
TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.1Slides by Wes J. Lloyd

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Completely Fair Scheduler,
Introduction to Concurrency,

Threads, Thread API

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Homework 0 Questions
 Tutorial 1 Questions
 Homework 1 Questions
 Active Reading Quiz 1

 Feedback from 1/22

 Linux Completely Fair Scheduler
 Ch. 26

 Introduction to concurrency, threads

 Ch. 27
 Thread API

 Ch. 28
 Locks

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.2

OBJECTIVES

 Can you go over more examples of pr iority boosy and
preventive gaming?

 Sample problem next slide

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.3

SELECTED FEEDBACK FROM 1/22

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L6.4

 Is the lottery scheduler ever useful?

 Biggest benefit: ease of implementation

 What is the purpose of the user prioritizing jobs (in the
ticket mechanisms example) if the OS wil l handler
prioritizing?

 If the user has multiple jobs, this allows the user to
provide priority for their own set of jobs

 For example: the user may have one job with HIGH priority,
and another which is VERY LOW…

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.5

FEEDBACK - 2

 How does scheduling relate to vir tualization?
 With virtual machines, there is often a separate scheduler which

coordinates sharing the CPU among multiple CPUs
 For Amazon Cloud, “XEN” is the program (called a hypervisor) used to

host the virtual machines (VMs)
 Akin to Virtual Box but designed for use on servers
 “XEN” provides its own operating system kernel complete with

schedulers to share the CPU and I/O devices among all guest VMs

 How does the OS reassign tickets when more processes jo in?
Does it avoid inflation?
 The OS distributes tickets from a fixed pool.
 Presumably the OS will need to redistributed tickets to all jobs as the

ratios change
 Tickets provide an analogy to the CPU time share of a job

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.6

FEEDBACK - 3

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.2Slides by Wes J. Lloyd

 How is the Stride Scheduler not just a convoluted pr iority
queue?

 Queues arrange jobs in a first in / first out fashion

 Time is delineated among jobs in a round-robin fashion
with each job receiving an equal share of the CPU (e.g.
time slice)

 The stride scheduler allows assignment of tickets to
influence the time share of each job

 Round robin queues have no such feature

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.7

FEEDBACK - 4

 Will there be a practice midterm?
 Tentative plan – second half of class on Monday February 5th

 Spending a lot of t ime on feedback seems a bit detrimental to
the content you intended to cover
 Covering every topic once and never reviewing would helps

increase the total volume of content (chapters) covered…
 . . . at the cost of student retention
 While it may seem redundant for some to review already

familiar topics, some students may be seeing things for the
first time

 Ideally, there would be time to cover everything twice, once in
lecture, and again in an activity or open discussion

January 24, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L6.8

FEEDBACK - 5

CHAPTER 9 -
PROPORTIONAL SHARE

SCHEDULER

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.9

Addresses statistical probability issues with
lottery scheduling

 Instead of guessing a random number to select a
job, simply count…

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.10

STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should

give up the CPU

 Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets Astride = 10000/100 = 100

 Job B has 50 tickets Bstride = 10000/50 = 200

 Job C has 250 tickets Cstride = 10000/250 = 40

 Stride scheduler tracks “pass” values for each job (A, B, C)

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.11

STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

 When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job…

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.12

STRIDE SCHEDULER - 3

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.3Slides by Wes J. Lloyd

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.13

STRIDE SCHEDULER - EXAMPLE

 Each job tracks its pass value with a counter

 Each time a job runs we increment its counter by
its stride to track when it should next run

 Start by randomly choosing A (all pass values=0)

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.14

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

Initial job selection
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)
 Randomly choose B

 C has the lowest counter for next 3 rounds

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.15

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

 Job counters support determining which job to run next

 Over time jobs are selected to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.16

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority receives

exactly 1/n th of the CPU time

 Scheduling classes (runqueues)
 Each has specific priority: default, real-time
 Scheduler picks highest priority task in highest scheduling

class
 Time quantum based on proportion of CPU time (%), not fixed

time allotments
 Quantum calculated using NICE value

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.17

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values
 Process command: Ps ax -o pid,ni,cmd,%cpu

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Scheduling quantum is calculated using nice value

 Target latency:

 Interval during which task should run at least once

 Automatically increases as number of jobs increases

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.18

COMPLETELY FAIR SCHEDULER - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.4Slides by Wes J. Lloyd

 Challenge:
 How do we map a nice value to an actual CPU timeslice

(ms)

What is the best mapping?

 O(1) scheduler (< 2.6.23)
- tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
- maps nice value based on time proportion
- with fewer jobs in a runqueue, the time quantum is larger

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.19

COMPLETELY FAIR SCHEDULER - 3

 Nice values become relative for determining time slices

 Proportion of CPU time to allocate is relative to other
queued tasks

 Scheduler tracks vir tual run time in vruntime variable

 The task on a given runqueue (nice value) with the lowest
vruntime is scheduled text

 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Perfect scheduler
achieve equal vruntime for all processes of same priority

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.20

COMPLETELY FAIR SCHEDULER - 4

 CFS uses weighted fair queueing

 Runqueues are stored using a linux rbtree

 Self balancing binary search tree
 The leftmost node will have the lowest vruntime

Walking the tree to find the left most node is only O(log N)
for N nodes

 If tree is balanced, left most node can be cached

 Key takeaway
identifying the next job to schedule is really fast!

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.21

COMPLETELY FAIR SCHEDULER - 5

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.22

 Introduction to threads

 Race condition

 Critical section

 Thread API

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.23

OBJECTIVES

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.24

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.5Slides by Wes J. Lloyd

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.25

THREADS - 2

 Thread Control Block vs. Process Control Block

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.26

PROCESS AND THREAD METADATA

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.27

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.28

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.29

POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.30

POSSIBLE ORDERINGS OF EVENTS - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.6Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.31

POSSIBLE ORDERINGS OF EVENTS - 3

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.32

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Show example

 A + B : ordering

 Counter: incrementing global variable by two threads

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.33

COUNTER EXAMPLE

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.34

PROCESSES VS. THREADS

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.35

THREADS - 2

 What is happening with our counter?
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.36

RACE CONDITION

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.7Slides by Wes J. Lloyd

 Code that accesses a shared variable must not be
concurrently executed by more than one thread

 Multiple active threads inside a critical section produces a
race condition .

 Atomic execution (all code executed as a unit) must be
ensured in cr itical sections
 These sections must be mutually exclusive

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.37

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.38

LOCKS

CHAPTER 27 -
LINUX

THREAD API

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.39

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.40

THREAD CREATION

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.41

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.42

PASSING A SINGLE VALUE

TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.8Slides by Wes J. Lloyd

 Here we “cast” the pointer to pass/return a primitive data type

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.43

PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.44

WAITING FOR THREADS TO FINISH

QUESTIONS

