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OBJECTIVES

 Can you go over more examples of pr iority boosy and 
preventive gaming?

 Sample problem next slide
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SELECTED FEEDBACK FROM 1/22
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 Is the lottery scheduler ever useful?

 Biggest benefit: ease of implementation

 What is the purpose of the user prioritizing jobs ( in the 
ticket mechanisms example) if  the OS wil l handler 
prioritizing?

 If the user has multiple jobs, this allows the user to 
provide priority for their own set of jobs

 For example: the user may have one job with HIGH priority, 
and another which is VERY LOW…
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FEEDBACK - 2

 How does scheduling relate to vir tualization?
 With virtual machines, there is often a separate scheduler which 

coordinates sharing the CPU among multiple CPUs
 For Amazon Cloud, “XEN” is the program (called a hypervisor) used to 

host the virtual machines (VMs)
 Akin to Virtual Box but designed for use on servers
 “XEN” provides its own operating system kernel complete with 

schedulers to share the CPU and I/O devices among all guest VMs

 How does the OS reassign tickets when more processes jo in?  
Does it  avoid inflation?
 The OS distributes tickets from a fixed pool. 
 Presumably the OS will need to redistributed tickets to all jobs as the 

ratios change 
 Tickets provide an analogy to the CPU time share of a job
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FEEDBACK - 3
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 How is the Stride Scheduler not just a convoluted pr iority 
queue?

 Queues arrange jobs in a first in / first out fashion

 Time is delineated among jobs in a round-robin fashion 
with each job receiving an equal share of the CPU (e.g. 
time slice)

 The stride scheduler allows assignment of tickets to 
influence the time share of each job 

 Round robin queues have no such feature
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FEEDBACK - 4

 Will there be a practice midterm?
 Tentative plan – second half of class on Monday February 5th

 Spending a lot of  t ime on feedback seems a bit  detrimental to  
the content you intended to cover
 Covering every topic once and never reviewing would helps 

increase the total volume of content (chapters) covered… 
 . .  . at the cost of student retention
 While it may seem redundant for some to review already 

familiar topics, some students may be seeing things for the 
first time

 Ideally, there would be time to cover everything twice, once in 
lecture, and again in an activity or open discussion
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FEEDBACK - 5

CHAPTER 9 -
PROPORTIONAL SHARE 

SCHEDULER
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Addresses statistical probability issues with 
lottery scheduling

 Instead of guessing a random number to select a 
job, simply count…
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STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should 

give up the CPU

 Stride value is inverse in proportion to the job’s number of 
tickets  (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100

 Job B has 50 tickets  Bstride = 10000/50 = 200

 Job C has 250 tickets  Cstride = 10000/250 = 40

 Stride scheduler tracks “pass” values for each job (A, B, C)
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STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 
new job (go to 1)

 When the counter reaches a job’s “PASS” value, 
the scheduler passes on to the next job…
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STRIDE SCHEDULER - 3
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Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.13

STRIDE SCHEDULER - EXAMPLE

 Each job tracks its pass value with a counter

 Each time a job runs we increment its counter by 
its stride to track when it should next run 

 Start by randomly choosing A (all pass values=0)
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STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

Initial job selection 
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)
 Randomly choose B

 C has the lowest counter for next 3 rounds
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STRIDE SCHEDULER EXAMPLE - 3

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

 Job counters support determining which job to run next 

 Over time jobs are selected to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority
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STRIDE SCHEDULER EXAMPLE - 4

Tickets
C  = 250
A  = 100
B  =   50

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority receives 

exactly 1/n th of the CPU time

 Scheduling classes (runqueues)
 Each has specific priority: default, real-time
 Scheduler picks highest priority task in highest scheduling 

class
 Time quantum based on proportion of CPU time (%), not fixed 

time allotments
 Quantum calculated using NICE value
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values
 Process command:  Ps ax -o pid,ni,cmd,%cpu

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Scheduling quantum is calculated using nice value

 Target latency: 

 Interval during which task should run at least once

 Automatically increases as number of jobs increases
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COMPLETELY FAIR SCHEDULER - 2
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 Challenge:
 How do we map a nice value to an actual CPU timeslice

(ms)

What is the best mapping?

 O(1) scheduler (< 2.6.23) 
- tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
- maps nice value based on time proportion  
- with fewer jobs in a runqueue, the time quantum is larger
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COMPLETELY FAIR SCHEDULER - 3

 Nice values become relative for determining time slices

 Proportion of CPU time to allocate is relative to other 
queued tasks

 Scheduler tracks vir tual run time in vruntime variable

 The task on a given runqueue (nice value) with the lowest 
vruntime is scheduled text

 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Perfect scheduler 
achieve equal vruntime for all processes of same priority
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COMPLETELY FAIR SCHEDULER - 4

 CFS uses weighted fair queueing

 Runqueues are stored using a linux rbtree

 Self balancing binary search tree
 The leftmost node will have the lowest vruntime

Walking the tree to find the left most node is only O(log N) 
for N nodes

 If tree is balanced, left most node can be cached

 Key takeaway
identifying the next job to schedule is really fast!
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COMPLETELY FAIR SCHEDULER - 5

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION
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 Introduction to threads

 Race condition

 Critical section

 Thread API
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OBJECTIVES
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THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED
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 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared
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THREADS - 2

 Thread Control Block vs. Process Control Block
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PROCESS AND THREAD METADATA
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SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC
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THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 2



TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.6Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Show example

 A + B : ordering

 Counter: incrementing global variable by two threads
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COUNTER EXAMPLE

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads
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PROCESSES VS. THREADS

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared
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THREADS - 2

 What is happening with our counter? 
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52
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RACE CONDITION
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 Code that accesses a shared variable must not be 
concurrently executed by more than one thread

 Multiple active threads inside a critical section produces a 
race condition .

 Atomic execution (all code executed as a unit) must be 
ensured in cr itical sections
 These sections must be mutually exclusive
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited
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LOCKS

CHAPTER 27 -
LINUX

THREAD API
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 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority…  (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)
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THREAD CREATION
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PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE
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 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??
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WAITING FOR THREADS TO FINISH

QUESTIONS


