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 Feedback from 1/10
 Homework 0 Questions

 Chapter 6: Limited Direct Execution
 Virtualizing the CPU

 Ch. 7

 Scheduling Introduction
 Scheduling Metrics
 Scheduling Methods
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 Multi-level feedback queue (MLFQ)
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OBJECTIVES

 Stephen Rondeau has created TCSS422 Ubuntu VMs

 Instructions on how to connect and use VMs:

 http://css.insttech.washington.edu/~lab/Support/Howt
oUse/UsingVCLQS.html
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TCSS422 - VIRTUAL MACHINES

 What is  hyperthreading in a CPU?
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SELECTED FEEDBACK FROM 1/10

 How did the example program (execv) run “wc” when “wc” 
wasn’t in the current working directory?

 It is in the system’s path variable:

 Check your path variable:
echo $PATH

 Add to your path
export PATH=$PATH:/home/mydir:/.

 Check which command will be used
whereis wc
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FEEDBACK - 2

 How can a program run with exec, return back to the 
process that called it ,  when it  f inishes execution?

 Fork(), then exec(), and have the parent wait()

 Is it  only exec() that prevents the remaining lines of  code 
from being processed?

 Yes… the process has been handed off to another 
executable, which then exits…
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FEEDBACK - 3
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 Can we go over the exec() examples again

 What is  the dif ference between the execl’s: execl(),  execlp(), 
execle() and the execv’s: execv(), execvp(), execvpe()

 Execl’s

 Send a NULL terminated list of strings instead of an array

 Variants (execlp, execle, execl) are for different path settings

 ** New example execl() **

 Execv’s

 Parameterize exec using an array

 Variance (execv, execvp, execvpe) for different path settings
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FEEDBACK - 4

 Can you spend a l itt le time going over bash commands

 Goal of assignment 0 is to engage students in using the 
internet to research how to accomplish tasks in Linux

 Develop and practice skills to seek answers to Linux and 
system-oriented questions
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FEEDBACK - 5

 Examples posted online at:
 http://faculty.washington.edu/wlloyd/courses/tcss422/examples/

 Previous slides online at:
 http://faculty.washington.edu/wlloyd/teaching.html

 Slides from previous TCSS422 sections
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SLIDES AND EXAMPLES

CH. 6:
LIMITED DIRECT 

EXECUTION
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 How does the CPU support running so many jobs 
simultaneously?

 Time Sharing

 Tradeoffs:

 Performance
 Excessive overhead

 Control
 Fairness

 Security

 Both HW and OS support
is used
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VIRTUALIZING THE CPU

 What if programs could directly control the CPU / system?
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COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for 
program
3. Load program into memory
4. Set up stack with argc / 
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()
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 What if programs could directly control the CPU / system?
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COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for 
program
3. Load program into memory
4. Set up stack with argc / 
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything 

and would “just be a library”

 With direct execution: 

How does the OS stop a program from running, and switch 
to another to support time sharing?

How do programs share disks and perform I/O if they are 
given direct control?  Do they know about each other?

With direct execution, how can dynamic memory structures 
such as linked lists grow over time?
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DIRECT EXECUTION - 2

 Too little control: 
 No security

 No time sharing

 Too much control: 
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use
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CONTROL TRADEOFF
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CONTEXT SWITCHING OVERHEAD

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes 
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do 
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

January 17, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L4.17

LIMITED DIRECT EXECUTION

 Utilize CPU Privilege Rings (Intel x86)
 rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode: 
Application is running, but w/o direct I/O access

 Kernel mode: 
OS kernel is running performing restricted operations
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CPU MODES

access no access
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 User mode: r ing 3 - untrusted

 Some instructions and registers are disabled by the CPU

 Exception registers

 HALT instruction

MMU instructions

 OS memory access

 I/O device access

 Kernel mode: r ing 0 – trusted

 All instructions and registers enabled
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CPU MODES

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O  (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation:  malloc()

 Creating/destroying processes
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SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned)  user  kernel
 SYSCALL for I/O, etc.

 Exception: (error) user  kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user  kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure
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TRAPS: 
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs. 

asynchronous
User request vs. 

coerced
User maskable vs. 

nonmaskable
Within vs. between 

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow 

or underflow
Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate
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EXCEPTION TYPES
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Computer BOOT Sequence: 
OS with Limited Direct Execution
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 How/when should the OS regain control of the CPU to 
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV) 
What problems could you for see with this approach?
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MULTITASKING

 How/when should the OS regain control of the CPU to 
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV) 
What problems could you for see with this approach?
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MULTITASKING

A process gets stuck in an infinite loop. 
 Reboot the machine
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 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?
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MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?
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MULTITASKING - 2

A timer interrupt gives OS the ability to 
run again on a CPU.
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 Preemptive multitasking initiates “trap” 
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context 
switch swapping out the current process for a new one.
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CONTEXT SWITCH

1. Save register values of the current process to its kernel 
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel 
stack

3. Switch to the kernel stack for the soon-to-be-executing 
process 
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CONTEXT SWITCH - 2
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Context Switch

 What happens if during an interrupt (trap to kernel 
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel
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INTERRUPTED INTERRUPTS

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt) 

 the interrupt is more important
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PREEMPTIVE KERNEL
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CHAPTER 7-
SCHEDULING:

INTRODUCTION
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 For simplicity, consider job scheduling with limitations:
 Each job requires the same CPU time

 All jobs arrive at the same time

 All jobs only use the CPU (no I/O)

 The run-time of each job is known a priori 
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SCHEDULING INTRODUCTION

 Metrics: A standard measure to quantify to what degree a 
system possesses some property.  Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application 
of metrics

 Scheduling Metric #1: Turnaround time

 The time at which the job completes minus the time at which 
the job arrived in the system

 How is turnaround time different than execution time?

January 17, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L4.39

SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

 Scheduling Metric #2: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is time share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1
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SCHEDULING METRICS - 2

 FIFO: first in, first out
 Very simple, easy to implement

 Consider
 3 x 10sec jobs, arrival: A B C
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SCHEDULERS

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎

𝟑
= 𝟐𝟎 𝒔𝒆𝒄

 FIFO with different jobs lengths

 Consider
 Alen=100sec, Blen=10sec, Clen=10sec
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FIFO: CONVOY EFFECT

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟏𝟏𝟎 𝒔𝒆𝒄
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 Given that we know execution times in advance:
 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C
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SJF: SHORTEST JOB FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 If jobs arrive at any time:

 A @ t=0sec, B @ t=10sec, C @ t=10sec
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SJF: WITH RANDOM ARRIVAL

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 − 𝟏𝟎 + (𝟏𝟐𝟎 − 𝟏𝟎)

𝟑
= 𝟏𝟎𝟑. 𝟑𝟑 𝒔𝒆𝒄

 Add preemption to the Shortest Job First scheduler
 Also called preemptive shortest job first (PSJF)

 When a new job enters the system:
 Of all jobs, Which has the least time left?

 PREMPT job execution, and schedule the new shortest job

 More realistic, but how do we know execution time in 
advance?
 Oracle: All knowing one

 Only schedule static (fixed size) batch workloads

 Can we predict execution time?
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STCF – SHORTEST TIME TO COMPLETION FIRST

 Consider:
 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10
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STCF - 2

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎 − 𝟎) + 𝟐𝟎 − 𝟏𝟎 + (𝟑𝟎 − 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 Scheduling Metric #3: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO 
 can perform poorly with respect to response time
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𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help 
minimize response time?

 Run each job awhile, then switch to another distributing the 
CPU evenly (fairly)

 Scheduling Quantum
is called a time slice

 Time slice must be
a multiple of the
timer interrupt
period.
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RR: ROUND ROBIN

Scheduling 
Quantum    = 5 seconds



TCSS 422 A – Winter 2018
Institute of Technology

1/17/2018

L4.9Slides by Wes J. Lloyd

 Run each job awhile, then switch to another distributing the 
CPU evenly (fairly)

 Scheduling Quantum
is called a time slice

 Time slice must be
a multiple of the
timer interrupt
period.
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RR: ROUND ROBIN

Scheduling 
Quantum    = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds

January 17, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L4.50

RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not 
considered

 Time slice impact:
Average turnaround time: 

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1

January 17, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L4.51

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from 
context switching

Low overhead from 
context switching

Short Time Slice Long Time Slice  STCF scheduler
 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:
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SCHEDULING WITH I/O

Cpu utilization = 100/140=71%

 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes  raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)
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SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

CHAPTER 8 –
MULTI-LEVEL FEEDBACK 

QUEUE (MLFQ) SCHEDULER
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Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length
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MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low
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MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound ( “batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

January 17, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L4.57

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 Three-queue scheduler, time slice=10ms
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MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, Arun_time=200ms, 

 Brun_time =20ms, Barrival_time =100ms
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MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

QUESTIONS


