
TCSS 422 A – Winter 2018
Institute of Technology

1/10/2018

L3.1Slides by Wes J. Lloyd

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

The Process API,
Limited Direct Execution

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Feedback from 1/8

 Homework 0 Questions

 Class Activity 1
 Operating system design goals

 Chapter 5: C Linux Process API

 Chapter 6: Limited Direct Execution
 Virtualizing the CPU

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.2

OBJECTIVES

 Please complete the Virtual Machine Survey if wanting
an Institute of Technology hosted Ubuntu 16.04 VM

https://goo.gl/forms/XAxxuZtut5o707Ip1

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.3

VIRTUAL MACHINE SURVEY

 What are fork() and exec() used for?
 fork() - splits a running process into two process

 It’s like CLONING a process

 exec() is used to “run” another program from an existing process

 Can control: standard in (stdin)
standard out (stdout)
standard err (stderr)

 Capture input/output to the external program.

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.4

SELECTED FEEDBACK FROM 1/8

 What are examples of when to launch new processes?

Memory is not shared (heap or stack)

 Code is shared

 Fork + Exec heap, stack, code not shared

 And launch new threads?

Memory is shared (heap and code)

 Not stack based memory

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.5

FEEDBACK - 2

What are these three different states?

RUNNING

READY

BLOCKED

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.6

FEEDBACK - 3

TCSS 422 A – Winter 2018
Institute of Technology

1/10/2018

L3.2Slides by Wes J. Lloyd

 Redirect stdout

 ./myscript.sh > output.txt

 Redirect stdout and std err

 ./myscript.sh > output.txt 2> output.err

 Redirect stdout and stderr to same f i le

 ./myscript.sh > alloutput.txt 2>&1

 ./myscript.sh > alloutput.txt 2>alloutput.txt

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.7

LINUX OUTPUT REDIRECTION

 Do I have to read the book chapter carefully or just skim
through before coming to class?

 Can a sample format submission be provided for
assignment 0?

 You went too fast
 Please interrupt !

 Throw tomatoes

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 5

CH. 2: INTRODUCTION TO
OPERATING SYSTEMS

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L3.9

 ABSTRACTING THE HARDWARE
 Makes programming code easier to write
 Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE
 Minimize overhead from OS abstraction

(Virtualization of CPU, RAM, I/O)
 Share resources fairly
 Attempt to tradeoff performance vs. fairness consider

priority

 PROVIDE ISOLATION
 User programs can’t interfere with each other’s virtual

machines, the underlying OS, or the sharing of resources

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.10

SUMMARY:
OPERATING SYSTEM DESIGN GOALS

 RELIABILITY

 OS must not crash, 24/7 Up-time

 Poor user programs must not bring down the system:

Blue Screen

 Other Issues:
 Energy-efficiency

 Security (of data)

 Cloud: Virtual Machines

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.11

SUMMARY:
OPERATING SYSTEM DESIGN GOALS - 2

ABSTRACTING THE HARDWARE

PROVIDE HIGH PERFORMANCE

PROVIDE ISOLATION

RELIABILITY

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L3.12

OPERATING SYSTEM DESIGN GOALS

TCSS 422 A – Winter 2018
Institute of Technology

1/10/2018

L3.3Slides by Wes J. Lloyd

CHAPTER 5:
C PROCESS API

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L3.13

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of
 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.14

fork()

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.15

wait()

 Supports running an external program

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments… (arg0, arg1, .. argn)

 Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.16

exec()

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.17

EXEC() - 2

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.18

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

TCSS 422 A – Winter 2018
Institute of Technology

1/10/2018

L3.4Slides by Wes J. Lloyd

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.19

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.20

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.21

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.22

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

January 10, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L3.23

CH. 6:
LIMITED DIRECT

EXECUTION

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.24

TCSS 422 A – Winter 2018
Institute of Technology

1/10/2018

L3.5Slides by Wes J. Lloyd

 How does the CPU support running so many jobs
simultaneously?

 Time Sharing

 Tradeoffs:

 Performance
 Excessive overhead

 Control
 Fairness

 Security

 Both HW and OS support
is used

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.25

VIRTUALIZING THE CPU

 What if programs could directly control the CPU / system?

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.26

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

 With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/O if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.27

DIRECT EXECUTION - 2

 Too little control:
 No security

 No time sharing

 Too much control:
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.28

CONTROL TRADEOFF

January 10, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.29

CONTEXT SWITCHING OVERHEAD QUESTIONS

