TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Three Easy Pieces,
Processes, Process API

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

Lanuavis 2018 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Feedback from 1/3

B Chapter 2: Operating Systems - Three Easy Pieces

- \/ Easy piece #1: CPU Virtualization

TR, Easy piece #2: Memory Virtualization
= Easy piece #3: 1/0 Virtualization

= Operating system design goals

® Processes - Ch. 4
® C Linux Process APl - Ch. 5

® Limited Direct Execution - Ch. 6 (wed)
= Virtualizing the CPU

TCSS422: Operating Systems [Winter 2018]

LEGUELR)) A Institute of Technology, University of Washington - Tacoma

L2.2

Lioyd

1/9/2018

L2.1

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

VIRTUAL MACHINE SURVEY

= Please complete the Virtual Machine Survey is wanting
an Institute of Technology hosted Ubuntu 16.04 VM

mhttps://g00.gl/forms/XAxxuZtut50707Ip1

TCSS422: Operating Systems [Winter 2018]

danuaryis20ts Institute of Technology, University of Washington - Tacoma

QUIZ 0 - C REVIEW

Descriptive Statistics 6.348 79.36% avg
mean 6.34848484848485 2.000 25.00% min
tandard deviati 1.45170006433046 A0 00000 TR
stanaar eviation 13
7.000 87.50% mode
Histogram of x

New Window | Postscript

TCSS422: Operating Systems [Winter 2018]

LEGUELR)) A Institute of Technology, University of Washington - Tacoma

Lloyd

1/9/2018

L2.2

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

SELECTED FEEDBACK FROM 1/3

= What causes threads to interrupt each other?

*The OS interrupts threads when:

Threads YIELD (e.g. give up) the CPU because they’re
waiting on 1/0 (disk or network)

They exceed their “time slice” of execution (e.g. 10ms)

®|s kernel-mode code written in a unified language,
or does it vary from 0S-to-0S?

= |In Linux, kernel code is written in C and Assembly
Language

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L25

January 8, 2018

FEEDBACK - 2

® What is “memory” fragmentation?

Malloc Memory Fragmentation Over Time

initially un-fragmented —> -"I..-
1 O o

...program repeatedly frees --I. ..--

and allocates memory... - -I-..I. -

L] L Ll

memory has fragmented =—>» . ._ I _ Q"

unused space that cannot be
released to the operating system

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L26

January 8, 2018

Lioyd

1/9/2018

L2.3

TCSS 422 A — Winter 2018

Institute of Technology

FEEDBACK - 3

® Are the resources given to a program static?
=NO
= Can programs request more memory?

=YES, In C, dynamic memory is allocated on the “HEAP”
using the malloc() command

® What is a device driver?

= A software program written in C and/or assembly
language that facilitates transferring data to/from a
device (e.g. Disk or Network Card) to the Computer

= Block vs. char drivers, see:
http://www.linuxjournal.com/article/2890

TCSS422: Operating Systems [Winter 2018]

danuaryis20ts Institute of Technology, University of Washington - Tacoma

FEEDBACK - 4

= Are we allowed to publicly post source code for assignments
later on in another term, or after graduation?

® Or should source code for programs be kept private
indefinitely?

® During the term it could be grounds for an honor code
violation if code pops up elsewhere

® FREE SPEECH - you're always “allowed” to post code

® However, it is discouraged...

TCSS422: Operating Systems [Winter 2018]

LEGUELR)) A Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

1/9/2018

L2.4

TCSS 422 A — Winter 2018

Institute of Technology

CH. 2: INTRODUCTION TO
OPERATING SYSTEMS

TCSS422: Operating Systems [Winter 2018]

Januarvien2018 Institute of Technology, University of Washington - Tacoma

VIRTUALIZATION

® Operating systems present physical resources
as virtual representations to the programs sharing
them

= Physical resources: CPU, memory, disk ...
*The virtual form is “abstract”

*The OS presents an illusion that each user program
runs in isolation on its own hardware

= This virtual form is general, powerful, and easy-to-use

TCSS422: Operating Systems [Winter 2018]

) . " ’ L2.10
Institute of Technology, University of Washington - Tacoma

January 8, 2018

Slides by Wes J. Lloyd

1/9/2018

L2.5

TCSS 422 A — Winter 2018

Institute of Technology

ABSTRACTIONS

= What form of abstraction does the OS provide?
=CPU

Processes and threads
*Memory

Address space

- large array of bytes

All programs see the same “size” of RAM
"Disk

Files

TCSS422: Operating Systems [Winter 2018]

danuaryis20ts Institute of Technology, University of Washington - Tacoma

L2.11

WHY ABSTRACTION?

= Allow applications to reuse common facilities
= Make different devices look the same
=Easier to write common code to use devices
Linux/Unix Block Devices
= Provide higher level abstractions
= More useful functionality

TCSS422: Operating Systems [Winter 2018]

LEGUELR)) A Institute of Technology, University of Washington - Tacoma

L2.12

Slides by Wes J. Lloyd

1/9/2018

L2.6

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

ABSTRACTION CHALLENGES

= What is the right “level” of abstraction?
*How much of the underlying hardware should be
exposed?
What if too much?
What if too little?
= What are the correct abstractions?
=Security concerns

TCSS422: Operating Systems [Winter 2018]

danuaryis20ts Institute of Technology, University of Washington - Tacoma

L2.13

W To perform parallel work, a single process may:

Launch Launch Both Aand B None of the
multiple multiple above
threads to processes to
execute code execute code
in parallel in parallel

while sharing without sharing
globaldatain globaldatain
memory memory

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Lloyd

1/9/2018

L2.7

TCSS 422 A — Winter 2018

Institute of Technology

PERSISTENCE

= DRAM: Dynamic Random Access Memory: DIMMs/SIMMs
= Stores data while power is present
= When power is lost, data is lost (volatile)

® Operating System helps “persist” data more permanently
=|/0 device(s): hard disk drive (HDD), solid state drive (SSD)
= File system(s): “catalog” data for storage and retrieval

TCSS422: Operating Systems [Winter 2018] 12.15

danuaryis20ts Institute of Technology, University of Washington - Tacoma

PERSISTENCE - 2

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O WRONLY | O CREAT
| O _TRUNC, S_IRWXU);

11 assert (fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert (rc == 13);

14 close (fd) ;

15 return 0;

16 }

® open(), write(), close(): OS system calls for device I/0

= Note: man page for open(), write() require page number:
“man 2 open”, ”“man 2 write”, “man close”

TCSS422: Operating Systems [Winter 2018] 12.16
Institute of Technology, University of Washington - Tacoma :

Slides by Wes J. Lloyd

1/9/2018

L2.8

TCSS 422 A — Winter 2018

Institute of Technology

PERSISTENCE - 3

® To write to disk, OS must:
= Determine where on disk data should reside

= Perform sys calls to perform 1/0:
Read/write to file system (inode record)
Read/write data to file

® Provide fault tolerance for system crashes
= Journaling: Record disk operations in a journal for replay
= Copy-on-write: see ZFS
= Carefully order writes on disk

TCSS422: Operating Systems [Winter 2018]

L2.17
Institute of Technology, University of Washington - Tacoma

January 8, 2018

SUMMARY:

OPERATING SYSTEM DESIGN GOALS

= ABSTRACTING THE HARDWARE
= Makes programming code easier to write
= Automate sharing resources - save programmer burden

= PROVIDE HIGH PERFORMANCE

= Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, 1/0)

= Share resources fairly

= Attempt to tradeoff performance vs. fairness = consider
priority

" PROVIDE ISOLATION

= User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L218

January 8, 2018

Slides by Wes J. Lloyd

1/9/2018

L2.9

TCSS 422 A — Winter 2018 1/9/2018
Institute of Technology

SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2

= RELIABILITY
= OS must not crash, 24/7 Up-time
= Poor user programs must not bring down the system:

Blue Screen

® Other Issues:
= Energy-efficiency
= Security (of data)
= Cloud: Virtual Machines

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L219

January 8, 2018

Process State

ﬁmltted interrupt

scheduler dispatch
lle}
or
event completion

event wait

? /proc

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

January 8, 2018

Slides by Wes J. Lloyd L2.10

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

CPU VIRTUALIZING

® How should the CPU be shared?

® Time Sharing:
Run one process, pause it, run another

® How do we SWAP processes in and out of the CPU
efficiently?

= Goal is to minimize overhead of the swap

TCSS422: Operating Systems [Spring 2017]

danuaryis20ts Institute of Technology, University of Washington - Tacoma

L2.21

PROCESS

running program ‘

® Process comprises of:

= Memory
Instructions (“the code”)
Data (heap)

= Registers
PC: Program counter
Stack pointer

TCSS422: Operating Systems [Spring 2017]

LEGUELR)) A Institute of Technology, University of Washington - Tacoma

L2.22

Lloyd

1/9/2018

L2.11

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

= Create
= Create a new process

Destroy

PROCESS API

Modern OSes provide a Process API for process support

= Terminate a process (ctrl-c)

= Wait
= Wait for a process to complete/stop

Miscellaneous Control

= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.23

1. Load program code (and static data) into memory

= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loading: Load entire program before running

PROCESS API: CREATE

= Lazy loading: Only load what is immediately needed

Modern OSes: Supports paging & swapping

Run-time stack creation

= Stack: local variables, function params, return address(es)

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.24

Lloyd

1/9/2018

L2.12

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

PROCESS API: CREATE

3. Create program’s heap memory

For dynamically allocated data

4. Other initialization

/0 Setup

Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()

OS transfers CPU control to the new process

TCSS422: Operating Systems [Spring 2017]

L2.25
Institute of Technology, University of Washington - Tacoma

January 8, 2018

CPU Memory

| static data
heap

Loading:
Reads program from
disk into the address

""}’_ré_-q-r;;r;"" Space of process

static data

TCSS422: Operating Systems [Spring 2017]

dEIIIERY &, Vi) Institute of Technology, University of Washington - Tacoma L2.26

Lloyd

1/9/2018

L2.13

TCSS 422 A — Winter 2018

Institute of Technology

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED

= Process is not ready to run. It is waiting for another event

to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCSS422: Operating Systems [Spring 2017]

danuaryis20ts Institute of Technology, University of Washington - Tacoma

L2.27

PROCESS STATE TRANSITIONS

—
Descheduled /\

Running i, Ready
Scheduled \

1/0: wtmt& //O: done
Blocked)
AN

TCSS422: Operating Systems [Spring 2017]

LEGUELR)) A Institute of Technology, University of Washington - Tacoma

L2.28

Slides by Wes J. Lloyd

1/9/2018

L2.14

TCSS 422 A — Winter 2018
Institute of Technology

PROCESS DATA STRUCTURES

= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

® PCB (Process Control Block)

= A C-structure that contains information about each
process

m OS provides data structures to track process information

TCSS422: Operating Systems [Spring 2017]

danuaryis20ts Institute of Technology, University of Washington - Tacoma

L2.29

XV6 KERNEL DATA STRUCTURES

m xv6: pedagogical implementation of Linux
®m Simplified structures

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context ({

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register

int edi; // Destination index register
int ebp; // Stack base pointer register

}i

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TCSS422: Operating Systems [Spring 2017]

LEGUELR)) A Institute of Technology, University of Washington - Tacoma

L2.30

Slides by Wes J. Lloyd

1/9/2018

L2.15

TCSS 422 A — Winter 2018

Institute of Technology

XV6 KERNEL DATA STRUCTURES - 2

struct
struct
struct
struct

// the information xv6
// including its register context and state
struct proc {
char *mem;
uint sz;
char *kstack;

enum proc_state state;
int pid;

struct proc *parent;
void *chan;

int killed;

file *ofile[NOFILE];

inode *cwd;
context context;
trapframe *tf;

/ //
/ //
//
//
//
/ //
// //
//
//

///

// Switch here to run process

//
//

tracks about each process

Start of pro
Size of pr
Bottom of kernel
for this process
Process state
Process ID
Parent process

5 memory
memory
stack

If non-zero, sleeping on chan
If non-zero, have been killed

// Open files
Current directory

Trap frame for the
current interrupt

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.31

LINUX: STRUCTURES

B struct task struct, equivalent to struct proc

= Provides process description
= Large: 10,000+ bytes

= /usr/src/linux-headers-{kernel version}/include/linux/sched.h

1227 - 1587

® struct thread info, provides “context”

= thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.32

Slides by Wes J. Lloyd

1/9/2018

L2.16

TCSS 422 A — Winter 2018

Institute of Technology

LINUX: THREAD_INFO

struct thread_info {
struct task_struct
struct exec_domain
_u32
_ u32
_ u32
int

mm_segment_t
struct restart_block
void _ user

#ifdef CONFIG_X86_32
unsigned long

__u8
#endif
int

};

task; /
exec_domain; /
flags; /*
status; /*
cpu; /*

preempt_count; /*
addr_limit;
restart_block;
*sysenter_ return;

previous_esp; /*

*/

main task structure */
execution domain */

low level flags */

thread synchronous flags */
current CPU */

0 => preemptable,

<0 => BUG */

ESP of the previous stack in
case of nested (IRQ) stacks

supervisor_stack[0];

uaccess_err;

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.33

LINUX STRUCTURES - 2

® List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

® Description of process data structures:

http://www.makelinux.net/books/lkd2/ch03levisecl

2nd edition is online (dated from 2005):
Linux Kernel Development, 2"9 edition

Robert Love

Sams Publishing

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.34

Slides by Wes J. Lloyd

1/9/2018

L2.17

TCSS 422 A — Winter 2018

1/9/2018
Institute of Technology

When a process is in this state, it is
advantageous for the Operating System to

perform a CONTEXT SWITCH to perform other
work

RUNNING READY BLOCKED All ofthe None of
above the above

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Winter 2018]
BN (20K Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L2.18

TCSS 422 A — Winter 2018

Institute of Technology

fork()

® Creates a new process - think of “a fork in the road”

® “Parent” process is the original

m Creates “child” process of the program from the current

execution point
= Book says “pretty odd”

® Creates a duplicate program instance (these are processes!)

= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
® Fork returns
= child PID to parent
= 0 to child

TCSS422: Operating Systems [Spring 2017]
danuaryis20ts Institute of Technology, University of Washington - Tacoma

L2.37

FORK EXAMPLE

®pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
printf ("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\

} else { // parent c 5 down this path
printf ("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}

return 0;

, (int) getpid());

TCSS422: Operating Systems [Spring 2017]
LEGUELR)) A Institute of Technology, University of Washington - Tacoma

L2.38

Slides by Wes J. Lloyd

1/9/2018

L2.19

TCSS 422 A — Winter 2018
Institute of Technology

FORK EXAMPLE - 2

® Non deterministic ordering of execution

prompt> ./pl
hello world

prompt>

(pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

or

prompt> ./pl
hello world

prompt>

(pid:29146)

hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)

B CPU scheduler determines which to run first

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.39

i 7 R

.d . ¥> <

T

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.40

Slides by Wes J. Lloyd

1/9/2018

L2.20

TCSS 422 A — Winter 2018
Institute of Technology

wait(), waitpid()

Called by parent process

Waits for a child process to finish executing

Not a sleep() function

® Provides some ordering to multi-process execution

TCSS422: Operating Systems [Spring 2017]

danuaryis20ts Institute of Technology, University of Washington - Tacoma

L2.41

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf ("hello world (pid:%d)\n", (int) getpid());

int rc = fork();
if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;
} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid()):
} else { // parent goes down this path (main)
‘ int wec = wait (NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}

return 0;

TCSS422: Operating Systems [Spring 2017]

LEGUELR)) A Institute of Technology, University of Washington - Tacoma

L2.42

Slides by Wes J. Lloyd

1/9/2018

L2.21

TCSS 422 A — Winter 2018

Institute of Technology

FORK WITH WAIT - 2

® Deterministic ordering of execution

prompt> ./p2
hello world

prompt>

(pid:29266)

hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.43

FORK EXAMPLE

® Linux example

January 8, 2018

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.44

Slides by Wes J. Lloyd

1/9/2018

L2.22

TCSS 422 A — Winter 2018

Institute of Technology

exec()

® Supports running an external program
m 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

m execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments... (arg0, argil, .. argn)

= Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

TCSS422: Operating Systems [Spring 2017]

L2.45
Institute of Technology, University of Washington - Tacoma

January 8, 2018

EXEC() - 2

= Common use case:

= Write a nhew program which wraps a legacy one

® Provide a new interface to an old system: Web services
m Legacy program thought of as a “black box”

® We don’t want to know what is inside...

Input —> Black Box

{nternal behoviar of the code is unknown

Output

TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma L2.46

January 8, 2018

Slides by Wes J. Lloyd

1/9/2018

L2.23

TCSS 422 A — Winter 2018 1/9/2018
Institute of Technology

QUESTIONS

Slides by Wes J. Lloyd L2.24

