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TCSS 422: OPERATING SYSTEMS

 Homework 0 Questions
 Tutorial 1 Questions  
 Homework 1 Questions
 Active Reading Quiz 1

 Feedback from 1/22

 Linux Completely Fair Scheduler
 Ch. 26

 Introduction to concurrency, threads

 Ch. 27
 Thread API

 Ch. 28
 Locks
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OBJECTIVES

 Can you go over more examples of pr iority boosy and 
preventive gaming?

 Sample problem next slide
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SELECTED FEEDBACK FROM 1/22
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 Is the lottery scheduler ever useful?

 Biggest benefit: ease of implementation

 What is the purpose of the user prioritizing jobs ( in the 
ticket mechanisms example) if  the OS wil l handler 
prioritizing?

 If the user has multiple jobs, this allows the user to 
provide priority for their own set of jobs

 For example: the user may have one job with HIGH priority, 
and another which is VERY LOW…
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FEEDBACK - 2

 How does scheduling relate to vir tualization?
 With virtual machines, there is often a separate scheduler which 

coordinates sharing the CPU among multiple CPUs
 For Amazon Cloud, “XEN” is the program (called a hypervisor) used to 

host the virtual machines (VMs)
 Akin to Virtual Box but designed for use on servers
 “XEN” provides its own operating system kernel complete with 

schedulers to share the CPU and I/O devices among all guest VMs

 How does the OS reassign tickets when more processes jo in?  
Does it  avoid inflation?
 The OS distributes tickets from a fixed pool. 
 Presumably the OS will need to redistributed tickets to all jobs as the 

ratios change 
 Tickets provide an analogy to the CPU time share of a job
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FEEDBACK - 3



TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.2Slides by Wes J. Lloyd

 How is the Stride Scheduler not just a convoluted pr iority 
queue?

 Queues arrange jobs in a first in / first out fashion

 Time is delineated among jobs in a round-robin fashion 
with each job receiving an equal share of the CPU (e.g. 
time slice)

 The stride scheduler allows assignment of tickets to 
influence the time share of each job 

 Round robin queues have no such feature
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FEEDBACK - 4

 Will there be a practice midterm?
 Tentative plan – second half of class on Monday February 5th

 Spending a lot of  t ime on feedback seems a bit  detrimental to  
the content you intended to cover
 Covering every topic once and never reviewing would helps 

increase the total volume of content (chapters) covered… 
 . .  . at the cost of student retention
 While it may seem redundant for some to review already 

familiar topics, some students may be seeing things for the 
first time

 Ideally, there would be time to cover everything twice, once in 
lecture, and again in an activity or open discussion
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FEEDBACK - 5

CHAPTER 9 -
PROPORTIONAL SHARE 

SCHEDULER
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Addresses statistical probability issues with 
lottery scheduling

 Instead of guessing a random number to select a 
job, simply count…
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STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should 

give up the CPU

 Stride value is inverse in proportion to the job’s number of 
tickets  (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100

 Job B has 50 tickets  Bstride = 10000/50 = 200

 Job C has 250 tickets  Cstride = 10000/250 = 40

 Stride scheduler tracks “pass” values for each job (A, B, C)
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STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 
new job (go to 1)

 When the counter reaches a job’s “PASS” value, 
the scheduler passes on to the next job…
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STRIDE SCHEDULER - 3



TCSS 422 A – Winter 2018
Institute of Technology

1/25/2018

L6.3Slides by Wes J. Lloyd

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200
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STRIDE SCHEDULER - EXAMPLE

 Each job tracks its pass value with a counter

 Each time a job runs we increment its counter by 
its stride to track when it should next run 

 Start by randomly choosing A (all pass values=0)

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.14

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

Initial job selection 
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)
 Randomly choose B

 C has the lowest counter for next 3 rounds
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STRIDE SCHEDULER EXAMPLE - 3

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

 Job counters support determining which job to run next 

 Over time jobs are selected to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority
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STRIDE SCHEDULER EXAMPLE - 4

Tickets
C  = 250
A  = 100
B  =   50

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority receives 

exactly 1/n th of the CPU time

 Scheduling classes (runqueues)
 Each has specific priority: default, real-time
 Scheduler picks highest priority task in highest scheduling 

class
 Time quantum based on proportion of CPU time (%), not fixed 

time allotments
 Quantum calculated using NICE value
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values
 Process command:  Ps ax -o pid,ni,cmd,%cpu

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Scheduling quantum is calculated using nice value

 Target latency: 

 Interval during which task should run at least once

 Automatically increases as number of jobs increases
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COMPLETELY FAIR SCHEDULER - 2
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 Challenge:
 How do we map a nice value to an actual CPU timeslice

(ms)

What is the best mapping?

 O(1) scheduler (< 2.6.23) 
- tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
- maps nice value based on time proportion  
- with fewer jobs in a runqueue, the time quantum is larger
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COMPLETELY FAIR SCHEDULER - 3

 Nice values become relative for determining time slices

 Proportion of CPU time to allocate is relative to other 
queued tasks

 Scheduler tracks vir tual run time in vruntime variable

 The task on a given runqueue (nice value) with the lowest 
vruntime is scheduled text

 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Perfect scheduler 
achieve equal vruntime for all processes of same priority
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COMPLETELY FAIR SCHEDULER - 4

 CFS uses weighted fair queueing

 Runqueues are stored using a linux rbtree

 Self balancing binary search tree
 The leftmost node will have the lowest vruntime

Walking the tree to find the left most node is only O(log N) 
for N nodes

 If tree is balanced, left most node can be cached

 Key takeaway
identifying the next job to schedule is really fast!
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COMPLETELY FAIR SCHEDULER - 5

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION
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 Introduction to threads

 Race condition

 Critical section

 Thread API
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OBJECTIVES
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THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED
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 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared
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THREADS - 2

 Thread Control Block vs. Process Control Block
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PROCESS AND THREAD METADATA
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SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC
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THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 2
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int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Show example

 A + B : ordering

 Counter: incrementing global variable by two threads
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COUNTER EXAMPLE

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

January 24, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.34

PROCESSES VS. THREADS

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared
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THREADS - 2

 What is happening with our counter? 
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52
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RACE CONDITION
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 Code that accesses a shared variable must not be 
concurrently executed by more than one thread

 Multiple active threads inside a critical section produces a 
race condition .

 Atomic execution (all code executed as a unit) must be 
ensured in cr itical sections
 These sections must be mutually exclusive
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited
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LOCKS

CHAPTER 27 -
LINUX

THREAD API
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 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority…  (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)
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THREAD CREATION
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PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE
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 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??
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WAITING FOR THREADS TO FINISH

QUESTIONS


