
TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.1Slides by Wes J. Lloyd

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Thread API, Locks,
Lock Based Data Structures

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Homework 0 Review

 Tutorial 1 Questions

 Homework 1 Questions

 Feedback from 1/24

 Ch. 27
 Thread API

 Ch. 28
 Locks

 Ch. 29
 Lock Based Data Structures

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.2Slides by Wes J. Lloyd

 C memory layout
clarification: global and
constant variables are
stored in the data
segment

 Three Easy Pieces –
memory diagrams do
not show data segment

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.3

SELECTED FEEDBACK FROM 1/24

Code Segment

 When should a thread be used vs. a process?

 Consider the tradeoffs of Processes vs Threads. . .

 How does the priority level for a job change?
(with respect to the MLFQ example)

 A job uses its entire time slice (e.g. 10ms). When this occurs
the job is placed in a lower priority queue with a longer t ime
slice

 Example Time slices: Q0 – 1ms
Q1 – 2ms
Q2 – 4ms

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.4

FEEDBACK - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.3Slides by Wes J. Lloyd

Could you explain the term:
“Scheduling Quantum”?

Time slice and scheduling quantum is same

Time duration a job runs in the CPU before a timer
interrupt forces and a CPU context switch to
another job

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.5

FEEDBACK - 3

 Round-robin example:

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.6

WHAT IS THE TIME QUANTUM FOR THIS
ROUND ROBIN SCHEDULING EXAMPLE?

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.4Slides by Wes J. Lloyd

 Nice values (user space suggestions for process priority) :

 -20 HIGH, 0 NORMAL, 19 LOW

 Process priorities (actual kernel space value):
 0 LOW (user), 39 HIGH (user), >40 to 139 (MAX) Realtime

 To check priorities:
 ps ax –o pid,ni,pri,cmd,%cpu

 top (PR NI columns)

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.7

NICE VALUES AND PROCESS PRIORITIES

 What is an example of a program that benefits from
multi-threading?

 Parts of the computation must be separable to run at
same time (parallel)

 Embarrassingly parallel:
Separate parts of computation can run independently
without communication

 Is multithreading overhead offset by the performance
gained from parallel processing?

 It is entirely dependent in what the program is doing…

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.8

FEEDBACK - 6

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.5Slides by Wes J. Lloyd

 Is there better ways then locking code to make it run
slightly faster if assembly code is known?

 Question refers to the fact that incrementing a variable in
C requires three non-atomic lines of assembly code

 Coming soon

 Blue comment bars in downloadable slides are obscuring
content
 Actually no, slides are duplicated with and without

messages…

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.9

FEEDBACK – 7

CHAPTER 27 -
LINUX

THREAD API

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.10

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.6Slides by Wes J. Lloyd

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.11

THREAD CREATION

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.12

PTHREAD_CREATE – PASS ANY DATA

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.7Slides by Wes J. Lloyd

 Here we “cast” the pointer to pass/return a primitive data type

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.13

PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.14

WAITING FOR THREADS TO FINISH

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.8Slides by Wes J. Lloyd

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.15

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.16

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.9Slides by Wes J. Lloyd

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.17

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.18

ADDING CASTS

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.10Slides by Wes J. Lloyd

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.19

ADDING CASTS - 2

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.20

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++) {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.11Slides by Wes J. Lloyd

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.21

LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.22

LOCK INITIALIZATION

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.12Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.23

LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cond_t datatype

 pthread_cond_wait()
 Waits (sleeps)

 Listens for a “signal”

 Releases the lock until signaled

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.24

CONDITIONS AND SIGNALS

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.13Slides by Wes J. Lloyd

 pthread_cond_signal()
 Called to send a “signal” to all listeners to wake them up
 The goal is to unblock (at least one) to respond to the signal

 pthread_cond_broadcast()
 Unblocks all threads currently blocked on the specified condition
 Used when all threads should respond to the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) gain the lock individually (based on priority)

as if they called pthread_mutex_lock()

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.25

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (and released by this code)

 Another thread signals the thread

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.26

CONDITIONS AND SIGNALS - 3

Code performs required
work before other

thread(s) can continue

. . .

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.14Slides by Wes J. Lloyd

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal may have been raised, but the condition to proceed has

not been satisfied.

 Without checking the condition the thread may proceed to execute
when it should not.

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.27

CONDITION AND SIGNALS - 4

 Compilation
 gcc –pthread pthread.c –o pthread

 Requires explicitly linking the library with compiler flag

 List of pthread manpages
 man –k pthread

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.28

PTHREADS LIBRARY

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.15Slides by Wes J. Lloyd

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.29

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

CHAPTER 28 –
LOCKS

January 29, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.30

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.16Slides by Wes J. Lloyd

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.31

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.32

LOCKS - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.17Slides by Wes J. Lloyd

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner
releases it.

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.33

LOCKS - 3

 Programs can have many mutex (lock) variables to
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table,

row, field

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.34

LOCKS - 4

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.18Slides by Wes J. Lloyd

 Is this code a good example of “f ine grained parallelism”?

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.35

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {

node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.36

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.19Slides by Wes J. Lloyd

 Correctness

 Does the lock work?

 Are critical sections mutually exclusive?
(atomic-as a unit?)

 Fairness

 Are threads competing for a lock have a fair chance of
acquiring it?

 Overhead

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.37

EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock
implementation

 Atomic-as a unit exchange instruction
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.38

BUILDING LOCKS

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.20Slides by Wes J. Lloyd

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.39

HISTORICAL IMPLEMENTATION

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.40

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: Correct? Fair? Per formant?

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.21Slides by Wes J. Lloyd

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.41

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes t ime actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.42

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.22Slides by Wes J. Lloyd

 C implementation: not atomic
 Adds a simple check to basic spin lock

 One a single core CPU system with preemptive scheduler:

 Try this…

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Single core systems are becoming scarce

 Try on a one-core VM

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.43

TEST-AND-SET INSTRUCTION

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will deadlock, doesn’t miscount

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.44

DIY: TEST-AND-SET - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.23Slides by Wes J. Lloyd

 Correctness:
 Spin locks guarantee: critical sections won’t be executed

simultaneously by (2) threads

 Fairness:
 No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting

 Performance is slow when multiple threads share a CPU
 Especially for long periods

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.45

SPIN LOCK EVALUATION

 Checks that the lock variable has the expected value FIRST,
before changing its value
 If so, make assignment

 Return value at location

 Adds a comparison to TestAndSet

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be

updated atomically (as a unit) using the HW support
CompareAndSwap instruction

 Shared data structure updates become “wait-free”

 Upcoming in Chapter 32

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.46

COMPARE AND SWAP

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.24Slides by Wes J. Lloyd

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.47

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.48

COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock

TCSS 422 A – Winter 2018
Institute of Technology

1/30/2018

L7.25Slides by Wes J. Lloyd

QUESTIONS

