
TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.1Slides by Wes J. Lloyd

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Limited Direct Execution,
Introduction to Scheduling,
Multilevel Feedback Queue

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Homework 0 Questions
 Tutorial 1: Pointers, Strings, and Exec in C
 Introducing Homework 1

 Feedback from 1/17

 Ch. 8
Multi-level feedback queue (MLFQ)

 Ch. 9
 Proportional Share Scheduler, Ticket Schedulers

 Ch. 26
 Introduction to concurrency, threads

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.2Slides by Wes J. Lloyd

 What is the difference between redirecting and piping output?

 Redirecting: STDOUT/STDERR to a file
STDIN from a fi le

 Piping: Send STDOUT of one program to STDIN of next
NO FILES ARE INVOLVED

 Piping Example: cat mylog.txt | grep the
grep the mylog.txt

 Redirecting Examples: grep 42 log.txt > 42_occurences.txt
grep 42 < log.txt

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.3

SELECTED FEEDBACK FROM 1/17

 Are fork(), exec(), wait() the “bread and butter” of thread
management in C? Isn’t fork() too slow since it copies the
entire process?

 fork(), exec(), wait() support creating and merging processes in C

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.4

FEEDBACK - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.3Slides by Wes J. Lloyd

 Interrupting interrupts (maskable)

 And not being about to interrupt interrupts (non-maskable)

 What again is a preemptive kernel?

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.5

FEEDBACK - 3

 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is t ime share of each process
 worst case = 1/n, best case = 1

 Compute Example
 With n=3 and x1=.2, x2=.7, x3=.1
 fairness=.62

 With n=3 and x1=.33, x2=.33, x3=.33
 fairness=1

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.6

FEEDBACK - 4

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.4Slides by Wes J. Lloyd

 What is the difference between Shortest Job First and
Shortest Job First with Random Arrival?
 Same scheduler

 Random arrival is a problem parameter – when do jobs arrive?

 All at the start?

 OR gradually over time (more realistic)

 Round-Robin
 While this scheduler is still quite simple, there are many practical

applications of RR used in practice in real systems

 Traffic/resource load balancers commonly use “round robin” to
determine where to send jobs (e.g. which server)

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.7

FEEDBACK - 5

 What is the scheduling algorithm used in a real OS? MLFQ?
 Linux/Ubuntu uses the Completely Fair Scheduler

 Not covered in detail in Three Easy Pieces

 Can the OS implement multiple job schedulers at the same
time?
 Absolutely, but only for scheduling different resources

 You can have multiple levels of scheduling like MLFQ

 At queue level, different scheduler / scheduler configs can be used

 Example: XEN hypervisor, used by Amazon Cloud to provide VMs:
 BVT: Borrowed Virtual Time

 SEDF: Simple Earliest Deadline First

 Credit: a fair share proportional scheduler

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.8

FEEDBACK - 6

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.5Slides by Wes J. Lloyd

 Still confused about MLFQ and how the jobs work with
queues

 When deciding what queue a process should be in, how
does the OS decide?

 Is the CPU between context switches moving process in
their respective queues?

 Queues are likely pointers to struct task_struct data
structures

 Easy to move pointers between different queues

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.9

FEEDBACK - 7

CHAPTER 8 –
MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

January 11, 2017
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L5.10

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.6Slides by Wes J. Lloyd

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.11

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.12

MLFQ - 2 Round-Robin
within a Queue

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.7Slides by Wes J. Lloyd

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.13

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 Three-queue scheduler, time slice=10ms

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.14

MLFQ: LONG RUNNING JOB

Priority

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.8Slides by Wes J. Lloyd

 Aarrival_time =0ms, Arun_time=200ms,

 Brun_time =20ms, Barrival_time =100ms

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.15

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

 Continuous interactive job (B) with long running batch job (A)
 Low response time is good for B

 A continues to make progress

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.16

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.9Slides by Wes J. Lloyd

Starvation

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.17

MLFQ: ISSUES

 Gaming the scheduler

 Issue I/O operation at 99% completion of the time slice

 Keeps job priority fixed – never lowered

 Job behavioral change

 CPU/batch process becomes an interactive process

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.18

MLFQ: ISSUES - 2

Priority becomes stuck

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.10Slides by Wes J. Lloyd

 Priority Boost

 Reset all jobs to topmost queue after some time interval S

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L5.19

RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

 Prevents starvation

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.20

RESPONDING TO BEHAVIOR CHANGE - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.11Slides by Wes J. Lloyd

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.21

PREVENTING GAMING

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.22

MLFQ: TUNING

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.12Slides by Wes J. Lloyd

 Oracle Solaris MLFQ implementation

 60 Queues
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command Linux

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.23

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the
highest priority.

 Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.24

MLFQ RULE SUMMARY

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.13Slides by Wes J. Lloyd

CHAPTER 9 -
PROPORTIONAL SHARE

SCHEDULER

January 22, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L5.25

 Also called fair-share scheduler
or lottery scheduler

 Guarantee each job receives some percentage of CPU time
based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.26

PROPORTIONAL SHARE SCHEDULER

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.14Slides by Wes J. Lloyd

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.27

LOTTERY SCHEDULER

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.28

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.15Slides by Wes J. Lloyd

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.29

TICKET MECHANISMS

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of
tickets it owns

 If a process needs more CPU time, it can boost tickets.

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.30

TICKET MECHANISMS - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.16Slides by Wes J. Lloyd

 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.31

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of fl ips!

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.32

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.17Slides by Wes J. Lloyd

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.33

LOTTERY FAIRNESS

 With two jobs
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as
desired

 How should the OS automatically distribute tickets upon
job arrival?

What do we know about incoming jobs a priori ?

 Ticket assignment is really an open problem…

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.34

LOTTERY SCHEDULING CHALLENGES

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.18Slides by Wes J. Lloyd

Addresses statistical probability issues with
lottery scheduling

 Instead of guessing a random number to select a
job, simply count…

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.35

STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should

give up the CPU

 Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets Astride = 10000/100 = 100

 Job B has 50 tickets Bstride = 10000/50 = 200

 Job C has 250 tickets Cstride = 10000/250 = 40

 Stride scheduler tracks “pass” values for each job (A, B, C)

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.36

STRIDE SCHEDULER - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.19Slides by Wes J. Lloyd

 Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

 When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job…

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.37

STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.38

STRIDE SCHEDULER - EXAMPLE

TCSS 422 A – Winter 2018
Institute of Technology

1/24/2018

L5.20Slides by Wes J. Lloyd

 Randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job

January 22, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L5.39

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

QUESTIONS

