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 C memory layout 
clarification: global and
constant variables are 
stored in the data 
segment

 Three Easy Pieces –
memory diagrams do 
not show data segment
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SELECTED FEEDBACK FROM 1/24

Code Segment

 When should a thread be used vs. a process?

 Consider the tradeoffs of Processes vs Threads. .  .

 How does the priority level for a job change? 
(with respect to the MLFQ example)

 A job uses its entire time slice (e.g. 10ms).  When this occurs 
the job is placed in a lower priority queue with a longer t ime 
slice

 Example Time slices: Q0 – 1ms
Q1 – 2ms
Q2 – 4ms
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Could you explain the term:
“Scheduling Quantum”?

Time slice and scheduling quantum is same

Time duration a job runs in the CPU before a timer 
interrupt forces and a CPU context switch to 
another job
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FEEDBACK - 3

 Round-robin example:
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WHAT IS THE TIME QUANTUM FOR THIS 
ROUND ROBIN SCHEDULING EXAMPLE?
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 Nice values (user space suggestions for process priority) :

 -20 HIGH, 0 NORMAL, 19 LOW

 Process priorities (actual kernel space value): 
 0 LOW (user), 39 HIGH (user), >40 to 139 (MAX) Realtime

 To check priorities:
 ps ax –o pid,ni,pri,cmd,%cpu

 top (PR NI columns)
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NICE VALUES AND PROCESS PRIORITIES

 What is an example of a program that benefits from 
multi-threading?

 Parts of the computation must be separable to run at 
same time (parallel)

 Embarrassingly parallel:
Separate parts of computation can run independently 
without communication

 Is multithreading overhead offset by the performance 
gained from parallel processing? 

 It is entirely dependent in what the program is doing…
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 Is there better ways then locking code to make it run 
slightly faster if  assembly code is known?

 Question refers to the fact that incrementing a variable in 
C requires three non-atomic lines of assembly code

 Coming soon

 Blue comment bars in downloadable slides are obscuring 
content
 Actually no, slides are duplicated with and without 

messages…
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FEEDBACK – 7

CHAPTER 27 -
LINUX

THREAD API
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 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority…  (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.11

THREAD CREATION
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 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting 

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);
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 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;
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ADDING CASTS - 2

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h
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LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++)  {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}
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 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

January 29, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.21

LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked
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 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration
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LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cond_t datatype

 pthread_cond_wait()
 Waits (sleeps) 

 Listens for a “signal”

 Releases the lock until signaled
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 pthread_cond_signal()
 Called to send a “signal” to all listeners  to wake them up
 The goal is to unblock (at least one) to respond to the signal

 pthread_cond_broadcast()
 Unblocks all threads currently blocked on the specified condition
 Used when all threads should respond to the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) gain the lock individually (based on priority) 

as if they called pthread_mutex_lock()
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CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (and released by this code)

 Another thread signals the thread
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CONDITIONS AND SIGNALS - 3

Code performs required
work before other 

thread(s) can continue

. . .
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 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal may have been raised, but the condition to proceed has

not been satisfied.

 Without checking the condition the thread may proceed to execute
when it should not.
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CONDITION AND SIGNALS - 4

 Compilation
 gcc –pthread pthread.c –o pthread

 Requires explicitly linking the library with compiler flag

 List of pthread manpages
 man –k pthread
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 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target
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SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

CHAPTER 28 –
LOCKS

January 29, 2018
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 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given 

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:
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LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked  (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock
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LOCKS - 2
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 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner 
releases it.
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LOCKS - 3

 Programs can have many mutex (lock) variables to 
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data 
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an 

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table, 

row, field
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 Is this code a good example of “f ine grained parallelism”?
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FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {

node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock); 
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FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b); 
pthread_mutex_unlock(&lock_a); 

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b); 

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d); 

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e); 

ListNode *node = mylist->head;
int i=0 . . .
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 Correctness

 Does the lock work?  

 Are critical sections mutually exclusive?  
(atomic-as a unit?)

 Fairness

 Are threads competing for a lock have a fair chance of 
acquiring it?

 Overhead
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EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock 
implementation

 Atomic-as a unit exchange instruction 
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B
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BUILDING LOCKS
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 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its  own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…
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HISTORICAL IMPLEMENTATION
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SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation:  Correct?  Fair?  Per formant?
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 Correctness requires luck…  (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously 
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DIY: CORRECT?

 What is wrong with while(<cond>);  ?

 Spin-waiting wastes t ime actively waiting for another thread

 while (1); will  “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…
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DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}
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 C implementation: not atomic
 Adds a simple check to basic spin lock

 One a single core CPU system with preemptive scheduler:

 Try this…

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Single core systems are becoming scarce

 Try on a one-core VM
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TEST-AND-SET INSTRUCTION

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will  deadlock, doesn’t miscount
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DIY: TEST-AND-SET - 2
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 Correctness:
 Spin locks guarantee: critical sections won’t be executed 

simultaneously by (2) threads

 Fairness:
 No fairness guarantee.  Once a thread has a lock, nothing forces it to 

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting

 Performance is slow when multiple threads share a CPU
 Especially for long periods 
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SPIN LOCK EVALUATION

 Checks that the lock variable has the expected value FIRST, 
before changing its value
 If so, make assignment

 Return value at location

 Adds a comparison to TestAndSet

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be 

updated atomically (as a unit) using the HW support 
CompareAndSwap instruction

 Shared data structure updates become “wait-free” 

 Upcoming in Chapter 32
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 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b
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COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b
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COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock
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QUESTIONS


