TCSS 422 A — Winter 2018
Institute of Technology

1/17/2018

Limited Direct Execution,
Introduction to Scheduling,
Multilevel Feedback Queue

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

Lanuanvilz20le Institute of Technology, University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS
K

OBJECTIVES

= Feedback from 1/10
= Homework 0 Questions

= Chapter 6: Limited Direct Execution
= Virtualizing the CPU

= Ch. 7
= Scheduling Introduction
= Scheduling Metrics
= Scheduling Methods

= Ch. 8
= Multi-level feedback queue (MLFQ)

January 17, 2018 TCSS422: Operating Systems [Winter 2018] | a2 |

Institute of Technology, University of Washington - Tacoma

TCSS422 - VIRTUAL MACHINES

= Instructions on how to connect and use VMs:

= Stephen Rondeau has created TCSS422 Ubuntu VMs

= http://css.insttech.washington.edu/~lab/Support/Howt

oUse/UsingVCLQS.html

TCS5422: Operating Systems [Winter 2018]

LR 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

SELECTED FEEDBACK FROM 1/10

= What Is hyperthreading In a CPU?
Benefits of HT Technology

First Thread/Task Second Thread/Task

Thiead 1 w—
Thiead2

Thiead3

—

Threods

Thieeds @

-

Threads w

Execution
Resource
Utiization

S—

Time saved

Both Threads/Tasks with Hyper-Threading Technology

TCS5422: Operating Systems [Winter 2018] s
Institute of Technology, University of Washington - Tacoma i

‘ January 17, 2018

FEEDBACK - 2

wasn't in the current working directory?

= |t is in the system’s path variable:

= Check your path variable:
echo $PATH

= Add to your path
export PATH=$PATH:/home/mydir:/.

= Check which command wlll be used
whereis wc

" How did the example program (execv) run “wc” when “we”

TCS5422: Operating Systems [Winter 2018]

LRy 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

FEEDBACK - 3

= How can a program run with exec, return back to the
process that called It, when It finishes executlion?

= Fork(), then exec(), and have the parent wait()
= |s It only exec() that prevents the remalning lines of code

from being processed?

= Yes... the process has been handed off to another
executable, which then exits...

TCS$422: Operating Systems [Winter 2018] | a6 |

Yy [nstueor TechnolosyUniversitylofWashinstonSTacoma!

Slides by Wes J. Lloyd

L4.1

TCSS 422 A — Winter 2018
Institute of Technology

FEEDBACK - 4

= Can we go over the exec() examples agaln

= What Is the difference between the execl’s: execl(). execlp().
execle() and the execv’s: execv(), execyj execvpe

= Execl’s

= Send a NULL terminated list of strings instead of an array

= Variants (execlp, execle, execl) are for different path settings
= *% New example execl() **

= Execv's
= Parameterize exec using an array
= Variance (execv, execvp, execvpe) for different path settings

TCS5422: Operating Systems [Winter 2018]

L 2 2 e e T e G T e

| 7 ‘

1/17/2018

FEEDBACK - 5

= Can you spend a llttle time golng over bash commands
= Goal of assignment O is to engage students in using the
internet to research how to accomplish tasks in Linux

= Develop and practice skills to seek answers to Linux and
system-oriented questions

TCS5422: Operating Systems [Winter 2018]

ALY g S s 1 T, st G B e TP

SLIDES AND EXAMPLES

Source Code Examples

Source code for examples from class are posted [HERE]

= Examples posted online at:
= http://faculty.washington.edu/wlloyd/courses/tcss422/examples/

= Previous slides online at:
= http://faculty.washington.edu/wlloyd/teaching.htmi
= Slides from previous TCSS422 sections

TCS5422: Operating Systems [Winter 2018]

LR 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

CH. 6:
LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Winter 2018]

LT T 2 Institute of Technology, University of Washington - Tacoma

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

=Time Sharing

= Tradeoffs:

= Performance
Excessive overhead
= Control
Fairness
Security

= Both HW and OS support
is used

TCS5422: Operating Systems [Winter 2018]

LRy 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

| a1 ‘

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0os Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()
8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Winter 2018]

Yy [nstueor TechnolosyUniversitylofWashinstonSTacoma!

.12

Slides by Wes J. Lloyd

L4.2

TCSS 422 A — Winter 2018
Institute of Technology

1/17/2018

COMPUTER BOOT SEQUENCE:

0S WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

oS Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn’t be in control of anything
and would

7. Run main ()
8. Execute return from main ()

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

January 17, 2018 TCS5422: Operating Systems [Winter 2018] | 13

Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

January 17, 2018 L4

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

=Too much control:
=Too much OS overhead
= Poor performance for compute & 1I/0
= Complex APls (system calls), difficult to use

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching

Multitasking

vs. Multitasking with context switching

sequential

January 17, 2018

TCS5422: Operating Systems [Winter 2018] wis
Institute of Technology, University of Washington - Tacoma i

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

January 17, 2018 La16

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

=" TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access €——— no access

= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
0S kernel is running performing restricted operations

TCS5422: Operating Systems [Winter 2018] | 17

LRy 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

TCSS422: Operating Systems [Winter 2018]

4.
Instituteof Technology, University of Washington - Tacoma L1

January 17, 2018

Slides by Wes J. Lloyd

L4.3

TCSS 422 A — Winter 2018 1/17/2018
Institute of Technology

CPU MODES SYSTEM CALLS

= User mod Ing 3 - untrusted = Implement restricted “OS” operations

= Some instructions and registers are disabled by the CPU = Kernel exposes key functions through an API:

= Exception registers = Device I/0 (e.g.file 1/0)

= HALT instruction = Task swapping: context switching between processes
= MMU instructions = Memory management/allocation: malloc()

= 0S memory access = Creating/destroying processes

=1/0 device access

= Kernel mode: ring 0 - trusted
= All instructions and registers enabled

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2018]

January 17, 2018 Institute of Technology, University of Washington - Tacoma

| 119 ‘ January 17, 2018

14.20 |

TRAPS: EXCEPTION TYPES

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code AN internupt service Routine

loop() {

= Trap: any transfer to kernel mode

Asynchronous Nonmaskable. Botween Resume

instruction 3

] Synehvonous User request Nonmaskable Between Resume
n instruction 5

= Three kinds of traps o — — — — p—

= System call: (planned) user > kernel Synchronous User request User maskable Botween e

SYSCALL for 1/0, etc. Synchronous Coerced User maskable Within e

= Exception: (error) user > kernel Synehronous Cosrcad Usor maskable winin Rosume

Div by zero, page fault, page protection error Synehronous Cosrcad Nonmaskable witin Rosume

coonses Synehvonous Coerced User maskable witin Resume

= Interrupt: (event) user > kernel Mormoeysrotsctonvioistion Synchronous Coerced Nonmasicabie winin Rosume

Non-maskable vs. maskable Synchronous. Coerced Nonmaskable Within Terminate

Keyboard event, network packet arrival, timer ticks Asynchronous Coerced Nonmaskable Within Terminate

Memory parity error (ECC), hard drive failure Asynchronous Coerced Nonmaskable Within Terminate.

TCS5422: Operating Systems [Winter 2018] TC55422: Operating Systems [Winter 2018] B
LR 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal 21 Y [See et Techolo syl niersity o Washinstoniecome! w2
05 @ hoot Hardware 05 @ boot Hardware
(kernel mode) (kernel mode)
‘ nitialize trap table - initialize trap table
remernber address of remember address of
syscall handler syscall handler
Hardware Program 05 @ run Hardware Program
(kernel mode) (user mode) (kernel mode) (user mode)
Create entry for process lst Create entry for process list
Allocate memory for program Allocate memory for program
Load program into memory Load program into memory
Setup user stack with argy Setup user stack with argy.
Fill kernel stack with reg/PC oo P eolD
return-from -trap
- restore regs from kernel stack
move to user mode c t BOOT S
Jurap 5 main omputer equence
=) Run maing
. . . A .
OS with Limited Direct Execution
trap into OS
save regs to kernel stack
q move to kernel mode move to kernel mode
jump to trap handler jump to trap handler
Handle trap Handle trap
‘ Do work of syscall - Do work of syscall
return-fi -t turn-from-t
eRmaomne restore regs from kernel stack fEomne restore regs from kernel stack
B rrove o user moce move to user mods
jump to PC after trap jump to PC after trap
) return from main) retnfom main
trap (via exit ()) trap (via exit ()
Free memory of process Free memory of process
Remove from process st Remove from procsss list
"TCSS422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
TRy b 2 Institute of Technology, University of Washington - Tacoma L423 T b N Institute of Technology, University of Washington - Tacoma L4.24

Slides by Wes J. Lloyd L4.4

TCSS 422 A — Winter 2018 1/17/2018
Institute of Technology

MULTITASKING MULTITASKING
= How/when should the OS regain control of the CPU to = How/when should the OS regain control of the CPU to
switch between processes? switch between processes?
= Cooperative multitasking (mostly pre 32-bit) = Coopa

* < Windows 95, Mac 0SX

= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0 8
Illegal operations lllegal operations

= (POLLEV) * (POLLEV)
What problems could you for see with this approach? What problems could you for see with this approach?

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

14.26

L 2 2 Institute of Technology, University of Washington - Tacoma ALY g

TCS5422: Operating Systems [Winter 2018] | 425

What problems exist for regaining the control

MULTITASKING - 2

W of the CPU with cooperative multitasking
OSes?

= Preemptive multitasking (32 & 64 bit 0Ses)
= >= Mac 0SX, Windows 95+

= Timer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling
Current program is halted
Program states are saved
0OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCSS422: Operating Systems [Winter 2018]

.
Institute of Technology, University of Washington - Tacoma .28

|| | January 17, 2018

For an OS that uses a system timer to force

OB = 2 arbitrary context switches to share the CPU,

what is a good value (in seconds) for the time

= Preemptive multitasking (32 & 64 bit OSes)

H ?
= >= Mac 0SX, Windows 95+ interrupt?

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Winter 2018] s
Institute of Technology, University of Washington - Tacoma -

January 17, 2018

Slides by Wes J. Lloyd L4.5

TCSS 422 A — Winter 2018
Institute of Technology

CONTEXT SWITCH

= Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a dIfferent one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

Institute of Technology, University of Washington - Tacoma

January 17, 2018 TCS5422: Operating Systems [Winter 2018] | st ‘

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack

= General purpose registers

= PC: program counter (instruction pointer)
= kernel stack pointer

Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

January 17, 2018 TCSS422: Operating Systems [Winter 2018]

4.
Institute of Technology, University of Washington - Tacoma .32

05 @ boot
(kernel mode) Hardware

ize trap table

- start interrupt timer

remember address of ...

syscall handler
timer handler
- start timer

interrupt CPU in X ms

Program
(kernel mode) Hardware (user mode)

Process A

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap
Call switch() routine
q save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(®)
move to user mode
jump to B's PC

‘ Process B

TCSS422: Operating Systems [Winter 2018]
TRy e 2 Institute of Technology, University of Washington - Tacoma L1433

05 @ boot
(kernel mode) Hardware

‘ initialize trap table
‘ start interrupt timer

remember address of ...

q syscall handler

timer handler

‘ start timer
interrupt CPU in X ms

Hardware Program

Context Switch

Call switch() routine

- save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(3)
switch to k-stack(B)

return-from-trap (into B)

restore regs(B) from k-stack(8)
move to user mode
jump to B's PC

- Process B

TCSS422: Operating Systems [Winter 2018]
T b N Institute of Technology, University of Washington - Tacoma L4.34

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

= Linux

= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCS5422: Operating Systems [Winter 2018]
LRy 2 2 Institute o Technoloay)Universitylof Washington®Tacomal 1a3s

PREEMPTIVE KERNEL

mUse “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero

= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= |nterrupt can be interrupted when preempt_count=0
= It is safe to preempt (maskable interrupt)
=the interrupt is more important

Slides by Wes J. Lloyd

TCSS422: Operating Systems [Winter 2018]
Yy [nstueor TechnolosyUniversitylofWashinstonSTacoma!

1436

1/17/2018

L4.6

TCSS 422 A — Winter 2018
Institute of Technology

CHAPTER 7-
SCHEDULING:
INTRODUCTION

TCSS422: Operating Systems [Winter 2018]

TR T 20 Institute of Technology, University of Washington - Tacoma

1/17/2018

SCHEDULING INTRODUCTION

= For simplicity, consider job scheduling with limitations:
= Each job requires the same CPU time
= All jobs arrive at the same time
= All jobs only use the CPU (no 1/0)
= The run-time of each job is known a priori

TCS5422: Operating Systems [Winter 2018]

4.
Institute of Technology, University of Washington - Tacoma .38

January 17, 2018

SCHEDULING METRICS

= Metrlcs: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

= Measurements are the numbers derived from the application
of metrics

= Scheduling Metric #1: Turnaround time

= The time at which the job completes minus the time at which
the job arrived in the system

‘ T vurnaround = T completion — Tarrival ‘
)

= How is turnaround time different than execution time?

TCS5422: Operating Systems [Winter 2018]

LR 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 439

SCHEDULING METRICS - 2

= Scheduling Metric #2: Falrness
= Jain’s fairness index
= Quantifies if jobs receive a fair share of system resources

Jlxismsisngn) =

= n processes

= x; is time share of each process
= worst case = 1/n

= best case = 1

= Consider n=3, worst case = .333, best case=1
= With n=3 and x;=.2, x,=.7, x3=.1, fairness=.62
= With n=3 and x,=.33, x,=.33, x3=.33, fairness=1

TCS5422: Operating Systems [Winter 2018]

Y [See et Techolo syl niersity o Washinstoniecome!

L4.40

SCHEDULERS

= FIFO: first in, first out
= Very simple, easy to implement

= Consider
= 3 x 10sec jobs, arrival: AB C

T T T T 1
40 60 80 100 120

Time (Second)

. 10 + 20 + 30
Average turnaround time = —s - 20 sec

TCS5422: Operating Systems [Winter 2018]

LRy 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

| .41 ‘

Slides by Wes J. Lloyd

FIFO: CONVOY EFFECT

= FIFO with different jobs lengths
= Consider
= A,,=100sec, B,,,=10sec, C,,,=10sec

A B C

40

Time (Second)

100 + 110 + 120

Average turnaround time

TCS5422: Operating Systems [Winter 2018]

44
Instituteof Technology, University of Washington - Tacoma L2

‘ January 17, 2018

L4.7

TCSS 422 A — Winter 2018 1/17/2018
Institute of Technology

SJF: SHORTEST JOB FIRST SJF: WITH RANDOM ARRIVAL

= Given that we know execution times in advance: = |f jobs arrive at any time:
= Run in order of duration, shortest to longest = A @ t=0sec, B @ t=10sec, C @ t=10sec
= Non preemptive scheduler
= This is not realistic
= Arrival: AB C

[B,C arrive]

O D N
0 20 40 60 80 100 120

Time (Second)
0 20 40 60 80 100 120

Time (Second)

10 + 20 + 120 100 + (110 — 10) + (120 — 10)
Average turnaround tis —s = 50 sec Average turnaround time sec

TC55422: Operating Systems [Winter 2018]
e e T e G T e 143 ALY g

January 17, 2018 TCS$422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

La.44

STCF - SHORTEST TIME TO COMPLETION FIRST STCF - 2

= Add preemption to the Shortest Job First scheduler = Consider:

= Also called preemptive shortest job first (PSJF) = Aen=100 A, i\a=0
®* Bien=10, B, 1iya=10, C\¢,=10, C,jya=10
= When a new job enters the system:

[B,C arrive]
= Of all jobs, Which has the least time left? Al ¢ A
= PREMPT job execution, and schedule the new shortest job
= More realistic, but how do we know execution time in) 20 40 60 80 100 120

advance?

= Oracle: All knowing one

= Only schedule static (fixed size) batch workloads
= Can we predict execution time?

Time (Second)

January 17, 2018 TCS5422: Operating Systems [Winter 2018]

TCSS422: Operating Systems [Winter 2018]
Inttute of Technoloay)Universitylor Washington=Tacomal | La4s ‘ Y

44
Institute of Technology, University of Washington - Tacoma Lade

SCHEDULING METRICS - 3 RR: ROUND ROBIN

® Scheduling Metric #3: Response Time = Run each job awhile, then switch to another distributing the
= Time from when job arrives until it starts execution CPU evenly (fairly)
= Scheduling Quantum Process Burst Time
‘ Tresponse = T firstrun — Tarrival is called a time slice B 12
= Time slice must be P2 8
a multiple of the Ei 140
= STCF, SJF, FIFO timer interrupt 5 5
= can perform poorly with respect to response time period. . . .
Round Robin scheduling algorithm
(Gantt chart
response time?
Scheduling mp [Pi[r2[P3]P4ps [p1[P2fPa] Pl
Quantum =5 seconds 0 5 10 14 19 24 29 32 37 39

TCS5422: Operating Systems [Winter 2018]

TCSS422: Operating Systems [Winter 2018]
Institute o Technoloay)Universitylof Washington®Tacomal | L4z ‘ Yy

| January 17, 2018 Institute of Technology, University of Washington - Tacoma

La.48

Slides by Wes J. Lloyd L4.8

TCSS 422 A — Winter 2018
Institute of Technology

1/17/2018

RR: ROUND ROBIN

= Run each job awhile, then switch to another distributing the
CPU evenly (fairly)

= Scheduling Quantum | Process \ Burst Time
is called a time slice P1 12

RR is fair, but performs poorly on metrics

such as turnaround time

Round Robin scheduling algorithm
Gantt chart

Scheduling [P1[P2[P3[P4[P5[P1 [P2[P4] P1]
Quantum = 5 seconds 0 5 10 14 19 24 29 32 37 39

TCS5422: Operating Systems [Winter 2018]

L 2 2 e e T e G T e

| .49

RR EXAMPLE

= ABC arrive at time=0, each run for 5 seconds

OVERHEAD not
consldered

0+5+10
h T T
Time (Second)
SJF (Bad for Response Time)
ABCABCABCABCABC
T 0+1+2 a
= = 1sec
[5 10 15 20 2 30 CCROTE T 3

Time (Second)
RR with a time-slice of 1sec (Good for Response Time)

TCS5422: Operating Systems [Winter 2018]

4
Institute of Technology, University of Washington - Tacoma L0

January 17, 2018

ROUND ROBIN: TRADEOFFS

Short Time Slice Long Time Slice

Fast Response Time Slow Response Time

Low overhead from
context switching

High overhead from
context switching

=Time slice impact:
=Average turnaround time:
ts(1,2,3,4,5)=14,14,13,14,10
=Fairness: round robin is always fair, J=1

TCS5422: Operating Systems [Winter 2018]

LR 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 151

SCHEDULING WITH 1I/0

= STCF scheduler
= A: CPU=50ms, I/0=40ms, 10ms intervals
= B: CPU=50ms, I/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)

= Without considering 1/0:
A B B B B

@

4

i.i.i.il e

| Cpu utilization = 100/140=71%

T — 1 T T 1
0 20 40 60 LY 00 120 140
Time (msec)

Poor Use of Resources

TCS5422: Operating Systems [Winter 2018]

4
Institute of Technology, University of Washington - Tacoma L2

January 17, 2018

SCHEDULING WITH I/0 - 2

= When a job initiates an 1/0 request
= A is blocked, waits for I/0 to compute, frees CPU
= STCF scheduler assigns B to CPU
= When I/0 completes - raise interrupt
=Unblock A, STCF goes back to executing A: (10ms sub-job)
A B A B A B A B A B

l Cpu utilization = 100/100=100%

T T T
80 100 120

Time (msec)

il

Overlap Allows Better Use of Resources

TCS5422: Operating Systems [Winter 2018]

LRy 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1453

CHAPTER 8 -

MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Winter 2018]

STy h Z Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L4.9

TCSS 422 A — Winter 2018
Institute of Technology

MULTI-LEVEL FEEDBACK QUEUE

= QObjectives:

=*Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

1/17/2018

TCS5422: Operating Systems [Winter 2018]

L 2 2 e e T e G T e

| 55

Round-Rob
within a Queue

[High Priority] Q8 _>® _,

= Multiple job queues

= Adjust job priority based on
observed behavior

Q7
= Interactive Jobs Q6
= Frequent 1/0 > keep priority high Qs

= Interactive jobs require fast
response time (GUI/UI)

Q4 —>©

= Batch Jobs Q3
= Require long periods of CPU Q2
utilization

= Keep priority low

[Low Priority] Q1 —>@

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

January 17, 2018 L6

MLFQ: DETERMINING JOB PRIORITY

MLFQ: LONG RUNNING JOB

= New arriving jobs are placed into highest priority queue

= If a job uses its entire time slice, priority is reduced ()

= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

= |f a job relinquishes the CPU for I/0 priority stays the same

MLFQ approximates SJF

TCS5422: Operating Systems [Winter 2018]

LR 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 57

= Three-queue scheduler, time slice=10ms

- Q2
Priority
Q1
Qo
50 100 150 200
Long-running Job Over Time (msec)
TCSS422: Operating Systems [Winter 2018]

Y [See et Techolo syl niersity o Washinstoniecome! L8

MLFQ: BATCH AND INTERACTIVE JOBS

=A
=B

arrival_time =0MS, A
=20ms, B

=200ms,
=100ms

run_time

run_time arrival_time

Priority

o s 1000 150 200

Scheduling multiple jobs (ms)

TCS5422: Operating Systems [Winter 2018]

LRy 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

| 1459

Slides by Wes J. Lloyd

QUESTIONS

L4.10

