
TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.1Slides by Wes J. Lloyd

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Limited Direct Execution,
Introduction to Scheduling,
Multilevel Feedback Queue

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Homework 0 Questions
 Tutorial 1: Pointers, Strings, and Exec in C
 Introducing Homework 1

 Feedback from 1/17

 Ch. 8
Multi-level feedback queue (MLFQ)

 Ch. 9
 Proportional Share Scheduler, Ticket Schedulers

 Ch. 26
 Introduction to concurrency, threads

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.2Slides by Wes J. Lloyd

 What is the difference between redirecting and piping output?

 Redirecting: STDOUT/STDERR to a file
STDIN from a fi le

 Piping: Send STDOUT of one program to STDIN of next
NO FILES ARE INVOLVED

 Piping Example: cat mylog.txt | grep the
grep the mylog.txt

 Redirecting Examples: grep 42 log.txt > 42_occurences.txt
grep 42 < log.txt

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.3

SELECTED FEEDBACK FROM 1/17

 Are fork(), exec(), wait() the “bread and butter” of thread
management in C? Isn’t fork() too slow since it copies the
entire process?

 fork(), exec(), wait() support creating and merging processes in C

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.4

FEEDBACK - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.3Slides by Wes J. Lloyd

 Interrupting interrupts (maskable)

 And not being about to interrupt interrupts (non-maskable)

 What again is a preemptive kernel?

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.5

FEEDBACK - 3

 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is t ime share of each process
 worst case = 1/n, best case = 1

 Compute Example
 With n=3 and x1=.2, x2=.7, x3=.1
 fairness=.62

 With n=3 and x1=.33, x2=.33, x3=.33
 fairness=1

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.6

FEEDBACK - 4

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.4Slides by Wes J. Lloyd

 What is the difference between Shortest Job First and
Shortest Job First with Random Arrival?
 Same scheduler

 Random arrival is a problem parameter – when do jobs arrive?

 All at the start?

 OR gradually over time (more realistic)

 Round-Robin
 While this scheduler is still quite simple, there are many practical

applications of RR used in practice in real systems

 Traffic/resource load balancers commonly use “round robin” to
determine where to send jobs (e.g. which server)

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.7

FEEDBACK - 5

 What is the scheduling algorithm used in a real OS? MLFQ?
 Linux/Ubuntu uses the Completely Fair Scheduler

 Not covered in detail in Three Easy Pieces

 Can the OS implement multiple job schedulers at the same
time?
 Absolutely, but only for scheduling different resources

 You can have multiple levels of scheduling like MLFQ

 At queue level, different scheduler / scheduler configs can be used

 Example: XEN hypervisor, used by Amazon Cloud to provide VMs:
 BVT: Borrowed Virtual Time

 SEDF: Simple Earliest Deadline First

 Credit: a fair share proportional scheduler

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.8

FEEDBACK - 6

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.5Slides by Wes J. Lloyd

 Still confused about MLFQ and how the jobs work with
queues

 When deciding what queue a process should be in, how
does the OS decide?

 Is the CPU between context switches moving process in
their respective queues?

 Queues are likely pointers to struct task_struct data
structures

 Easy to move pointers between different queues

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.9

FEEDBACK - 7

CHAPTER 8 –
MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

January 11, 2017
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L5.10

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.6Slides by Wes J. Lloyd

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.11

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.12

MLFQ - 2 Round-Robin
within a Queue

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.7Slides by Wes J. Lloyd

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.13

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 Three-queue scheduler, time slice=10ms

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.14

MLFQ: LONG RUNNING JOB

Priority

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.8Slides by Wes J. Lloyd

 Aarrival_time =0ms, Arun_time=200ms,

 Brun_time =20ms, Barrival_time =100ms

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.15

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

 Continuous interactive job (B) with long running batch job (A)
 Low response time is good for B

 A continues to make progress

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.16

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.9Slides by Wes J. Lloyd

Starvation

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.17

MLFQ: ISSUES

 Gaming the scheduler

 Issue I/O operation at 99% completion of the time slice

 Keeps job priority fixed – never lowered

 Job behavioral change

 CPU/batch process becomes an interactive process

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.18

MLFQ: ISSUES - 2

Priority becomes stuck

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.10Slides by Wes J. Lloyd

 Priority Boost

 Reset all jobs to topmost queue after some time interval S

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L5.19

RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

 Prevents starvation

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.20

RESPONDING TO BEHAVIOR CHANGE - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.11Slides by Wes J. Lloyd

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.21

PREVENTING GAMING

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.22

MLFQ: TUNING

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.12Slides by Wes J. Lloyd

 Oracle Solaris MLFQ implementation

 60 Queues 
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command  Linux

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.23

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the
highest priority.

 Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.24

MLFQ RULE SUMMARY

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.13Slides by Wes J. Lloyd

CHAPTER 9 -
PROPORTIONAL SHARE

SCHEDULER

January 22, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L5.25

 Also called fair-share scheduler
or lottery scheduler

 Guarantee each job receives some percentage of CPU time
based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.26

PROPORTIONAL SHARE SCHEDULER

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.14Slides by Wes J. Lloyd

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.27

LOTTERY SCHEDULER

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.28

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.15Slides by Wes J. Lloyd

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.29

TICKET MECHANISMS

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of
tickets it owns

 If a process needs more CPU time, it can boost tickets.

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.30

TICKET MECHANISMS - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.16Slides by Wes J. Lloyd

 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.31

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of fl ips!

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.32

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.17Slides by Wes J. Lloyd

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.33

LOTTERY FAIRNESS

 With two jobs
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as
desired

 How should the OS automatically distribute tickets upon
job arrival?

What do we know about incoming jobs a priori ?

 Ticket assignment is really an open problem…

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.34

LOTTERY SCHEDULING CHALLENGES

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.18Slides by Wes J. Lloyd

Addresses statistical probability issues with
lottery scheduling

 Instead of guessing a random number to select a
job, simply count…

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.35

STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should

give up the CPU

 Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100

 Job B has 50 tickets  Bstride = 10000/50 = 200

 Job C has 250 tickets  Cstride = 10000/250 = 40

 Stride scheduler tracks “pass” values for each job (A, B, C)

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.36

STRIDE SCHEDULER - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.19Slides by Wes J. Lloyd

 Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

 When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job…

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.37

STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.38

STRIDE SCHEDULER - EXAMPLE

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.20Slides by Wes J. Lloyd

 Randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.39

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

QUESTIONS

