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OBJECTIVES

® Homework O Questions
® Tutorial 1 Questions

® Homework 1 Questions
m Active Reading Quiz 1

® Feedback from 1/22

® Linux Completely Fair Scheduler
® Ch. 26
= Introduction to concurrency, threads

= Ch. 27
= Thread API

= Ch. 28

= Locks
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SELECTED FEEDBACK FROM 1/22

= Can you go over more examples of priority boosy and

preventive gaming?

B Sample problem next slide

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

January 24, 2018

L6.3

round-robin order.

Job  Arrival Time Job Length
A T=0 4

B T=0 16

C T=0 8

Please draw clearly. An unreadable graph will loose points.

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in
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FEEDBACK - 2

= |s the lottery scheduler ever useful?
= Biggest benefit: ease of implementation

= What is the purpose of the user prioritizing jobs (in the
ticket mechanisms example) if the OS will handler
prioritizing?
= |f the user has multiple jobs, this allows the user to
provide priority for their own set of jobs

= For example: the user may have one job with HIGH priority,
and another which is VERY LOW...

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L6:5

January 24, 2018

FEEDBACK - 3

® How does scheduling relate to virtualization?

= With virtual machines, there is often a separate scheduler which
coordinates sharing the CPU among multiple CPUs

= For Amazon Cloud, “XEN” is the program (called a hypervisor) used to
host the virtual machines (VMs)

= Akin to Virtual Box but designed for use on servers

= “XEN” provides its own operating system kernel complete with
schedulers to share the CPU and I/0 devices among all guest VMs

= How does the OS reassign tickets when more processes join?
Does it avoid inflation?

= The OS distributes tickets from a fixed pool.

= Presumably the OS will need to redistributed tickets to all jobs as the
ratios change

= Tickets provide an analogy to the CPU time share of a job

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 6.6
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FEEDBACK - 4

® How is the Stride Scheduler not just a convoluted priority
queue?
= Queues arrange jobs in a first in / first out fashion

= Time is delineated among jobs in a round-robin fashion
with each job receiving an equal share of the CPU (e.g.
time slice)

= The stride scheduler allows assighment of tickets to
influence the time share of each job

= Round robin queues have no such feature

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L67

January 24, 2018

FEEDBACK - 5

= Will there be a practice midterm?
= Tentative plan - second half of class on Monday February 5t"

= Spending a lot of time on feedback seems a bit detrimental to

the content you intended to cover

= Covering every topic once and never reviewing would helps
increase the total volume of content (chapters) covered...
=, .. at the cost of student retention

= While it may seem redundant for some to review already
familiar topics, some students may be seeing things for the
first time

= |deally, there would be time to cover everything twice, once in
lecture, and again in an activity or open discussion

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 68
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CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

® |nstead of guessing a random number to select a
job, simply count...

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.10

Slides by Wes J. Lloyd

1/25/2018

L6.5



TCSS 422 A — Winter 2018

Institute of Technology

STRIDE SCHEDULER - 2

® Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

® Total system tickets = 10,000
= Job A has 100 tickets > A =10000/100 = 100
= Job B has 50 tickets > B, =10000/50 = 200
= Job C has 250 tickets > C =10000/250 = 40

stride

stride

® Stride scheduler tracks “pass” values for each job (A, B, C)

TCSS422: Operating Systems [Spring 2017]

L6.11
Institute of Technology, University of Washington - Tacoma

January 24, 2018

STRIDE SCHEDULER - 3

® Basic algorithm:
1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

®= When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma t6.12
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STRIDE SCHEDULER - EXAMPLE

= Stride values
="Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TCSS422: Operating Systems [Spring 2017] 16.13

lanuanyv2a20Ls Institute of Technology, University of Washington - Tacoma

STRIDE SCHEDULER EXAMPLE - 2

®m Each job tracks its pass value with a counter
®m Each time a job runs we increment its counter by

its stride to track when it should next run Tickets
m Start by randomly choosing A (all pass values=0) € =250
A =100
Pass(A) Pass(B) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A « Initial job selection
100 0 0 is random. All @ 0
100 200 0 c
100 200 40 C
100 200 20 (o
100 200 120 A
200 200 120 c
200 200 160 c
200 200 200

TCSS422: Operating Systems [Spring 2017]
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Pass(A) Pass(2) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200

STRIDE SCHEDULER EXAMPLE - 3

® We set A’s counter (pass value) to A’s stride = 100

® Next scheduling decision between B (pass=0) and C (pass=0)
= Randomly choose B

® C has the lowest counter for next 3 rounds

Tickets
C =250
A =100
B =50

« C has the most tickets
and receives a lot of
opportunities to run...

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
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STRIDE SCHEDULER EXAMPLE - 4

® Job counters support determining which job to run next

® Over time jobs are selected to run based on their
priority represented as their share of tickets...

® Tickets are analogous to job priority

Pass(A) Pass(2) Pass(C) Wheo Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0
100 200 0 (e
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 (=
200 200 200

Tickets
C =250
A =100
B = 50

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.16

Slides by Wes J. Lloyd

1/25/2018

L6.8



TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

® Loosely based on the stride scheduler

B CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority receives
exactly 1/n th of the CPU time

® Scheduling classes (runqueues)
= Each has specific priority: default, real-time

= Scheduler picks highest priority task in highest scheduling
class

= Time quantum based on proportion of CPU time (%), not fixed
time allotments

= Quantum calculated using NICE value

TCSS422: Operating Systems [Spring 2017]
lanuanyv2a20Ls Institute of Technology, University of Washington - Tacoma

L6.17

COMPLETELY FAIR SCHEDULER - 2

® Time slice: Linux “Nice value”
= Nice value predates the CFS scheduler
= Top shows nice values
= Process command: Ps ax -o pid,ni,cmd, $cpu

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
= Scheduling quantum is calculated using nice value
= Target latency:

Interval during which task should run at least once
Automatically increases as number of jobs increases

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma
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COMPLETELY FAIR SCHEDULER - 3

= Challenge:
= How do we map a nice value to an actual CPU timeslice
(ms)
= What is the best mapping?

0O(1) scheduler (< 2.6.23)
- tried to map nice value to timeslice (fixed allotment)

Linux completely fair scheduler
- maps nice value based on time proportion

- with fewer jobs in a runqueue, the time quantum is larger

TCSS422: Operating Systems [Spring 2017]

lanuanyv2a20Ls Institute of Technology, University of Washington - Tacoma
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COMPLETELY FAIR SCHEDULER - 4

® Nice values become relative for determining time slices

= Proportion of CPU time to allocate is relative to other
queued tasks

B Scheduler tracks virtual run time in vruntime variable

® The task on a given runqueue (nice value) with the lowest
vruntime is scheduled text

" struct sched_entity contains vruntime parameter

= Describes process execution time in nanoseconds

= Perfect scheduler >
achieve equal vruntime for all processes of same priori

ty

TCSS422: Operating Systems [Spring 2017]
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COMPLETELY FAIR SCHEDULER - 5

® CFS uses weighted fair queueing

® Runqueues are stored using a linux rbtree
= Self balancing binary search tree
* The leftmost node will have the lowest vruntime

for N nodes
= |f tree is balanced, left most node can be cached

= Key takeaway
identifying the next job to schedule is really fast!

= Walking the tree to find the left most node is only O(log N)

TCSS422: Operating Systems [Spring 2017]

lanuanyv2a20Ls Institute of Technology, University of Washington - Tacoma
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CHAPTER 26 -

CONCURRENCY:
AN INTRODUCTION

TCSS422: Operating Systems [Spring 2017]
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® |[ntroduction to threads

® Race condition

m Critical section

® Thread API

OBJECTIVES

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma
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Single
Threaded
Process

2

THREADS

Process

Process State: PC,

registers, SP, etc...

Multithreaded Process

Process State: PC,
registers, SP,

Thread | | Thread | | Thread
State State State

~ Heap

*

RED 1B

©Alfred Park, http://randu.org/tutorials/threads

Multiple
Threaded
Process

¢

January 24, 2018
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THREADS - 2

= PC, registers, SP, and stack

®m Each thread has its own Thread Control Block (TCB)

® Code segment, memory, and heap are shared

® Enables a single process (program) to have multiple “workers”

® Supports independent path(s) of execution within a program

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.25

PROCESS AND THREAD METADATA

® Thread Control Block vs. Process Control Block

Thread identification
Thread state
CPU information:
Program counter
Register contents
Thread priority
Pointer to process that created this thread
Pointers to all other threads created by this thread

Process identification
Process status
Process state:
Process status word
Register contents
Main memory
Resources
Process priority
Accounting

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
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® Every thread has

0KB
1KB

2KB

15KB
16KB

SHARED ADDRESS SPACE

The code segment:

Program Code where instructions live

The heap segment:
contains malloc'd data
dynamic data structures
(it grows downward)

Heap

(free)

(it grows upward)
The stack segment:
contains local variables
arguments to routines,
return values, etc.

Stack (1)

A Single-Threaded
Address Space

it’'s own stack / PC

0KB
1KB

2KB

15KB
16KB

Program Code

Heap

(free)

Stack (2)

(free)

Stack (1)

Two threaded
Address Space

January 24, 2018
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THREAD CREATION EXAMPLE

tinclude <stdie.h>
#include <assert.h>
tinclude <pthread.h>

void smythread(void xarg) ({
printf ("%s\n", (char «) arg);
return NULL;

)

int

main({int argc, char *argv[])} {
pthread_t pl, p2;

int ro;

printf ("main: begin\n");

rc = pthread create(&pl, NULL,
rc = pthread create(&p2, NULL,

mythread, "A");

assert (rc == 0);

mythread, "B"); assert(rc == 0);
// join waits for the threads to finish

rc = pthread join(pl, NULL); assert(rc == 0);
rc = pthread join(p2, NULL); assert(rc == ();
printf("main: end\n");

return 0;

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
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POSSIBLE ORDERINGS OF EVENTS

Starts running

Prints ‘main: begin’
»Creates Thread 1
Creates Thread 2
Waits for T1

Runs

» Prints ‘A’
Returns
» Waits for T2

Runs
Prints ‘B’
Returns
» Prints ‘main: end’
TCSS422: Operating Systems [Spring 2017]
lanuapy22008 Institute of Technology, University of Washington - Tacoma L6.29

POSSIBLE ORDERINGS OF EVENTS - 2

Starts running

Prints ‘main: begin’

—(-:reates Thread 1 7]
Runs
Prints ‘A’
Returns
- Creates Thread 2 —
Runs
Prints ‘B’
Returns
Waits for T4 Returns immediately
— —
Waits for T2

Returns immediately
Prints ‘main: end’

TCSS422: Operating Systems [Spring 2017]
LETTET o4t AT Institute of Technology, University of Washington - Tacoma L6:30
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Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

Waits for T1

Waits for T2

Prints ‘main: end’

Runs
Prints ‘A’

Returns

POSSIBLE ORDERINGS OF EVENTS - 3

Runs
Prints ‘B’
Returns -

Immediately returns

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma
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Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

—

Waits for T2

Prints ‘main: end’

Runs

Prints ‘A’

Returns

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
g events in the program matters?

Immediately returns

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
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COUNTER EXAMPLE

® Show example

= A+ B: ordering
® Counter: incrementing global variable by two threads

January 24, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma
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PROCESSES VS. THREADS

® What’s the difference between forks and threads?

= Forks: duplicate a process

= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

Process
Process State: PC,
registers, SP, etc...

Cod
Data Segment

Process

Process State: PC,
registers, 5P, etc...

Data Segment

.
L
P

| coda |

data || fies |

code | data || files |

1
rngsh'rm| | stack

theoad ——

2
<

singl-hreaded procass

; : -
Ee;.slms | registars ||| rog sMM|

muitithreadad process

January 24, 2018
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THREADS - 2

® Enables a single process (program) to have multiple “workers”

® Supports independent path(s) of execution within a program

®m Each thread has its own Thread Control Block (TCB)

® Code segment, memory, and heap are shared

= PC, registers, SP, and stack

January 24, 2018 TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma

L6.35

RACE CONDITION

® What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
0s Threadl Thread2 PC %eax counter
before critical section 100 0 50
mov 0x8049%9alc, %eax 105 50 50
add £0x1, %eax 108 51 50
save T1's state
restore T2's state 100 0 50
mov 0x8049%alc, %eax 105 50 50
add $0xl, %eax 108 5 50
mov %$eax, 0x8049%alc 113 51 5
save T2's state
restore T1's state 108 51 50
mov %eax, 0x804%alc 113 51

-

January 24, 2018 TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma
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CRITICAL SECTION

® Code that accesses a shared variable must not be
concurrently executed by more than one thread

® Multiple active threads inside a critical section produces a
race condition.

= Atomic execution (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually exclusive

TCSS422: Operating Systems [Spring 2017]

lanuanyv2a20Ls Institute of Technology, University of Washington - Tacoma

L6.37

LOCKS

® To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lack (smptex) :

balance = balance + 1; | Critical section

unlock (&mutex) ;

o W N =

® Counter example revisited

TCSS422: Operating Systems [Spring 2017]
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CHAPTER 27 -
LINUX
THREAD API

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

THREAD CREATION

= pthread_create

#include <pthread.h>

int
pthread create( pthread t* thread,
const pthread attr_ t* attr,
void#* (*start routine) (void?*),
void* arg) ;

= thread: thread struct

m attr: stack size, scheduling priority... (optional)

® start_routine: function pointer to thread routine

® arg: argument to pass to thread routine (optional)

January 24, 2018
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PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>

typedef

} myarg_t:

vold *mythread(void *arg) {

2

int main(int argec, char *argv([]) {

}

2

w

truct _ myarg t {
int a;
int bs

myarg_t *m = (myarg_t *) arg;
printf(“%d %d\n”, m->a, m->b);
NULL;?

pthread_t p:
int-rc;

myarg t args;
args.a = 107
args.b = 20;
rc = pthread create(ap, NULL, mythread, &args):

January 24, 2018

TCSS422: Operating Systems [Spring 2017]

L6.41
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PASSING A SINGLE VALUE

® Here we “cast” the pointer to pass/return a primitive data type

W ~J o o WM

[ Y.}
Bw N O

void *mythread(void *arg) {

int m :arg;

printf (“%d\n"”, m):

int main(int argc, char *argv[]) {
pthread t p;
int ¥c, m;
pthread create (&p, NULL, mythread,lOO);
pthread join(p, (void **) &m);
printf (“returned %d\n”, m);

(void *) (arg + 1);

0;

January 24, 2018
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PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM

How large (in bvtes) can the primitive data type be?

I e B T

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

AN G, Ly,
pthread create (&p, NULL, mythread, EOE)
Ak pthread join(p, (void **) a&m);
printf (*returned %d\n”, m);
e b

TCSS422: Operating Systems [Spring 2017]

January 24, 2018 16.43
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WAITING FOR THREADS TO FINISH

int pthread join(pthread t thread, void **value ptr);

® thread: which thread?

® value_ptr: pointer to return value
type is dynamic / agnostic

® Returned values *must* be on the heap

® Thread stacks destroyed upon thread termination (join)

® Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCSS422: Operating Systems [Spring 2017] 16.44

January 24, 2018

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

1/25/2018

L6.22



TCSS 422 A — Winter 2018 1/25/2018
Institute of Technology

QUESTIONS
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