
TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.1Slides by Wes J. Lloyd

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Completely Fair Scheduler,
Introduction to Concurrency,

Threads, Thread API

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Homework 0 Questions
 Tutorial 1 Questions
 Homework 1 Questions
 Active Reading Quiz 1

 Feedback from 1/22

 Linux Completely Fair Scheduler
 Ch. 26

 Introduction to concurrency, threads

 Ch. 27
 Thread API

 Ch. 28
 Locks

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.2

OBJECTIVES

 Can you go over more examples of pr iority boosy and
preventive gaming?

 Sample problem next slide

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.3

SELECTED FEEDBACK FROM 1/22

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L6.4

 Is the lottery scheduler ever useful?

 Biggest benefit: ease of implementation

 What is the purpose of the user prioritizing jobs (in the
ticket mechanisms example) if the OS wil l handler
prioritizing?

 If the user has multiple jobs, this allows the user to
provide priority for their own set of jobs

 For example: the user may have one job with HIGH priority,
and another which is VERY LOW…

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.5

FEEDBACK - 2

 How does scheduling relate to vir tualization?
 With virtual machines, there is often a separate scheduler which

coordinates sharing the CPU among multiple CPUs
 For Amazon Cloud, “XEN” is the program (called a hypervisor) used to

host the virtual machines (VMs)
 Akin to Virtual Box but designed for use on servers
 “XEN” provides its own operating system kernel complete with

schedulers to share the CPU and I/O devices among all guest VMs

 How does the OS reassign tickets when more processes jo in?
Does it avoid inflation?
 The OS distributes tickets from a fixed pool.
 Presumably the OS will need to redistributed tickets to all jobs as the

ratios change
 Tickets provide an analogy to the CPU time share of a job

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.6

FEEDBACK - 3

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.2Slides by Wes J. Lloyd

 How is the Stride Scheduler not just a convoluted pr iority
queue?

 Queues arrange jobs in a first in / first out fashion

 Time is delineated among jobs in a round-robin fashion
with each job receiving an equal share of the CPU (e.g.
time slice)

 The stride scheduler allows assignment of tickets to
influence the time share of each job

 Round robin queues have no such feature

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.7

FEEDBACK - 4

 Will there be a practice midterm?
 Tentative plan – second half of class on Monday February 5th

 Spending a lot of t ime on feedback seems a bit detrimental to
the content you intended to cover
 Covering every topic once and never reviewing would helps

increase the total volume of content (chapters) covered…
 . . . at the cost of student retention
 While it may seem redundant for some to review already

familiar topics, some students may be seeing things for the
first time

 Ideally, there would be time to cover everything twice, once in
lecture, and again in an activity or open discussion

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.8

FEEDBACK - 5

CHAPTER 9 -
PROPORTIONAL SHARE

SCHEDULER

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.9

Addresses statistical probability issues with
lottery scheduling

 Instead of guessing a random number to select a
job, simply count…

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.10

STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should

give up the CPU

 Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100

 Job B has 50 tickets  Bstride = 10000/50 = 200

 Job C has 250 tickets  Cstride = 10000/250 = 40

 Stride scheduler tracks “pass” values for each job (A, B, C)

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.11

STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

 When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job…

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.12

STRIDE SCHEDULER - 3

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.3Slides by Wes J. Lloyd

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.13

STRIDE SCHEDULER - EXAMPLE

 Each job tracks its pass value with a counter

 Each time a job runs we increment its counter by
its stride to track when it should next run

 Start by randomly choosing A (all pass values=0)

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.14

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

Initial job selection
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)
 Randomly choose B

 C has the lowest counter for next 3 rounds

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.15

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

 Job counters support determining which job to run next

 Over time jobs are selected to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.16

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority receives

exactly 1/n th of the CPU time

 Scheduling classes (runqueues)
 Each has specific priority: default, real-time
 Scheduler picks highest priority task in highest scheduling

class
 Time quantum based on proportion of CPU time (%), not fixed

time allotments
 Quantum calculated using NICE value

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.17

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values
 Process command: Ps ax -o pid,ni,cmd,%cpu

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Scheduling quantum is calculated using nice value

 Target latency:

 Interval during which task should run at least once

 Automatically increases as number of jobs increases

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.18

COMPLETELY FAIR SCHEDULER - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.4Slides by Wes J. Lloyd

 Challenge:
 How do we map a nice value to an actual CPU timeslice

(ms)

What is the best mapping?

 O(1) scheduler (< 2.6.23)
- tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
- maps nice value based on time proportion
- with fewer jobs in a runqueue, the time quantum is larger

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.19

COMPLETELY FAIR SCHEDULER - 3

 Nice values become relative for determining time slices

 Proportion of CPU time to allocate is relative to other
queued tasks

 Scheduler tracks vir tual run time in vruntime variable

 The task on a given runqueue (nice value) with the lowest
vruntime is scheduled text

 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Perfect scheduler 
achieve equal vruntime for all processes of same priority

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.20

COMPLETELY FAIR SCHEDULER - 4

 CFS uses weighted fair queueing

 Runqueues are stored using a linux rbtree

 Self balancing binary search tree
 The leftmost node will have the lowest vruntime

Walking the tree to find the left most node is only O(log N)
for N nodes

 If tree is balanced, left most node can be cached

 Key takeaway
identifying the next job to schedule is really fast!

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.21

COMPLETELY FAIR SCHEDULER - 5

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.22

 Introduction to threads

 Race condition

 Critical section

 Thread API

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.23

OBJECTIVES

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.24

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.5Slides by Wes J. Lloyd

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.25

THREADS - 2

 Thread Control Block vs. Process Control Block

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.26

PROCESS AND THREAD METADATA

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.27

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.28

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.29

POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.30

POSSIBLE ORDERINGS OF EVENTS - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.6Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.31

POSSIBLE ORDERINGS OF EVENTS - 3

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.32

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Show example

 A + B : ordering

 Counter: incrementing global variable by two threads

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.33

COUNTER EXAMPLE

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.34

PROCESSES VS. THREADS

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.35

THREADS - 2

 What is happening with our counter?
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.36

RACE CONDITION

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.7Slides by Wes J. Lloyd

 Code that accesses a shared variable must not be
concurrently executed by more than one thread

 Multiple active threads inside a critical section produces a
race condition .

 Atomic execution (all code executed as a unit) must be
ensured in cr itical sections
 These sections must be mutually exclusive

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.37

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.38

LOCKS

CHAPTER 27 -
LINUX

THREAD API

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.39

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.40

THREAD CREATION

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.41

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.42

PASSING A SINGLE VALUE

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.8Slides by Wes J. Lloyd

 Here we “cast” the pointer to pass/return a primitive data type

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.43

PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.44

WAITING FOR THREADS TO FINISH

QUESTIONS

