TCSS 422 A — Winter 2018
Institute of Technology

1/24/2018

TCSS 422: OPERATING SYSTEMS

Limited Direct Execution,
Introduction to Scheduling,
Multilevel Feedback Queue

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

Lanuany22 2018 Institute of Technology, Uni of Washington - Tacoma

OBJECTIVES

= Homework O Questions
= Tutorial 1: Pointers, Strings, and Exec in C
= [ntroducing Homework 1

= Feedback from 1/17

= Ch. 8

= Multi-level feedback queue (MLFQ)
= Ch.9

= Proportional Share Scheduler, Ticket Schedulers
= Ch. 26

= Introduction to concurrency, threads

January 22, 2018 TCSS422: Operating Systems [Winter 2018] | 52 |

Institute of Technology, University of Washington - Tacoma

SELECTED FEEDBACK FROM 1/17

= What Is the difference between redirecting and plping output?

= Redirecting:STDOUT/STDERR to a file
STDIN from a file

= Piping: Send STDOUT of one program to STDIN of next
NO FILES ARE INVOLVED

= Pilplng Example: cat mylog.txt | grep the
grep the mylog.txt

= Redirecting Examples: grep 42 log.txt > 42_occurences.txt
grep 42 < log.txt

TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma | o3 ‘

January 22, 2018

FEEDBACK - 2

= Are fork(), exec(), wait() the “bread and butter” of thread
management in C? Isn’t fork() too slow since it copies the
entire process?

= fork(), exec(), wait() support creating and merging processes in C

TCS$422: Operating Systems [Winter 2018] | 5.4 |

LY 2 [See et Techolo syl niersity o Washinstoniecome!

FEEDBACK - 3

= Interrupting interrupts (maskable)
= And not being about to interrupt interrupts (non-maskable)

= What again is a preemptive kernel?

TCS5422: Operating Systems [Winter 2018]

L 2, 2 Institute o Technoloay)Universitylof Washington®Tacomal

FEEDBACK - 4

= Jaln’s falrness Index
= Quantifies if jobs receive a fair share of system resources
(E"n_l mi)z

J(®1,22,. .., 80) =
e n Y @l

" n processes
= X; is time share of each process
= worst case = 1/n, best case = 1

= Compute Example

= With n=3 and x;=.2, x,=.7, X5=.1
= fairness=.62

= With n=3 and x,=.33, x,=.33, x5=.33
= fairness=1

January 22, 2018 TCSS422: Operating Systems [Winter 2018] | 56 |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L5.1

TCSS 422 A — Winter 2018 1/24/2018
Institute of Technology

FEEDBACK - 5 FEEDBACK - 6

= What is the difference between Shortest Job First and = What is the scheduling algorithm used in a real 0S? MLFQ?
Shortest Job First with Random Arrival? = Linux/Ubuntu uses the Completely Fair Scheduler
= Same scheduler = Not covered in detail in Three Easy Pleces
= Random arrival is a problem parameter - when do jobs arrive?
= All at the start? = Can the OS implement multiple job schedulers at the same

time?
= Absolutely, but only for scheduling different resources
= You can have multiple levels of scheduling like MLFQ
= At queue level, different scheduler / scheduler configs can be used

= OR gradually over time (more realistic)

= Round-Robin
= While this scheduler is still quite simple, there are many practical

applications of RR used in practice in real systems = Example: XEN hypervisor, used by Amazon Cloud to provide VMs:
= Traffic/resource load balancers commonly use “round robin” to BVT: Borrowed Virtual Time
determine where to send jobs (e.g. which server) SEDF: Simple Earliest Deadline First

Credit: a fair share proportional scheduler

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]
L 2, 2 | 157 ‘ ALY 2 S s 1 T, st G B e TP 158

FEEDBACK - 7

= Still confused about MLFQ and how the jobs work with
queues

= When deciding what queue a process should be in, how CHAPTER 8 -
does the OS decide?

u|s t!\e CPU bettween context switches moving process in MULTI'LEVEL FEEDBACK
their respective queues? QUEUE (MLFQ) SCHEDULER

= Queues are likely pointers to struct task_struct data
structures

= Easy to move pointers between different queues

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

January 22, 2018 Institute of Technology, University of Washington - Tacoma

| 159 ‘ January 11, 2017

MULTI-LEVEL FEEDBACK QUEUE
ueu

= QObjectives: = Multiple job queues
=Improve turnaround time: = Adjust job priority based on [High Priority] Q8 —— (a) — ()
Run shorter jobs first Sbsenvedibehavion Q7
L . i 6
=Minimize response time: 0 IR Jebs - .
Important for interactive jobs (Ul) ACTEHB D 2> Lee PHoy G Qs
= Interactive jobs require fast
i i L.) response time (GUI/UI) Q4 —>©
= Achieve without a priori knowledge of job length
= Batch Jobs Q3
= Require long periods of CPU Q2
utilization
= Keep priority low [Low Priority] Q1 —>®
iy, 2018 | 1SS g o [sn] a2z, 28| 1SRz Qe e o

Slides by Wes J. Lloyd L5.2

TCSS 422 A — Winter 2018 1/24/2018
Institute of Technology

MLFQ: DETERMINING JOB PRIORITY MLFQ: LONG RUNNING JOB

= New arriving jobs are placed into highest priority queue = Three-queue scheduler, time slice=10ms

= If a job uses its entire time slice, priority is reduced ()

Q2

= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI) Priority

= |f a job relinquishes the CPU for I/0 priority stays the same

Q1

MLFQ approximates SJF Qo

o s 100 150 200

Long-running Job Over Time (msec)

TCSS422: Operating Systems [Winter 2018]
L 2, 2 S s 1 T, st G B e TP 514

TCS5422: Operating Systems [Winter 2018] | 1513 January 22,2018

Institute of Technology, University of Washington - Tacoma

MLFQ: BATCH AND INTERACTIVE JOBS MLFQ: BATCH AND INTERACTIVE - 2

=A
=B

arrival_time =0MS, Ay ime=200ms, = Continuous interactive job (B) with long running batch job (A)
run_time =20MS, B, 1ivai time =100ms = Low response time is good for B
= A continues to make progress

The MLFQ approach keeps interactive job(s) at the highest priority

A:I

B:

Priority

Q

Q1
0 . 100 . " QO IIIIIIIIIIIIII
Scheduling multiple jobs (ms) HAEEEEEEEEEERN
0 50 100 150 200

A Mixed I/O-intensive and CPU-intensive Workload (msec)

N
\
N
N
N

pzzzzz7773
zzzzzz222)
pzzzz2277)
rzzzzz7772)
zzzz77772)
pzzzz2277)
zzzz22272)
pzzzzz777)
wzzzz7772)
vzzzzz227i
rzzzzz7772)
vzzz222273
rzzzzz7772)
bzzzzzzzz

TCSS422: Operating Systems [Winter 2018]
L 2, 2 [See et Techolo syl niersity o Washinstoniecome! L6

TCS5422: Operating Systems [Winter 2018] | 15.5 January 22,2018

Institute of Technology, University of Washington - Tacoma

= Starvation ® Gaming the scheduler
[High Priority] Q8 — > @ — —s ©_, @_, ®_, @ = Issue /0 operation at 99% completion of the time slice
7 = Keeps job priority fixed - never lowered
Q6 = Job behavioral change
= CPU/batch process becomes an interactive process
= W pio 68— (1) — 31— (€)— & — (£ — 0
Q7
Q4 -
[eE} o
Q4
Q2 o
@
[Low Priority] QL —> @_> @ CPU bound batch job(s) Priority becomes Stuck gy tawrers) @ — (&) (i) cssomammensoon
TCSS422: Of ing Sy Wi 2018] TCSS422: O ing S (Wi 2018]
a0 ey egon- oo | oo a0 s wanton- o s |

Slides by Wes J. Lloyd L5.3

TCSS 422 A — Winter 2018
Institute of Technology

RESPONDING TO BEHAVIOR CHANGE

@ i

Q1

_ Starvation L)

0 50 100 150 200 X “

Without Priority Boost A:I B: C:E

= Priority Boost
= Reset all jobs to topmost queue after some time interval S

1/24/2018

TCSS422: Operating Systems [Winter 2018]

IO 2 2N Institute of Technology, University of Washington - Tacoma | ts:19

RESPONDING TO BEHAVIOR CHANGE - 2

= With priority boost
= Prevents starvation

Boost

100 150 200

Without(Left) and With(Right) Priority Boost A] BN c:E

January 22, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 1520

PREVENTING GAMING

= Improved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

PO L

Without(Left) and With(Right) Gaming Tolerance

TCS5422: Operating Systems [Winter 2018]

L 2, 2 Inttute of Technoloay)Universitylor Washington=Tacomal

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?

= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?
N

Q2

QL

Q

P - o
Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

January 22, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma .22

PRACTICAL EXAMPLE

= Oracle Solaris MLFQ implementation
=60 Queues >
w/ slowly increasing time slice (high to low priority)
= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

= Advice
= Provide OS with hints about the process
= Nice command - Linux

January 22, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma | o

MLFQ RULE SUMMARY

= The refined set of MLFQ rules:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

January 22, 2018 TCSS422: Operating Systems [Winter 2018]

Instituteof Technology, University of Washington - Tacoma L2

Slides by Wes J. Lloyd

L5.4

TCSS 422 A — Winter 2018
Institute of Technology

CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Winter 2018]
SENITETR) 224 20 Institute of Technology, University of Washington - Tacoma

PROPORTIONAL SHARE SCHEDULER

= Also called fair-share scheduler
or lottery scheduler

= Guarantee each job receives some percentage of CPU time
based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

January 22, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 1526

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCS5422: Operating Systems [Winter 2018]
L 2, 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 1527

LOTTERY SCHEDULER IMPLEMENTATION

JobiA JobB JobiC
head Tix:100 Tix:250 NULL

1
2 counter = 0;
3
1
5
6 winner = getrandom(0, totaltickets);
7
8
9 node_t *current = head;
10 n
1
12 (current) {
13 counter = counter + current->tickets;
14 (counter > winner)
15 i
16 current = current->next;
17)
18
January 22, 2018 TCS5422: Operating Systems [Winter 2018]

15.28

Institute of Technology, University of Washington - Tacoma

TICKET MECHANISMS

= Ticket currency / exchange
= User allocates tickets in any desired way
= 0S converts user currency into global currency

= Example:

=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to Al > 50 (global currency)
> 500 (A's currency) to A2 > 50 (global currency)

User B > 10(B’s currency) to B1 > 100(global currency)

TCS5422: Operating Systems [Winter 2018]
L 2, 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1529

Slides by Wes J. Lloyd

TICKET MECHANISMS - 2

= Ticket transfer
= Temporarily hand off tickets to another process

= Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= If a process needs more CPU time, it can boost tickets.

January 22, 2018 TCS5422: Operating Systems [Winter 2018]

Instituteof Technology, University of Washington - Tacoma 1530

1/24/2018

L5.5

TCSS 422 A — Winter 2018
Institute of Technology

1/24/2018

LOTTERY SCHEDULING

= Scheduler picks a winnlng ticket
= Load the job with the winning ticket and run it

= Example:
= Given 100 tickets in the pool

Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A A AB AB A

= But what do we know about probability of a coin flip?

TCS5422: Operating Systems [Winter 2018]

L 2, 2 e e T e G T e

| 1531 ‘

COIN FLIPPING

= Equality of distribution (fairness) requires a lot of flips!

100
0
80
70
60 Jil
50
40

" Allheads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

|

-
Increasing number of coin tosses

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

1532

January 22,2018

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

1.0

Unfairess (Average)

10 10 1000
Job Length

When the job length is not very long,
average unfairness can be

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

January 22, 2018

LOTTERY SCHEDULING CHALLENGES

= What is the best approach to assign tickets to jobs?
=Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

= How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
= Ticket assighment is really an open problem...

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma Lo:34

January 22,2018

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

job, simply count...

= |nstead of guessing a random number to select a

TCS5422: Operating Systems [Winter 2018]

L 2, 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1535

STRIDE SCHEDULER - 2

= Jobs have a “stride” value
= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

= Total system tickets = 10,000
= Job A has 100 tickets > Ao = 10000/100 = 100
= Job B has 50 tickets & By,qe = 10000/50 = 200
= Job C has 250 tickets > Cg ;4o = 10000/250 = 40

= Stride scheduler tracks “pass” values for each job (A, B, C)

TCSS422: Operating Systems [Winter 2018]

Instituteof Technology, University of Washington - Tacoma 1536

January 22,2018

Slides by Wes J. Lloyd

L5.6

TCSS 422 A — Winter 2018 1/24/2018
Institute of Technology

STRIDE SCHEDULER - 3

STRIDE SCHEDULER - EXAMPLE

= Basic algorithm: = Stride values
1. Stride scheduler picks a job with the lowest pass value =Tickets = priority to select job

2. Scheduler increments job’s pass value by its stride and

] =Stride is inverse to tickets
starts running

3. Stride scheduler increments a counter =Lower stride = more chances to run (higher priority)
4. When counter exceeds pass value of current job, pick a Priori
new job (go to 1) Priority
C stride = 40
= When the counter reaches a job’s “PASS” value, A stride = 100
the scheduler passes on to the next job... B stride = 200

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2018]

January 22, 2018 Institute of Technology, University of Washington - Tacoma

| 1537 January 22, 2018 1538

STRIDE SCHEDULER EXAMPLE - 2

QUESTIONS

= Randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100

Tickets
= Increment counter until > 100 P
i i C =250
" Pick a new job A =100
Pass(A) Pass(2) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A 4 Initial job selection
100 0 0 B is random. All @ 0
100 200 0 €
100 200 40 C « C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 €
200 200 200

TCS5422: Operating Systems [Winter 2018]

L 2, 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 1539

Slides by Wes J. Lloyd L5.7

