questions

 Homework 1 Questions

 Feedback from 1/24

 Ch. 27
 Thread API

 Ch. 28
 Locks

 Ch. 29
 Lock Based Data Structures

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.2Slides by Wes J. Lloyd

 C memory layout
clarification: global and
constant variables are
stored in the data
segment

 Three Easy Pieces –
memory diagrams do
not show data segment

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.3

SELECTED FEEDBACK FROM 1/24

Code Segment

 When should a thread be used vs. a process?

 Consider the tradeoffs of Processes vs Threads. . .

 How does the priority level for a job change?
(with respect to the MLFQ example)

 A job uses its entire time slice (e.g. 10ms). When this occurs
the job is placed in a lower priority queue with a longer t ime
slice

 Example Time slices: Q0 – 1ms
Q1 – 2ms
Q2 – 4ms

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.4

FEEDBACK - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.3Slides by Wes J. Lloyd

Could you explain the term:
“Scheduling Quantum”?

Time slice and scheduling quantum is same

Time duration a job runs in the CPU before a timer
interrupt forces and a CPU context switch to
another job

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.5

FEEDBACK - 3

 Round-robin example:

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.6

WHAT IS THE TIME QUANTUM FOR THIS
ROUND ROBIN SCHEDULING EXAMPLE?

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.4Slides by Wes J. Lloyd

 Nice values (user space suggestions for process priority) :

 -20 HIGH, 0 NORMAL, 19 LOW

 Process priorities (actual kernel space value):
 0 LOW (user), 39 HIGH (user), >40 to 139 (MAX) Realtime

 To check priorities:
 ps ax –o pid,ni,pri,cmd,%cpu

 top (PR NI columns)

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.7

NICE VALUES AND PROCESS PRIORITIES

 What is an example of a program that benefits from
multi-threading?

 Parts of the computation must be separable to run at
same time (parallel)

 Embarrassingly parallel:
Separate parts of computation can run independently
without communication

 Is multithreading overhead offset by the performance
gained from parallel processing?

 It is entirely dependent in what the program is doing…

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.8

FEEDBACK - 6

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.5Slides by Wes J. Lloyd

 Is there better ways then locking code to make it run
slightly faster if assembly code is known?

 Question refers to the fact that incrementing a variable in
C requires three non-atomic lines of assembly code

 Coming soon

 Blue comment bars in downloadable slides are obscuring
content
 Actually no, slides are duplicated with and without

messages…

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.9

FEEDBACK – 7

CHAPTER 27 -
LINUX

THREAD API

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.10

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.6Slides by Wes J. Lloyd

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.11

THREAD CREATION

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.12

PTHREAD_CREATE – PASS ANY DATA

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.7Slides by Wes J. Lloyd

 Here we “cast” the pointer to pass/return a primitive data type

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.13

PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.14

WAITING FOR THREADS TO FINISH

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.8Slides by Wes J. Lloyd

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.15

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.16

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.9Slides by Wes J. Lloyd

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.17

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.18

ADDING CASTS

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.10Slides by Wes J. Lloyd

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.19

ADDING CASTS - 2

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.20

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++) {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.11Slides by Wes J. Lloyd

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.21

LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.22

LOCK INITIALIZATION

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.12Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.23

LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cond_t datatype

 pthread_cond_wait()
 Waits (sleeps)

 Listens for a “signal”

 Releases the lock until signaled

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.24

CONDITIONS AND SIGNALS

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.13Slides by Wes J. Lloyd

 pthread_cond_signal()
 Called to send a “signal” to all listeners  to wake them up
 The goal is to unblock (at least one) to respond to the signal

 pthread_cond_broadcast()
 Unblocks all threads currently blocked on the specified condition
 Used when all threads should respond to the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) gain the lock individually (based on priority)

as if they called pthread_mutex_lock()

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.25

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (and released by this code)

 Another thread signals the thread

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.26

CONDITIONS AND SIGNALS - 3

Code performs required
work before other

thread(s) can continue

. . .

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.14Slides by Wes J. Lloyd

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal may have been raised, but the condition to proceed has

not been satisfied.

 Without checking the condition the thread may proceed to execute
when it should not.

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.27

CONDITION AND SIGNALS - 4

 Compilation
 gcc –pthread pthread.c –o pthread

 Requires explicitly linking the library with compiler flag

 List of pthread manpages
 man –k pthread

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.28

PTHREADS LIBRARY

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.15Slides by Wes J. Lloyd

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.29

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

CHAPTER 28 –
LOCKS

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.30

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.16Slides by Wes J. Lloyd

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.31

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.32

LOCKS - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.17Slides by Wes J. Lloyd

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner
releases it.

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.33

LOCKS - 3

 Programs can have many mutex (lock) variables to
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table,

row, field

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.34

LOCKS - 4

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.18Slides by Wes J. Lloyd

 Is this code a good example of “f ine grained parallelism”?

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.35

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {

node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.36

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.19Slides by Wes J. Lloyd

 Correctness

 Does the lock work?

 Are critical sections mutually exclusive?
(atomic-as a unit?)

 Fairness

 Are threads competing for a lock have a fair chance of
acquiring it?

 Overhead

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.37

EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock
implementation

 Atomic-as a unit exchange instruction
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.38

BUILDING LOCKS

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.20Slides by Wes J. Lloyd

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.39

HISTORICAL IMPLEMENTATION

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.40

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: Correct? Fair? Per formant?

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.21Slides by Wes J. Lloyd

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.41

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes t ime actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.42

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.22Slides by Wes J. Lloyd

 C implementation: not atomic
 Adds a simple check to basic spin lock

 One a single core CPU system with preemptive scheduler:

 Try this…

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Single core systems are becoming scarce

 Try on a one-core VM

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.43

TEST-AND-SET INSTRUCTION

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will deadlock, doesn’t miscount

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.44

DIY: TEST-AND-SET - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.23Slides by Wes J. Lloyd

 Correctness:
 Spin locks guarantee: critical sections won’t be executed

simultaneously by (2) threads

 Fairness:
 No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting

 Performance is slow when multiple threads share a CPU
 Especially for long periods

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.45

SPIN LOCK EVALUATION

 Checks that the lock variable has the expected value FIRST,
before changing its value
 If so, make assignment

 Return value at location

 Adds a comparison to TestAndSet

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be

updated atomically (as a unit) using the HW support
CompareAndSwap instruction

 Shared data structure updates become “wait-free”

 Upcoming in Chapter 32

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.46

COMPARE AND SWAP

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.24Slides by Wes J. Lloyd

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.47

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.48

COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.25Slides by Wes J. Lloyd

QUESTIONS

