TCSS 422 A — Winter 2018
Institute of Technology

TCSS 422: OPERATING SYSTEMS
| |

Completely Fair Scheduler,
Introduction to Concurrency,
Threads, Thread API

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

Ranuany2820le Institute of Technology, University of Washington - Tacoma

1/25/2018

OBJECTIVES

= Homework O Questions
= Tutorial 1 Questions

= Homework 1 Questions
= Active Reading Quiz 1

= Feedback from 1/22

= Linux Completely Fair Scheduler
= Ch. 26

= Introduction to concurrency, threads
= Ch. 27

= Thread API
= Ch. 28

= Locks

TCSS422: Operating Systems [Winter 2018]
R ot S s 1 T, st G B e TP 62

SELECTED FEEDBACK FROM 1/22

= Can you go over more examples of prlority boosy and
preventlve gaming?

= Sample problem next slide

TCS5422: Operating Systems [Winter 2018]
L 22, 2 Inttute of Technoloay)Universitylor Washington=Tacomal

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in
round-robin order.

Job Arrival Time Job Length
A T=0 4

B T=0 16

C T=0 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

HIGH |
|
|

MED |
|
|

Low

FEEDBACK - 2

= |s the lottery scheduler ever useful?
= Biggest benefit: ease of implementation

= What is the purpose of the user prioritizing jobs (in the
ticket mechanisms example) If the OS wlll handler

prloritizing?
= If the user has multiple jobs, this allows the user to
provide priority for their own set of jobs
= For example: the user may have one job with HIGH priority,
and another which is VERY LOW...

January 24, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma | o ‘

Slides by Wes J. Lloyd

FEEDBACK - 3

= How does schedullng relate to virtuallzation?

= With virtual machines, there is often a separate scheduler which
coordinates sharing the CPU among multiple CPUs

= For Amazon Cloud, “XEN” is the program (called a hypervisor) used to
host the virtual machines (VMs)

= Akin to Virtual Box but designed for use on servers

= “XEN” provides its own operating system kernel complete with
schedulers to share the CPU and 1I/0 devices among all guest VMs

= How does the OS reassign tickets when more processes join?
Does it avoid inflation?
= The OS distributes tickets from a fixed pool.
= Presumably the OS will need to redistributed tickets to all jobs as the
ratios change

= Tickets provide an analogy to the CPU time share of a job

TCSS422: Operating Systems [Winter 2018]
T [nstueor TechnolosyUniversitylofWashinstonSTacoma! L6

L6.1

TCSS 422 A — Winter 2018 1/25/2018
Institute of Technology

FEEDBACK - 4 FEEDBACK - 5
= How Is the Stride Scheduler not Just a convoluted prlority = WIill there be a practice midterm?
queue? = Tentative plan - second half of class on Monday February 5t

= Queues arrange jobs in a first in / first out fashion
=Time is delineated among jobs in a round-robin fashion
with each job receiving an equal share of the CPU (e.g.

= Spending a lot of time on feedback seems a bit detrimental to
the content you intended to cover
= Covering every topic once and never reviewing would helps

time slice) increase the total volume of content (chapters) covered...
=The stride scheduler allows assignment of tickets to = ... at the cost of student retention

influence the time share of each job = While it may seem redundant for some to review already
= Round robin queues have no such feature Iiargltll‘liiqr;oplcs, some students may be seeing things for the

= |deally, there would be time to cover everything twice, once in
lecture, and again in an activity or open discussion

January 24, 2018 TCS5422: Operating Systems [Winter 2018] | 67 ‘ January 24, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma | o8 |

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

CHAPTER 9 -

= Instead of guessing a random number to select a
job, simply count...

PROPORTIONAL SHARE
SCHEDULER

January 24, 2018 TCSS422: Operating Systems [Spring 2017)

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma January 24, 2018

Institute of Technology, University of Washington - Tacoma

16.10

STRIDE SCHEDULER - 2 STRIDE SCHEDULER - 3
= Jobs have a “stride” value = Basic algorithm:
= A stride value describes the counter pace when the job should 1. Stride scheduler picks a job with the lowest pass value

give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

2. Scheduler increments job’s pass value by its stride and
starts running
3. Stride scheduler increments a counter

= Total system tickets = 10,000 4. When counter exceeds pass value of current job, pick a

. new job (go to 1)
= Job A has 100 tickets > A,,;qo = 10000/100 = 100

= Job B has 50 tickets > Bqe = 10000/50 = 200 .
= Job C has 250 tickets > Cerige = 10000/250 = 40 = When the counter reaches a jOb’S “PASS” value,
the scheduler passes on to the next job...

= Stride scheduler tracks “pass” values for each job (A, B, C)

January 24, 2018 TCS5422: Operating Systems [Spring 2017) | 611 ‘ January 24, 2018 TCS5422: Operating Systems [Spring 2017) 612

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L6.2

TCSS 422 A — Winter 2018
Institute of Technology

STRIDE SCHEDULER - EXAMPLE

uStride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priorit

Priority
C stride = 40
A stride = 100
B stride = 200

TCS5422: Operating Systems [Spring 2017]

L 22, 2 T e a0l 2 U nvers o Washins tonsTace el

| 1613 ‘

1/25/2018

STRIDE SCHEDULER EXAMPLE - 2

= Each job tracks its pass value with a counter

= Each time a job runs we increment its counter by

its stride to track when it should next run Tickets
= Start by randomly choosing A (all pass values=0) € =250
A =100
Pass(A) Pass(B) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 o " 4 initial job selection
100 0 0 is random. All @ 0
100 200 0 C
100 200 40 [
100 200 80 €
100 200 120 A
200 200 120 €
200 200 160 C
200 200 200

January 24,2018

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma

16.14

STRIDE SCHEDULER EXAMPLE - 3

= We set A’s counter (pass value) to A’s stride = 100
= Next scheduling decision between B (pass=0) and C (pass=0)

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next

= Qver time jobs are selected to run based on their

priority represented as their share of tickets... Tickets
= Tickets are analogous to job priority € =250
A =100
Pass(A) Pass(B) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0

100 200 0 c

100 200 40 €

100 200 80 €

100 200 120 A

200 200 120 €

200 200 160 C

200 200 200

Institute of Technology, University of Washington - Tacoma

= Randomly choose B "
Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(E) Pass(C) Who Runs? A =100
(stride=100) (stride=200) (stride=40) B = 50
0 0 0 A
100 0 0
100 200 0 C
100 200 40 C « C has the most tickets
100 200 80 (o and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 C
200 200 200
January 24, 2018 TCSS422: Operating Systems [Spring 2017] | 615 ‘

TCS5422: Operating Systems [Spring 2017)

LY 2 [See ot Techolo syl niersityofWashinstonmiecome!

16.16

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority receives
exactly 1/n th of the CPU time

= Scheduling classes (runqueues)
= Each has specific priority: default, real-time

= Scheduler picks highest priority task in highest scheduling
class

= Time quantum based on proportion of CPU time (%), not fixed
time allotments

= Quantum calculated using NICE value

TCS5422: Operating Systems [Spring 2017)

L 22, 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1617 ‘

COMPLETELY FAIR SCHEDULER - 2

= Time slice: Linux “Nice value”
= Nice value predates the CFS scheduler
=Top shows nice values
=Process command: Ps ax -o pid,ni,cmd, %cpu

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
= Scheduling quantum is calculated using nice value
= Target latency:
Interval during which task should run at least once
Automatically increases as number of jobs increases

TCS5422: Operating Systems [Spring 2017)

T [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

16.18

Slides by Wes J. Lloyd

L6.3

TCSS 422 A — Winter 2018
Institute of Technology

COMPLETELY FAIR SCHEDULER - 3

= Challenge:
=How do we map a nice value to an actual CPU timeslice
(ms)
= What is the best mapping?
= 0(1) scheduler (< 2.6.23)
- tried to map nice value to timeslice (fixed allotment)

= Linux completely fair scheduler
- maps nice value based on time proportion
- with fewer jobs in a runqueue, the time quantum is larger

1/25/2018

January 24, 2018 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | o1

COMPLETELY FAIR SCHEDULER - 4

= Nice values become relative for determining time slices

= Proportion of CPU time to allocate is relative to other
queued tasks

= Scheduler tracks virtual run time in vruntime variable

= The task on a given runqueue (nice value) with the lowest
vruntime is scheduled text

" struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds

= Perfect scheduler >
achieve equal vruntime for all processes of same priority

January 24, 2018 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma t6.20

COMPLETELY FAIR SCHEDULER - 5

= CFS uses weighted fair queueing

= Runqueues are stored using a linux rbtree
= Self balancing binary search tree
= The leftmost node will have the lowest vruntime

= Walking the tree to find the left most node is only O(log N)
for N nodes

= |f tree is balanced, left most node can be cached

= Key takeaway
identifying the next job to schedule is really fast!

January 24, 2018 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | te21

CHAPTER 26 -
CONCURRENCY:
AN INTRODUCTION

TCSS422; Operating Systems [Spring 2017]
LT 225 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Introduction to threads
= Race condition
= Critical section

= Thread API

January 24, 2018 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | 1o

Slides by Wes J. Lloyd

THREADS

Process Multithreaded Process

Process State: PC,
registers, SP, etc.

Single . :
Threaded Toroided
Process

Procsss
» s -

[Jo
D-:.‘> <
D’:’

©Alfred Park, http://randu.org/tutorials/threads

TCSS422: Operating Systems [Spring 2017]

‘ RRnLaVZE2ILE Institute of Technology, University of Washington - Tacoma

[o

L6.4

TCSS 422 A — Winter 2018
Institute of Technology

THREADS - 2

= PC, registers, SP, and stack

= Code segment, memory, and heap are shared

= Enables a single process (program) to have multiple “workers”
= Supports independent path(s) of execution within a program

= Each thread has its own Thread Control Block (TCB)

TCS5422: Operating Systems [Spring 2017]

L 22, 2 T e a0l 2 U nvers o Washins tonsTace el

| 1625 ‘

= Every thread has it’s own stack / PC

SHARED ADDRESS SPACE

OKB The code segment: OKB
Program Code where instructions live Program Code
1KB. e . 1KB
e heap segment:
ek contains mallocd data S Heap
2K8 dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15KB contains local variables 15k8
Stack (1) arguments to routines, Stack (1)
16KB return values, etc. 16K8

A Single-Threaded
Address Space

Two threaded
Address Space

TCS5422: Operating Systems [Spring 2017]

L 22, 2 Inttute of Technoloay)Universitylof Washington®Tacomal

| 1627 ‘

1/25/2018

PROCESS AND THREAD METADA

= Thread Control Block vs. Process Control Block

Thread identification Process identification

Thread state Process status

CPU information: Process state:
Program counter Process status word
Register contents Register contents

Thread priority Resources
Pointer to process that created this thread Process priority
Pointers to all other threads created by this thread Accounting

TCS5422: Operating Systems [Spring 2017)

R ot S 1 T, Pt G e TP

16.26

THREAD CREATION EXAMPLE

#include <stdio.h>
#include <assert.h>
#include <pthread.h»

ythread(void +arg) {
rintf ("$s\n", (char +) arg);
return NULL;

argc, char rargvl]) {

ad_t pl, p2;

int ro;

printf("main: begin\n");

pthread_create(spl, NULL, mythread, "A"); assert(rc == 0);
read_create (5p2, NULL, mythread, "B"); assert (rc == 0);
aits for the threads to finish

read_join(pl, NULL); assert(rc == 0);
read_join (p2, NULL); assert(rc == 0);
printf("main: end\n");
return 0;
)
January 24, 2018 TCS$422: Operating Systems [Spring 2017] L6.28

Institute of Technology, University of Washington - Tacoma

Starts running
Prints ‘main: begin’

»Cleates Thread 1
Creates Thread 2

Waits for T1

Runs

. Prints ‘A"

Returns

» Waits for T2

» Prints ‘main: end’

POSSIBLE ORDERINGS OF EVENTS

Runs
Prints ‘B

Returns

TCS5422: Operating Systems [Spring 2017)

| L 22, 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1629 ‘

Slides by Wes J. Lloyd

POSSIBLE ORDERINGS OF EVENTS - 2

Starts running
Prints ‘main: begin’

[Creates Thread 1 7
Runs
Prints ‘A
Returns
Creates Thread 2 L
Runs
Prints ‘B’
Returns
| Waits for T2 Returns immediately B
Waits for T2 Returns immediately

Prints ‘main: end”

TCS5422: Operating Systems [Spring 2017)

T [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

1630

L6.5

TCSS 422 A — Winter 2018
Institute of Technology

1/25/2018

Starts running
Prints ‘main: begin’
["Creates Thread 1

Creates Thread 2

-
Waits for T1
Runs
Prints ‘A"
L Returns
Waits for T2

Prints ‘main: end’

POSSIBLE ORDERINGS OF EVENTS - 3

Runs

Prints ‘B’

Returns L
Immediately returns

TCS5422: Operating Systems [Spring 2017)

L 22, 2 T e a0l 2 U nvers o Washins tonsTace el

| 1631 ‘

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

What if execution order of

pie events in the program matters?
Runs
Prints ‘A"
L Returns
Waits for T2 Immediately returns

Prints ‘main: end”

TCSS422: Operating Systems [Spring 2017]

RRnuaVZEZULE Institute of Technology, University of Washington - Tacoma

| 1632 |

COUNTER EXAMPLE

= Show example

= A + B: ordering

= Counter: incrementing global variable by two threads

TCS5422: Operating Systems [Spring 2017)

L 22, 2 Inttute of Technoloay)Universitylof Washington®Tacomal

| 1633 ‘

PROCESSES VS. THREADS

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

o aaa | cooe || daa [
—— I 1 —
rogetrs wmox ||| [rmastons[sgetor [rgetor|

stack | atncke [stock |

muttithioadad prozoss

oo |

Process Process

Process State: PC.
registers, SP, etc...

<

thrpad —— & a+— thraac

AAS
SVAV o

singla-throaded procoss

TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma | Lo |

‘ January 24, 2018

THREADS - 2

= PC, registers, SP, and stack

= Code segment, memory, and heap are shared

= Enables a single process (program) to have multiple “workers”

= Supports independent path(s) of execution within a program

= Each thread has its own Thread Control Block (TCB)

TCS5422: Operating Systems [Spring 2017)

L 22, 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1635 ‘

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
os Threadl Thread2 P eax counter
before critical section 100 0 50
mov 0x8049%alc, %eax 105 50 50
add $0x1, %eax 108 51 50

save T1's state

restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x8049%alc 113 51 51

restore T1's state 108 51 50
mov %eax, 0x8049%alc 1131 5%

{ saqve 27s state

-

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

‘ January 24,2018 1636 |

Slides by Wes J. Lloyd

L6.6

TCSS 422 A — Winter 2018
Institute of Technology

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produces a
race condltion.

= Atomic execution (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually exclusive

TCS5422: Operating Systems [Spring 2017]
L 22, 2 T e a0l 2 U nvers o Washins tonsTace el 1637

1/25/2018

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lock (smutex) :
lbalance = balance + 1; | Critical section
unlock (smutex) i

G W e

= Counter example revisited

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma t6.38

January 24,2018

CHAPTER 27 -
LINUX
THREAD API

TCSS422: Operating Systems [Spring 2017)

TR 2 0 Institute of Technology, University of Washington - Tacoma

THREAD CREATION

= pthread_create

#include <pthread.h>

int
pthread create(pthread_t* thread,
const pthread attr_t* attr,
void* (*start_routine) (void*),
void* arg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

TCS5422: Operating Systems [Spring 2017)

LY 2 [See ot Techolo syl niersityofWashinstonmiecome!

16.40

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>

f struct _myarg t {
» int a;
int bs

} myarg_t;

*mythread (*arg) {
l myarg_t *m = (myarg_t *) arg;

printf(“sd %d\n”, m->a, m->b);
NULL;
}
int main(int arge, char *argv(l) {
pthread t p;
int re;

nyarg_t args;
’ args.a = 107
args.b = 20;
rc = pthread_create(sp, NULL, mythread, &args);

}

TCS5422: Operating Systems [Spring 2017)

L 22, 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1641 ‘

PASSING A SINGLE VALUE

= Here we “cast” the pointer to pass/return a primitive data type

: 4 void *mythread(void *arg) {

2 int m =CEntDarg;

3 printf (“3d\n”, m);

4 (void *) (arg + 1);

5 i

6

7 int main(int arge, char *argv(l) {

8 pthread t p;

9 int re, m;

10 pthread_create (6p, NULL, mythread,lOO):
11 pthread_join(p, (void **) &m);:

12 printf (“returned %d\n”, m);

13 0:

14 }

ey 20,2018 | oy Gnsny of Waehngton - Tacoma w2

Slides by Wes J. Lloyd

L6.7

TCSS 422 A — Winter 2018 1/25/2018
Institute of Technology

PASSING A SINGLE VALUE WAITING FOR THREADS TO FINISH

int pthread join(pthread_t thread, void **value_ptr);

Using this approach on your CentOS 7 VM
How large (in bvtes) can the primitive data type be?

= thread: which thread?

. . age = value_ptr: pointer to return value
How large (in bytes) can the primitive data type e (5 GhyREimie / AEmesiie

be on a 32-bit operating system?

= Returned values *must* be on the heap

S int rc, m;
10 pthread create(&p, NULL, mythread, ‘mm) 100) ; N N . .
11 pthread join(p, (void **) &m); - = Thread stacks destroyed upon thread termination (join)
1 i £ % d %d\n”,] . . .
55 i s = Pointers to thread stack memory addresses are invalid
sl = May appear as gibberish or lead to crash (seg fault)
= Not all threads join - What would be Examples ??
TCSS422: Of ting Syste [Spring 2017] TCSS422: O iting Syste [Spring 2017]
RRnaVZIZULE |nstimteal‘;:$::ogv; Uer':;je[rs?;"ogf Wasr]dngton - Tacoma | Lo.43 ‘ R ot Institute of ’;:Z:\r::?ogyys, \j::ers?tr;rff Washington - Tacoma Lo44

QUESTIONS

Slides by Wes J. Lloyd L6.8

